CN101813650B - 用于热控涂层性能原位测试的辐射计 - Google Patents

用于热控涂层性能原位测试的辐射计 Download PDF

Info

Publication number
CN101813650B
CN101813650B CN2010101074451A CN201010107445A CN101813650B CN 101813650 B CN101813650 B CN 101813650B CN 2010101074451 A CN2010101074451 A CN 2010101074451A CN 201010107445 A CN201010107445 A CN 201010107445A CN 101813650 B CN101813650 B CN 101813650B
Authority
CN
China
Prior art keywords
heat
chamber
thermal control
test specimen
calorimetric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010101074451A
Other languages
English (en)
Other versions
CN101813650A (zh
Inventor
赵慧洁
邢辉
张颖
王立
张庆祥
唐吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN2010101074451A priority Critical patent/CN101813650B/zh
Publication of CN101813650A publication Critical patent/CN101813650A/zh
Application granted granted Critical
Publication of CN101813650B publication Critical patent/CN101813650B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

用于热控涂层性能原位测试的辐射计由测热腔、试件板、热探测器、试件板支杆、测热腔支杆、隔热腔和数据采集底座组成,其中测热腔为辐射计的测试部分,由测热腔支杆支撑置于隔热腔内部;试件板表面涂有待测热控涂层,由试件板支杆支撑置于测热腔内部;热探测器为薄膜热探测器,分别置于试件板的下面和测热腔底部;隔热腔用于阻止空间辐照对测热腔内部的热扰动;数据采集底座内置信号采集板卡。热控涂层接受模拟空间环境的辐照后,由热探测器探测温度的变化,根据温度的变化得到通过涂层热通量的变化,再由热通量的变化计算得到涂层性能的变化。本发明结构简单、时间常数小、测试精度高,可以较好的实现模拟空间环境中热控涂层性能的原位测试。

Description

用于热控涂层性能原位测试的辐射计
技术领域
本发明涉及一种用于热控涂层性能原位测试的辐射计,属于航天热控材料的空间辐照地面模拟测试领域。
背景技术
随着我国卫星设计寿命从8年增加到15年,热控涂层等暴露材料性能的退化将成为制约其长寿命的重要因素之一。热控材料的性能退化一般表现为太阳吸收率与发射率比
Figure GSA00000016563600011
的增大,从而造成卫星温度上升,这是卫星在寿命后期温度升高的主要原因。为了确保卫星热控涂层在空间环境的稳定性,需要开展热控涂层在空间的高真空、紫外及粒子辐照环境下太阳吸收率性能变化的地面模拟实验研究,为热控涂层的应用和性能改进提供参考依据。
早期采用的试验方法是将样品置于真空中进行空间辐照,然后取出样品进行光学性能测试,这是一种非原位的测试方法。许多热控涂层材料在真空中接受辐照,取出后在空气中其变化的性能会有部分恢复,因此需要开展可以在综合模拟环境中进行的原位测试的方法。
目前国内外都建立了大型的综合模拟环境设备,该设备可提供低温、高真空、紫外辐照、高能粒子辐照的试验环境,但其内部的热控涂层吸收率的原位测试普遍采用反射率相对测量方法,测量***包括积分球、探测器、光源、三维位移装置、标准试件等,通过连续测试已知太阳吸收率的标准试件和待测热控涂层,利用比对测量法来测试待测涂层太阳吸收率的变化。这种原位测量的方法受测试装置的影响,测量精度不高;同时由于体积较大,在综合模拟环境中进行原位测试时将需要巨大的投资和试验运行费用。本发明针对此提出了一种可用于模拟空间环境中体积小、结构简单、试验方便的热控涂层性能原位测试的仪器。
发明内容
本发明的目的在于提供一种用于热控涂层性能原位测试的辐射计,以克服现有热控涂层性能原位测试***结构庞大、测试精度低、试验成本高等方面的不足,构建一种测量简单、精度高、无可移动器件的热控涂层性能原位测试仪器。
本发明的技术解决方案是:用于热控涂层性能原位测试的辐射计,由测热腔、试件板、热探测器、试件板支杆、测热腔支杆、隔热腔、数据采集底座组成,其中测热腔为辐射计的测试部分,由两个测热腔支杆支撑悬空置于隔热腔内部,并保持与隔热腔端面齐平;测热腔支杆的底端有螺纹可将其固定于隔热腔的螺纹孔中,测热腔支杆顶端有螺纹孔,并由螺钉通过测热腔上的沉孔与其固定;试件板表面涂有待测热控涂层,由试件板支杆支撑悬空置于测热腔内部,并保持与测热腔端面齐平;试件板支杆的底端有螺纹可将其固定于测热腔的螺纹孔中,试件板支杆顶端有螺纹孔,并由螺钉通过试件板上的通孔与其固定;热探测器分别置于试件板的下面和测热腔底部;隔热腔作为外壳包围着测热腔,用于阻止空间辐照对测热腔内部的热扰动,并用螺钉固定于数据采集底座上端;数据采集底座内置信号采集板卡,数据采集底座底部有三个用于固定的螺孔,可将辐射计固定于模拟空间环境中接受空间辐照。
测热腔内包括有:试件板、热探测器、试件板支杆、多层隔热层。测热腔的设计目标是减少影响试件板的热因素,因此测热腔的设计主要围绕减小其内部热损失展开。测热腔材料选择航天用铝合金;为减小测热腔内部辐射换热,其表面经过抛光处理,测热腔的底部粘接双面镀铝的涤纶薄膜隔热材料,从而有效地减小测热腔壁的发射率,达到减小辐射换热目的。
试件板表面涂有被测涂层,将带有热控涂层的试件板作为被测***,由于辐射计测试原理是基于能量守恒的原理,因此要求被测***在任意时刻应该达到热平衡,所以试件板的材料要求有高导热率,并且试件板的厚度应该较薄,此时试件板可看作是一个具有固定温度的质点,从而满足试件板和涂层组成的被测***的瞬态热平衡。试件板材料和测热腔材料应保持一致,从而使试件板和测热腔在模拟空间环境中接受辐照时具有相同的温度梯度,减小试件板与测热腔的辐射换热。
测热腔内部有两个薄膜热探测器,分别用于探测试件板和测热腔热沉端的温度变化,薄膜热探测器可根据探测温度的范围和精度的要求合理选择薄膜热电偶或者薄膜热电阻探测器。
为减小热传导引起的热损失,试件板边缘不与测热腔接触,测热腔边缘不与隔热腔接触,因此试件板和测热腔都由支杆支撑。支杆选择低热导率、高机械强度的金属材料或者选择聚酰亚胺工程塑料。
隔热腔的材料选择具有高强度、低热膨胀系数、密度小的铝合金材料,隔热腔表面经过光亮阳极氧化处理;隔热腔与测热腔不相互接触。
数据采集底座内置数据采集板卡,数据采集板卡用于对被测温度的数据进行实时采集。数据采集底座外壳上有电源口和数据通信口,分别用于数据采集板卡的供电和与上位机的通信。数据采集底座结构材料的选择和表面处理与隔热腔相同,从而保证内部采集电路温度不至于过高。
模拟空间环境中测试热控涂层性能变化的方法为:试件板表面的热控涂层吸收模拟空间环境中太阳模拟器的辐照能量为QIn,热控涂层与模拟空间环境的辐射换热量为QRad,试件板的内能增加和测热腔内部的热损失表示为QIn-energy、Qheat-exchange,热控涂层在经受模拟空间环境中的紫外和粒子辐照后,根据能量守恒式:
QIn=QRad+QIn-energy+Qheat-exchange
实时计算得到涂层的太阳吸收率与发射率比
本发明的原理是:用于热控涂层性能原位测试的辐射计是利用测热法来测试热控层太阳吸收率与发射率比的变化。将试件板表面涂有待测涂层的辐射计放到特定的辐射环境下,利用两个热探测器分别探测热控涂层试件板下面和测热腔热沉端的温度,根据测试温度的变化得到通过热控涂层热通量的变化,再由热通量的变化计算得到热控涂层性能的变化。
本发明与现有技术相比的优点在于:克服现有热控涂层原位测试***结构庞大、测试精度低、试验成本高等方面的不足,并具有以下优点:测量简单、易于参数设置、优化和工程实现;无可移动的器件,因此测试精度高;同时该仪器体积小、重量轻、功耗较低,满足星载要求,可实现热控涂层性能变化的在轨测试。
附图说明
图1为本发明的结构剖面图;
图2为本发明实现热控涂层性能变化测试的原理流程图;
图具体标号如下:
1、测热腔    2、试件板   3、热探测器    4、试件板支杆
5、测热腔支杆            6、隔热腔      7、数据采集底座
具体实施方式
如图1所示,本发明包括测热腔1、试件板2、热探测器3、试件板支杆4、测热腔支杆5、隔热腔6、数据采集底座7,其中测热腔1为辐射计的测试部分,由测热腔支杆5支撑悬空置于隔热腔6内部,并保持与隔热腔6端面齐平;测热腔支杆5的底端有螺纹可将其固定于隔热腔6的螺纹孔中,测热腔支杆5顶端有螺纹孔,并由螺钉通过测热腔1上的沉孔与其固定;试件板2表面涂有待测热控涂层,由试件板支杆4支撑悬空置于测热腔1内部,并保持与测热腔1端面齐平;试件板支杆4的底端有螺纹可将其固定于测热腔1的螺纹孔中,试件板支杆4顶端有螺纹孔,并由螺钉通过试件板2上的通孔与其固定;热探测器3分别置于试件板2的下面和测热腔1底部;隔热腔6作为外壳包围着测热腔1,用于阻止空间辐照对测热腔1内部的热扰动,并用螺钉固定于数据采集底座7上端;数据采集底座7内置信号采集板卡,底座底部有三个用于固定的螺孔,可将辐射计固定于模拟空间环境中接受空间辐照。
测热腔1的设计目标是减少影响试件板2的热因素,因此测热腔1的设计主要围绕减小其内部热损失展开。由于试件板2和测热腔1之间的换热在空间环境中主要有热传导和辐射换热两种形式,因此为减小试件板2和测热腔1杯壁的传导换热,使二者不接触;测热腔1有一圈圆形边缘,该边缘部分的面积应与试件板2的面积近似相等,并与试件板2涂有相同热控涂层,该设计的目的是使辐射源照射在试件板2和测热腔1上的辐射量相同,使二者有近似相同的温度,从而减小测热腔1与试件板2的辐射换热;测热腔1材料选择航天铝合金材料,其表面经过抛光处理,测热腔1的底部粘接双面镀铝的涤纶薄膜隔热材料,其发射率很低,可有效地减小辐射换热。
试件板2表面涂有被测涂层,将带有热控涂层的试件板2作为被测***,由于辐射计测试原理是基于能量守恒的原理,因此要求被测***在任意时刻应该达到热平衡。所以试件板2的材料要求有高导热率,并且试件板2的厚度应该较薄,厚度应该小于0.5mm,此时试件板2可看作是一个具有固定温度的质点,从而满足试件板2和涂层组成的被测***的瞬态平衡。伴随试件板2尺寸的减小带来的弊端是机械强度的下降,因此试件板2材料选择应综合考虑导热和机械强度的要求。
为减小传导引起的热损失,试件板2边缘不与测热腔1接触,测热腔1边缘不与隔热腔5接触,因此试件板2和测热腔1都由支杆支撑,试件板支杆4和测热腔支杆5选择低热导率、高机械强度的钛合金等金属材料或者是聚酰亚胺等工程塑料,同时支杆的长度和与试件板2以及测热腔1的接触面积也应根据尽量减小热传导的原则最优化设计。
测热腔1内部有两个薄膜热探测器3,分别用于探测试件板2和测热腔1热沉端的温度变化。根据地面模拟环境的温度范围和探测精度的要求,热探测器3选择薄膜铂电阻探测器,探测精度可达0.3摄氏度。
隔热腔6的设计为开口的圆杯型结构,材料选择具有高强度、低热膨胀系数、密度小的铝合金。为减小隔热腔6与测热腔1的热交换,应尽量减小隔热腔6外壁对辐射能量的吸收,由于铝合金材料已具有较高反射率,为进一步减小辐射环境对隔热腔的热辐射,隔热腔6的外表面应选择具有低吸收率发射率比的材料。通过对隔热腔6表面进行光亮阳极氧化处理,其表面吸收率发射率比为0.3,可提高隔热腔6的隔热效果。
数据采集底座7内置数据采集板卡,数据采集底座7外壳上有电源口和数据通信口,分别用于数据采集板卡的供电和与上位机的通信。数据采集底座7结构采用圆形底座,底座设置有三个M6的螺孔可用于固定辐射计,其结构材料的选择和表面处理与隔热腔6相同,从而保证内部采集电路温度不至于过高。
数据采集板卡用于对被测温度的数据进行实时采集。由于辐射计的设计既要满足模拟空间环境的原位测试,又要考虑到以后可实现星载在轨测试的目的,因此数据采集模块应该具有功耗低的特点,所以热探测器3的数据采集板卡没有微处理器芯片。数据采集板卡只完成数据采集和与上位机通信的功能,其中数据采集板卡与上位机的通信是由上位机的并口模拟SPI(串行***设备接口)实现,整个数据的处理由上位机实现。
如图2所示,本发明实现热控涂层性能变化测试的原理流程为:将表面涂有待测涂层的辐射计放到模拟空间的辐照环境下,由于整个测量***处在真空环境内,没有对流,能量的交换基本上是辐射传输,利用两个热探测器3分别探测涂层下面试件板2和测热腔1热沉端的温度;数据采集板卡完成热探测器3的信号调理、运算放大及模数转换,并通过与上位机的通信将信号送至上位机处理;上位机通过温度的变化计算得到热控涂层吸收的热量和与空间辐射换热的热量,从而计算得到热控涂层的太阳吸收率发射率比。
上位机的数据处理实现模拟空间环境中热控涂层性能变化的测试:试件板2表面的热控涂层吸收模拟空间环境中太阳模拟器的辐照为QIn=αsAE,热控涂层与模拟空间环境的辐射换热为QRad=εAσTplane 4,试件板2的内能增加和测热腔1内部的热损失表示为QIn-energy、Qheat-exchange,其中αs、ε为热控涂层的太阳吸收率、发射率,A为试件板2面积、E为太阳模拟器辐照、Tplane为试件板2下面热探测器3温度、σ为斯蒂芬-波尔兹曼常数;热控涂层在经受模拟空间环境中的紫外辐照和粒子辐照后,有能量守恒式:
QIn=QRad+QIn-energy+Qheat-exchange
通过对辐射计的测热腔1、试件板2、试件板支杆4、测热腔支杆5、隔热腔6的合理设计,试件板2的内能增加和测热腔1内部的热损失两项已经很小,工程上可以忽略不计。此时能量守恒式为:
αsAE=εAσTplane 4
即: α s ϵ = σT plane 4 E
因此,通过热探测器3实时探测温度可计算得到涂层的太阳吸收率与发射率比
Figure GSA00000016563600072
从而实现热控涂层性能变化的原位测试。
本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (7)

1.用于热控涂层性能原位测试的辐射计,其特征在于:包括测热腔(1)、试件板(2)、热探测器(3)、试件板支杆(4)、测热腔支杆(5)、隔热腔(6)、数据采集底座(7),其中测热腔(1)为辐射计的测试部分,由测热腔支杆(5)支撑置于隔热腔(6)内部;试件板(2)表面涂有待测热控涂层,由试件板支杆(4)支撑置于测热腔(1)内部;热探测器(3)分别置于试件板(2)的下面和测热腔(1)底部;隔热腔(6)作为外壳包围着测热腔(1)并固定于数据采集底座(7)上端;数据采集底座(7)内置信号采集板卡;热控涂层接受模拟空间环境的辐照后,由热探测器(3)探测温度的变化,根据温度的变化得到通过涂层热通量的变化,再由热通量的变化计算得到涂层性能的变化。
2.根据权利要求1所述的用于热控涂层性能原位测试的辐射计,其特征在于:测热腔(1)材料选择航天用铝合金,其表面经过抛光处理,底部粘接双面镀铝的涤纶薄膜隔热材料。
3.根据权利要求1所述的用于热控涂层性能原位测试的辐射计,其特征在于:试件板(2)材料和测热腔(1)材料保持一致,试件板(2)边缘不与测热腔(1)接触。
4.根据权利要求1所述的用于热控涂层性能原位测试的辐射计,其特征在于:热探测器(3)采用薄膜热探测器。
5.根据权利要求1所述的用于热控涂层性能原位测试的辐射计,其特征在于:试件板支杆(4)和测热腔支杆(5)选择金属材料或者聚酰亚胺工程塑料。
6.根据权利要求1所述的用于热控涂层性能原位测试的辐射计,其特征在于:隔热腔(6)材料选择铝合金材料,隔热腔表面经过光亮阳极氧化处理;隔热腔(6)与测热腔(1)不相互接触。
7.根据权利要求1所述的辐射计在模拟空间环境中测试热控涂层性能变化的方法,其特征在于:试件板(2)表面的热控涂层吸收模拟空间环境中太阳模拟器的辐照能量为QIn,热控涂层与模拟空间环境的辐射换热量为QRad,试件板(2)的内能增加和测热腔(1)内部的热损失为QIn-energy、Qheat-exchange,热控涂层在经受模拟空间环境中的紫外和粒子辐照后,根据能量守恒式:
QIn=QRad+QIn-energy+Qheal-exchange
实时计算得到涂层的太阳吸收率与发射率比
Figure FSA00000016563500021
的变化。
CN2010101074451A 2010-02-05 2010-02-05 用于热控涂层性能原位测试的辐射计 Expired - Fee Related CN101813650B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101074451A CN101813650B (zh) 2010-02-05 2010-02-05 用于热控涂层性能原位测试的辐射计

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101074451A CN101813650B (zh) 2010-02-05 2010-02-05 用于热控涂层性能原位测试的辐射计

Publications (2)

Publication Number Publication Date
CN101813650A CN101813650A (zh) 2010-08-25
CN101813650B true CN101813650B (zh) 2012-06-27

Family

ID=42620962

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101074451A Expired - Fee Related CN101813650B (zh) 2010-02-05 2010-02-05 用于热控涂层性能原位测试的辐射计

Country Status (1)

Country Link
CN (1) CN101813650B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103267772B (zh) * 2013-04-24 2015-05-20 清华大学 基于瞬态分析的大温差样品的半球向全发射率测量方法
CN104406758B (zh) * 2014-11-18 2017-02-22 北京卫星环境工程研究所 激光驱动飞片撞击mli热控性能退化评价方法
CN106367708B (zh) * 2016-10-31 2018-12-21 北京卫星制造厂 一种烧蚀材料表面低吸收低发射热控涂层的热喷涂制备方法
CN110672655A (zh) * 2019-11-06 2020-01-10 上海卫星装备研究所 热辐射性能原位检测***及方法
CN114858689B (zh) * 2022-03-21 2023-12-01 哈尔滨工业大学 一种空间综合环境原位和半原位测试屏蔽装置及其测试屏蔽方法

Also Published As

Publication number Publication date
CN101813650A (zh) 2010-08-25

Similar Documents

Publication Publication Date Title
Morrison et al. Measurement and simulation of flow rate in a water-in-glass evacuated tube solar water heater
CN101813650B (zh) 用于热控涂层性能原位测试的辐射计
CN106184831B (zh) 用于高热流密度卫星的真空热试验装置
Meng et al. Roof cooling effect with humid porous medium
CN106370312B (zh) 绝对辐射计及绝对辐射计背景空间辐射传热的测量方法
CN101782540A (zh) 建筑围护结构传热系数现场检测装置及检测方法
CN103454304A (zh) 模拟自然环境的混凝土试件温度测试装置及其试验方法
CN203881444U (zh) 一种自然地表红外发射率光谱数据野外测量***
CN108333213A (zh) 半透明多孔材料高温传导及辐射性质多参数同步测量方法
Estrada et al. Heat transfer analysis in a calorimeter for concentrated solar radiation measurements
CN101788511B (zh) 一种热控涂层太阳吸收率的测量方法
CN108896605A (zh) 一种建筑用保温隔热涂料的等效热阻及导热系数检测设备
Brandl et al. CFD assessment of a solar honeycomb (SHC) façade element with integrated PV cells
CN208766130U (zh) 一种建筑用保温隔热涂料的等效热阻及导热系数检测设备
Yuan et al. A study on the accuracy of determining the retro-reflectance of retro-reflective material by heat balance
Kulkarni et al. Design of experiment for solar water heater performance analysis
Xie et al. Study on convective heat transfer coefficient on vertical external surface of island-reef building based on naphthalene sublimation method
Bian et al. Measurements of turbulence transfer in the near-surface layer over the southeastern Tibetan Plateau
CN108956688B (zh) 一种建筑材料表面综合辐射吸收系数的测量***及方法
He et al. Preparation and properties of EPDM-based composite coatings with low infrared emissivity
Shao et al. A novel method for full-scale measurement of the external convective heat transfer coefficient for building horizontal roof
Mao et al. Experimental and numerical investigation on heat transfer performance of a solar double-slope hollow glazed roof
CN201066344Y (zh) 透光围护结构太阳得热系数检测装置
Ballestrín et al. Calibration of high-heat-flux sensors in a solar furnace
CN2828810Y (zh) 冷热箱式传热系数检测仪

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120627

Termination date: 20140205