CN101813691A - 室内测定软土次固结系数的方法及用于该方法的测量装置 - Google Patents

室内测定软土次固结系数的方法及用于该方法的测量装置 Download PDF

Info

Publication number
CN101813691A
CN101813691A CN201010170475A CN201010170475A CN101813691A CN 101813691 A CN101813691 A CN 101813691A CN 201010170475 A CN201010170475 A CN 201010170475A CN 201010170475 A CN201010170475 A CN 201010170475A CN 101813691 A CN101813691 A CN 101813691A
Authority
CN
China
Prior art keywords
fulcrum
secondary consolidation
container
contact
consolidation coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201010170475A
Other languages
English (en)
Other versions
CN101813691B (zh
Inventor
冯蓓蕾
钮建定
胡建平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CCCC Third Harbor Consultants
Original Assignee
CCCC Third Harbor Consultants
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CCCC Third Harbor Consultants filed Critical CCCC Third Harbor Consultants
Priority to CN 201010170475 priority Critical patent/CN101813691B/zh
Publication of CN101813691A publication Critical patent/CN101813691A/zh
Application granted granted Critical
Publication of CN101813691B publication Critical patent/CN101813691B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

本发明涉及一种室内测定软土次固结系数的方法,按以下步骤进行:(1)将容器(置于底座上,将支点与容器上盖接触,传感器的触点与支点弹性接触;(2)活塞通气,将容器、传感器顶起,在顶升过程中,触点下降,并与支点始终接触;(3)触点下降距离为Δh,传感器采集后送至控制***,通过公式
Figure 201010170475.7_AB_0
,求出孔隙比e,其中,e0为土的天然孔隙比是常量,h0为试样在零荷载时的高度;(4)触点随时间延长不断下降,控制***实时计算出孔隙比,最终生成次固结系数(时间对数-孔隙比)曲线图,所述曲线完整包括上部曲线段、中部直线段、下部直线段;(5)计算次固结曲线下部直线段斜率,求出次固结系数Ca。本发明通过在每级荷重下增加时间读数,使整个曲线得以延长,次固结线段更清楚地反映出土体随时间的增长而变化的规律。根据曲线趋势推算出建筑物最终沉降量,即基础沉降与时间关系,结合建筑物的使用年限,就能推测工程稳定性范围,确保工程的安全性。

Description

室内测定软土次固结系数的方法及用于该方法的测量装置
技术领域
本发明涉及岩土工程勘查测试,具体说是一种室内测定软土次固结系数的方法。
本发明还涉及岩土工程勘查试验设备,具体说是一种用于室内测定软土次固结系数的测量装置。
背景技术
软土地基的最终沉降量由瞬时沉降量、固结沉降量和次固结沉降量组成。土的次固结沉降是指土样在主固结过程(超静孔隙水压力消散过程)结束后,有效应力不变的情况下,土的骨架仍然随着时间继续发生的缓慢变形。次固结系数是反映软粘土在恒载下随着时间的增长而变形的一个重要特征指数。通过次固结系数预估基础达到最终沉降量所需要的时间或者预估建筑物完工后经过某一段时间可能产生的沉降量,即基础沉降与时间关系,结合建筑物的使用年限,就能推测工程稳定性范围。
目前国内缺乏测试次固结系数有效手段和相关的试验设备,表现在:1)国家标准《土工试验方法标准》和其他地方、行业规范中都没有次固结系数测试方法和要求;2)按次固结系数物理意义及常规加荷24小时稳定法测试,某些荷载下次固结系数曲线仅反映出前端主固结段,后端次固结部分未出现;3)采用传统杠杆式固结仪试验设备进行试验,存在测试精度低,出力滞后现象;4)人工加荷对试样产生瞬间冲击力;5)加荷与计时、人工记录数据不同步;6)资料整理繁琐及试验周期长。
因此,岩土工程勘察技术领域需要一种新的测试方法,通过利用室内常规测试手段,能有效、便捷、准确地得到次固结系数。同时,也需要一种专用于测试方法的试验设备,以克服上述现有技术中的缺陷与不足。
发明内容
本发明要解决的技术问题是提供一种室内测定软土次固结系数的方法,能实现能有效、便捷、准确地得到次固结系数。
本发明采用以下技术方案:
一种室内测定软土次固结系数的方法,包括底座,底座内设活塞,所述底座一侧的悬臂支架末端设有支点,还包括位移传感器,所述支点上方设有位移传感器,该传感器固定于装有试样的容器的一侧表架上,并与控制***连接,按以下步骤进行:
(1)将容器置于底座上,将支点与容器上盖接触,传感器的触点与支点弹性接触;
(2)活塞通气,将容器、传感器顶起,在顶升过程中,触点下降,并与支点始终接触;
(3)触点下降距离为Δh,传感器采集后送至控制***,通过公式
Figure GSA00000113802400021
求出孔隙比e,其中,e0为土的天然孔隙比是常量,h0为试样在零荷载时的高度;
(4)触点随时间延长不断下降,控制***实时计算出孔隙比,最终生成次固结系数(时间对数-孔隙比)曲线图,所述曲线完整包括上部曲线段、中部直线段、下部直线段;
(5)计算次固结曲线下部直线段斜率,求出次固结系数Ca。
优选地,在步骤(4)中,延长时间>24小时。
优选地,在步骤(1)中,底座上设有工作平台,容器置于工作平台中心,所述传感器触点、支点、容器中心共线。
优选地,在步骤(1)与步骤(2)之间,旋转支点螺母,直至与悬臂支架上表面接触。
本发明具有以下有益效果:通过在每级荷重下增加时间读数,使整个曲线得以延长,次固结线段更清楚地反映出土体随时间的增长而变化的规律。根据曲线趋势推算出建筑物最终沉降量,即基础沉降与时间关系,结合建筑物的使用年限,就能推测工程稳定性范围,确保工程的安全性。
本发明要解决的另一个技术问题是提供一种专用于室内测定软土次固结系数的测试装置,能配合所述方法有效得到次固结系数。
本发明采用以下技术方案:
一种室内测定软土次固结系数的测量装置,包括底座,底座内设活塞,容器设于活塞上,所述底座一侧的悬臂支架末端设有支点,所述支点上方设有位移传感器,该传感器固定于容器的一侧表架上,并与控制***连接,所述触点与支点弹性接触。
优选地,所述容器内腔为水漕,且为多层结构,包括由外至内的大导环、小护环和小导环,其中小导环底部设有凸缘,小护环外套在凸缘上,凸缘下设有大透水石,凸缘与大透水石共同套于大导环内,大透水石上方设有小透水石,大、小透水石间构成装试样的空间,小透水石套于小护环内。
优选地,所述小透水石上设有上盖,所述上盖中央设有一钢球。
优选地,所述支点包括穿设于悬臂支架的支点螺杆帽,所述支点螺杆帽的下端为半球凹面,与所述钢球配合,支点螺杆帽的螺纹段上套有支点螺母。
优选地,所述表架包括表杆和相对于表杆升降的支架。
优选地,底座上设有可升降的工作平台,工作平台的中心为容器,所述触点、支点螺杆帽、钢球、容器中心共线。
优选地,所述测量装置有多个且并排设置,每个测量装置的底座上设有支路管道,各支路管道均与气压管道连接;每个测量装置的位移传感器上设有数据线,各数据线均与采集器连接。
本发明具有以下有益效果:表现在加荷出力同步、通过活塞加荷不会对试样产生瞬间冲击力、计时与人工采集数据同步等方面,提高了测试精度。通过控制***与位移传感器、数据线、通道选择器结合成为采集***,解决了人工采集数据、整理及计算的繁琐,加快了室内测试的工期,提高了试验成果质量。
附图说明
图1为本发明所涉及的室内测定软土次固结系数的测量装置的剖面结构示意图
图2为本发明所涉及的次固结系数Ca曲线图。
图3为装有试样的容器的剖面结构示意图。
图4为本发明所涉及的多联测量装置的结构示意图。
图5为试样受到荷载后的高度变化剖面示意图。
具体实施方式
为了更进一步了解本发明的特征,请参阅以下有关本发明的详细说明与附图,然而所附图式仅提供参考与说明之用,并非用来对本发明的保护范围加以限制。
如图1所示,为本发明的剖面结构原理图示,通过本图示可以看出本发明各部件的连接关系。实施步骤叙述如下:把安装好试样20的容器12放置在固结仪底座9上的工作平台13上并居中(安装试样的过程见图3),先旋松支点螺母6,旋转悬臂支架7上的支点螺杆帽5,使其下端半球凹面与钢球16上凸半球面轻微接触,再拧紧支点螺母6,直到支点螺母6与悬臂支架7上臂面接触为止,使支点螺杆帽5与试样20中心在同心。将位移传感器2安置在表架3前部,并拧紧表架3前部的螺母10,在本实施例中,表架3包括表杆11和相对于表杆11升降的支架26。传感器的触点即导杆触点4,将位移传感器导杆轻轻向上推(使导杆向下延伸时量程最大),使表内小指针归零,将表架3后部的螺母10拧紧使其固定在表杆11上,导杆触头垂直于支点螺杆帽5中心点。工作时:荷载气压通过气压管道8进入气缸15产生向上的压力推进活塞14及工作平台13上升,由于悬臂支架7的固定作用,活塞14及工作平台13带动固结容器12上升,根据作用力和反作用力的原理,相当于试样20受到一个向下的轴向压力,试样20受压后产生高度变化。活塞14及工作平台13上升,相应地带动容器12、表杆11、表架3和位移传感器2同时上升,位移传感器2内弹簧张力使得导杆触点4下降,并始终保持导杆触点4与支点螺杆帽5接触,导杆触点4下降距离等于试样20高度变化量,同时以模数转换方式通过数据线1不断传递到通道选择器、采集器、计算机存储空间。试样20受压后的高度变化值由计算机处理软件换算成孔隙比,并和时间对数形成图2关系曲线,显示在计算机屏幕上。
如图2所示,根据次固结系数公式
Figure GSA00000113802400041
Ca即为e~lgt曲线中的下部直线段的斜率。采用常规24小时稳定后加压测定法,某些荷载下曲线反映在Y轴上为ds~e1和X轴上0.1~t2区间内只有上部曲线段和中部直线段,下部直线段没有显示,无法得到Ca。增加若干测点(t0t1......tn)后曲线反映在Y轴上ds~e2和X轴上0.1~tn区间内的完整曲线,下部直线段得以延长并得到准确的次固结系数Ca。本发明根据“测定沉降速率”要求,按时间顺序测定试样20沉降变形量,依据软土特性,打破规范要求的24小时测定法,再延长若干测定时间,保证了次固结曲线的完整性,使得室内测定软土的次固结系数精确、客观、真实可靠。当软土含水率较高时,如淤泥、淤泥质土,当压力(荷载)刚超过土的前期固结压力时,若仅进行24小时测定,曲线仅反映出主固结线段,次固结沉降段并不存在,故计算次固结系数,延长6小时或更长时间,使曲线反映出完整的趋势才能保证取得次固结系数。当软土含水率较低时,适当延长些时间或小于6小时即可。
如图3所示,为试样20安装示意图,根据工程需要选取保持天然状态的原状土样,将环刀21刃口向下放在土样上,将环刀21垂直下压,并用切土刀沿环刀21外侧切削土样,边压边削至土样略高出环刀21,用钢丝弓和切土刀整平环刀21上下两端土样,擦净环刀21外壁,称重后在试样20两端面贴上滤纸,图3所示贴有滤纸的试样20和环刀21简称为制备好的试样。
试样20安装步骤如下:在容器水漕25中放置大导环24、大透水石23、小导环22,将制备好的试样刃口向下装入小导环22内,环刀21上部套上小护环19,试样20上放小透水石18和加压上盖17及钢球16。
如图4所示,为多联高压气压固结试验采集***结构示意图,由多个固结试验装置排列组成,每个装置上都设有气压管道8,多路管道并成一路,通过调压阀与气源连接;每个位移传感器2也都设有采集通道,各采集通道将数据送至采集器A,并与计算机联机,受到计算机实时控制。
如图5所示,试样20受到荷载后的高度变化剖面示意图:当试样20受到荷载为0时,试样20的高度为h0(图5上);当试样20受到初始荷载P1,试样20固结后高度变化为Δh1,试样20固结后的高度为hl=h0-Δh1(图5中);试样20在某级荷载Pi作用下,试样20的高度变化为Δhi,试样20固结后的高度为hi=h0-Δhi(图5下)。通过计算公式
Figure GSA00000113802400051
为土的天然孔隙比是常量,i为某级荷重),将试样20受压后的高度变化值转换为相应的孔隙比ei,图5反映出受压前后试样高度变化示意图。
由以上介绍可知,当试验装置工作时,先是由气体通过气压管道8进入气缸15,从而产生推进活塞14、工作平台13、容器12整体上升的力,根据力的传递原理,容器12底部继而对大透水石23、试样20、小透水石18、加压上盖17、钢球16和支点螺杆帽5底部产生向上作用力;随后由于支点螺杆帽5固定在悬臂支架7上,而悬臂支架7又和固结仪底座9固定连接,根据作用力和反作用力的原理,气压又通过支点螺杆帽5传递至钢球16、加压上盖17、小透水石18、试样20上,试样20受压产生变形;另外,活塞14推动工作平台13、容器12整体上升,容器12又带动表杆11、表架3、表架螺母10、位移传感器2一起上升,支点螺杆帽5和导杆触点4之间产生间隙,但位移传感器2内弹簧弹力使导杆触点4向下延伸(在位移传感器量程范围内)始终与支点螺杆帽5表面接触(延伸长度等于试样20的沉降变形量),试样20的高度变化量通过位移传感器2模数转化后通过数据线1传递到采集器A和计算机。由此形成数据采集。
工作前,旋松支点螺母6,旋紧支点螺杆帽5直至支点螺杆帽5下端凹面与钢球16上端凸面轻微接触为止,然后旋紧支点螺母6直至与悬臂支架7上表面接触为止,将位移传感器2安置在表架3上,通过二个对称的表架螺母10上下左右调准后固定,并使传感器导杆触点4垂直于支点螺杆帽5中心点。表架3通过表架螺母10和表杆11与容器12连接成一体,并居中放置在固结仪底座9、活塞14及工作平台13上,使导杆触点4、支点螺杆帽5、钢球16、试样20和容器12保持在一条垂心线上。
应当理解的是,上述对图例的详细说明仅为了理解本发明,对本领域普通技术人员而言,可以根据上述说明加以改进或变换,只要是达到此目的的所有改进和变换都应属于本发明所附权利要求的保护范围。

Claims (12)

1.一种室内测定软土次固结系数的方法,包括底座(9),底座(9)内设活塞(14),所述底座(9)一侧的悬臂支架(7)末端设有支点,还包括位移传感器(2),所述支点上方设有位移传感器(2),该传感器(2)固定于装有试样(20)的容器(12)的一侧表架(3)上,并与控制***连接,其特征是按以下步骤进行:
(1)将容器(12)置于底座(9)上,将支点与容器上盖(17)接触,传感器(2)的触点与支点弹性接触;
(2)活塞(14)通气,将容器(12)、传感器(2)顶起,在顶升过程中,触点下降,并与支点始终接触;
(3)触点下降距离为Δh,传感器(2)采集后送至控制***,通过公式
Figure FSA00000113802300011
求出孔隙比e,其中,e0为土的天然孔隙比是常量,h0为试样(20)在零荷载时的高度;
(4)触点随时间延长不断下降,控制***实时计算出孔隙比,最终生成次固结系数(时间对数-孔隙比)曲线图,所述曲线完整包括上部曲线段、中部直线段、下部直线段;
(5)计算次固结曲线下部直线段斜率,求出次固结系数Ca。
2.根据权利要求1所述的室内测定软土次固结系数的方法,其特征是:在步骤(4)中,延长时间>24小时。
3.根据权利要求2所述的室内测定软土次固结系数的方法,其特征是:在步骤(1)中,底座(9)上设有工作平台(13),容器(12)置于工作平台(13)中心,所述传感器触点、支点、容器(12)中心共线。
4.根据权利要求3所述的室内测定软土次固结系数的方法,其特征是:所述支点上设有支点螺杆帽(5),容器上盖(17)设有钢球(16),所述支点螺杆帽(5)下端半球凹面与钢球(16)上凸半球面接触。
5.根据权利要求4所述的室内测定软土次固结系数的方法,其特征是:在步骤(1)与步骤(2)之间,旋转支点螺母(6),直至与悬臂支架(7)上表面接触。
6.一种室内测定软土次固结系数的测量装置,其特征是:包括底座(9),底座(9)内设活塞(14),容器(12)设于活塞(14)上,所述底座(9)一侧的悬臂支架(7)末端设有支点,所述支点上方设有位移传感器(2),该传感器(2)固定于容器(12)的一侧表架(3)上,并与控制***连接,所述触点与支点弹性接触。
7.根据权利要求6所述的室内测定软土次固结系数的测量装置,其特征是:所述容器(12)内腔为水漕(25),且为多层结构,包括由外至内的大导环(24)、小护环(19)和小导环(22),其中小导环(22)底部设有凸缘,小护环(19)外套在凸缘上,凸缘下设有大透水石(23),凸缘与大透水石(23)共同套于大导环(24)内,大透水石(23)上方设有小透水石(18),大、小透水石(23、18)间构成装试样(20)的空间,小透水石(18)套于小护环(19)内。
8.根据权利要求7所述的室内测定软土次固结系数的测量装置,其特征是:所述小透水石(18)上设有上盖(17),所述上盖(17)中央设有一钢球(16)。
9.根据权利要求8所述的室内测定软土次固结系数的测量装置,其特征是:所述支点包括穿设于悬臂支架(7)的支点螺杆帽(5),所述支点螺杆帽(5)的下端为半球凹面,与所述钢球(16)配合,支点螺杆帽(5)的螺纹段上套有支点螺母(6)。
10.根据权利要求9所述的室内测定软土次固结系数的测量装置,其特征是:所述表架(3)包括表杆(11)和相对于表杆(11)升降的支架(26)。
11.根据权利要求10所述的室内测定软土次固结系数的测量装置,其特征是:底座(9)上设有可升降的工作平台(13),工作平台(13)的中心为容器(12),所述触点、支点螺杆帽(5)、钢球(16)、容器(12)中心共线。
12.根据权利要求6~11中任一项所述的室内测定软土次固结系数的测量装置,其特征是:所述测量装置有多个且并排设置,每个测量装置的底座(9)上设有支路管道,各支路管道均与气压管道(8)连接;每个测量装置的位移传感器(2)上设有数据线(1),各数据线(1)均与采集器连接。
CN 201010170475 2010-05-11 2010-05-11 室内测定软土次固结系数的方法及用于该方法的测量装置 Expired - Fee Related CN101813691B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010170475 CN101813691B (zh) 2010-05-11 2010-05-11 室内测定软土次固结系数的方法及用于该方法的测量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010170475 CN101813691B (zh) 2010-05-11 2010-05-11 室内测定软土次固结系数的方法及用于该方法的测量装置

Publications (2)

Publication Number Publication Date
CN101813691A true CN101813691A (zh) 2010-08-25
CN101813691B CN101813691B (zh) 2012-12-26

Family

ID=42621002

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010170475 Expired - Fee Related CN101813691B (zh) 2010-05-11 2010-05-11 室内测定软土次固结系数的方法及用于该方法的测量装置

Country Status (1)

Country Link
CN (1) CN101813691B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102967694A (zh) * 2012-08-13 2013-03-13 天津城市建设学院 基于微结构参数的黏土固结系数预测方法
CN103033460A (zh) * 2012-12-26 2013-04-10 上海交通大学 土体水平向渗透系数的测定装置及其方法
CN106092743A (zh) * 2016-06-01 2016-11-09 西南交通大学 一种正常固结原状地基土的两级加载固结试验方法
CN107315080A (zh) * 2017-06-23 2017-11-03 中铁第四勘察设计院集团有限公司 利用扁铲侧胀c值消散试验测定饱和软黏土水平固结系数的方法
CN107328621A (zh) * 2017-06-30 2017-11-07 中交天津港湾工程研究院有限公司 一种土工试验用全自动气压式削样器及其使用方法
CN107340183A (zh) * 2017-04-28 2017-11-10 中国矿业大学 结构性软土次固结系数描述方法
CN108797558A (zh) * 2018-06-29 2018-11-13 浙江省交通规划设计研究院有限公司 一种通过控制次固结沉降的软土地基处理方法
CN109653260A (zh) * 2018-12-04 2019-04-19 中航勘察设计研究院有限公司 一种珊瑚砂地基基于振动环境次压缩系数的沉降计算方法
CN109708951A (zh) * 2018-12-19 2019-05-03 桂林理工大学 一种室内土工试验装置新型连接杆件
CN112854304A (zh) * 2021-01-14 2021-05-28 张涛 一种市政道路用防坠式窨井盖
CN117686297A (zh) * 2023-12-12 2024-03-12 昆明理工大学 一种可控孔隙比的环刀试样制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946601A (en) * 1973-07-20 1976-03-30 Technion Research And Development Foundation, Ltd. Method of load testing foundations
CN1699997A (zh) * 2005-06-16 2005-11-23 长安大学 土一维固结、渗透、应力松弛综合试验仪及其使用方法
CN1793917A (zh) * 2005-12-09 2006-06-28 铁道第三勘察设计院 原位实时测量饱和细粒土水平应力的探头及测量、计算方法
CN101430316A (zh) * 2008-12-15 2009-05-13 浙江大学 电渗-加载联合固结仪

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946601A (en) * 1973-07-20 1976-03-30 Technion Research And Development Foundation, Ltd. Method of load testing foundations
CN1699997A (zh) * 2005-06-16 2005-11-23 长安大学 土一维固结、渗透、应力松弛综合试验仪及其使用方法
CN1793917A (zh) * 2005-12-09 2006-06-28 铁道第三勘察设计院 原位实时测量饱和细粒土水平应力的探头及测量、计算方法
CN101430316A (zh) * 2008-12-15 2009-05-13 浙江大学 电渗-加载联合固结仪

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102967694A (zh) * 2012-08-13 2013-03-13 天津城市建设学院 基于微结构参数的黏土固结系数预测方法
CN103033460A (zh) * 2012-12-26 2013-04-10 上海交通大学 土体水平向渗透系数的测定装置及其方法
CN103033460B (zh) * 2012-12-26 2015-11-25 上海交通大学 土体水平向渗透系数的测定装置及其方法
CN106092743A (zh) * 2016-06-01 2016-11-09 西南交通大学 一种正常固结原状地基土的两级加载固结试验方法
CN107340183A (zh) * 2017-04-28 2017-11-10 中国矿业大学 结构性软土次固结系数描述方法
CN107315080A (zh) * 2017-06-23 2017-11-03 中铁第四勘察设计院集团有限公司 利用扁铲侧胀c值消散试验测定饱和软黏土水平固结系数的方法
CN107328621A (zh) * 2017-06-30 2017-11-07 中交天津港湾工程研究院有限公司 一种土工试验用全自动气压式削样器及其使用方法
CN107328621B (zh) * 2017-06-30 2019-10-25 中交天津港湾工程研究院有限公司 一种土工试验用全自动气压式削样器及其使用方法
CN108797558A (zh) * 2018-06-29 2018-11-13 浙江省交通规划设计研究院有限公司 一种通过控制次固结沉降的软土地基处理方法
CN109653260A (zh) * 2018-12-04 2019-04-19 中航勘察设计研究院有限公司 一种珊瑚砂地基基于振动环境次压缩系数的沉降计算方法
CN109653260B (zh) * 2018-12-04 2022-03-08 中航勘察设计研究院有限公司 一种珊瑚砂地基基于振动环境次压缩系数的沉降计算方法
CN109708951A (zh) * 2018-12-19 2019-05-03 桂林理工大学 一种室内土工试验装置新型连接杆件
CN112854304A (zh) * 2021-01-14 2021-05-28 张涛 一种市政道路用防坠式窨井盖
CN112854304B (zh) * 2021-01-14 2022-07-19 荣泰建设集团有限公司 一种市政道路用防坠式窨井盖
CN117686297A (zh) * 2023-12-12 2024-03-12 昆明理工大学 一种可控孔隙比的环刀试样制备方法

Also Published As

Publication number Publication date
CN101813691B (zh) 2012-12-26

Similar Documents

Publication Publication Date Title
CN101813691B (zh) 室内测定软土次固结系数的方法及用于该方法的测量装置
CN101059491A (zh) 室内快速加荷固结试验设备及其方法
CN109839315A (zh) 模拟跨断层隧道的双向滑移式物理模型箱及跨断层隧道力学行为测试方法
CN201666857U (zh) 大型堆石料侧限蠕变压缩实验仪
CN204330502U (zh) 一种新型的岩土体原位直剪试验装置
CN104020092B (zh) 一种固结孔隙水压力联合试验装置和方法
CN105699215A (zh) 一种新型软岩剪切流变仪
CN213423172U (zh) 一种膨胀土膨胀率自动化测试装置
CN202298675U (zh) 桩基沉降检测尺
CN102749252A (zh) 基于二次杠杆作用的新型受弯构件持续加载试验装置
CN103018108B (zh) 底板承载性能测试装置
CN113899344B (zh) 一种考虑温度效应的长大隧道高精度沉降监测***及方法
CN210376011U (zh) 一种大面积现场直剪试验设备
CN102478476A (zh) 一种土壤蒸发信息获取装置和方法
CN201837333U (zh) 垂吊式竖向位移测量装置
CN109238606A (zh) 一种适用于桥梁主梁的荷载检测装置及其测算方法
CN211905361U (zh) 一种可精确测量试样排水量的吸力控制式非饱和土固结仪
CN202214716U (zh) 平板载荷测试仪
CN204188506U (zh) 一种新型微控动摩擦系数测试仪
CN205940431U (zh) 一种便携式水泥路面错台测试仪
CN106767358B (zh) 非饱和土固结变形量及排水量的测量装置及测量方法
CN109443479A (zh) 一种水闸水位检测装置
CN201689014U (zh) 便携式底板比压测试装置
CN2653486Y (zh) 新颖旁压仪
CN201917333U (zh) 大型海洋结构物软基础支点沉降测量装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121226

Termination date: 20170511

CF01 Termination of patent right due to non-payment of annual fee