CN101794460A - 基于光线投射体绘制算法的人体心脏三维解剖组织结构模型可视化方法 - Google Patents

基于光线投射体绘制算法的人体心脏三维解剖组织结构模型可视化方法 Download PDF

Info

Publication number
CN101794460A
CN101794460A CN 201010120304 CN201010120304A CN101794460A CN 101794460 A CN101794460 A CN 101794460A CN 201010120304 CN201010120304 CN 201010120304 CN 201010120304 A CN201010120304 A CN 201010120304A CN 101794460 A CN101794460 A CN 101794460A
Authority
CN
China
Prior art keywords
volume
heart
value
data collection
dimensional data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201010120304
Other languages
English (en)
Inventor
王宽全
杨飞
左旺孟
袁永峰
张宏志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN 201010120304 priority Critical patent/CN101794460A/zh
Publication of CN101794460A publication Critical patent/CN101794460A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Image Generation (AREA)

Abstract

基于光线投射体绘制算法的人体心脏三维解剖组织结构模型可视化方法,它涉及人体心脏三维解剖模型可视化方法。它解决了现有技术中无法实现心脏解剖组织结构模型可视化的问题,本发明为:一,获得心脏三维体数据集;二,选取采样点;三,计算心脏三维体数据集空间中的每个体元素的梯度;四,获得在光照下心脏三维体数据集空间中的每个体元素的亮度;五,计算每个体元素的不透明度值和颜色值;六,获得每个非体元素的不透明度值和颜色值;七,获得像平面上对应每条投射光线的像素点颜色值;八,根据像平面上每个像素点颜色值绘制心脏三维解剖组织结构模型图像。本发明为达到对心脏结构外观和行为功能的精确模拟奠定了基础。

Description

基于光线投射体绘制算法的人体心脏三维解剖组织结构模型可视化方法
技术领域
本发明涉及人体心脏三维解剖模型可视化方法,具体涉及一种基于光线投射体绘制算法的人体心脏三维解剖组织结构模型可视化方法。
背景技术
心脏是集电生理学、血液动力学及神经和生物控制为一体的复杂综合***,基于单一角度(解剖/电生理/机械)的虚拟心脏模型往往不能有效反映宏观上心脏各不同功能间的复杂相互作用,因而很难对心脏在正常和病理条件下的行为和特性做出精确的预测。因此,需要建立心脏解剖组织结构模型,从而将之与电生理及机械模型整合,以达到对心脏结构外观和行为功能的精确模拟。
发明内容
为了解决现有技术中无法实现心脏解剖组织结构模型可视化的问题,本发明提供了一种基于光线投射体绘制算法的人体心脏三维解剖组织结构模型可视化方法。
本发明的基于光线投射体绘制算法的人体心脏三维解剖组织结构模型可视化方法,它的具体过程为:
步骤一:获得心脏三维体数据集空间,并根据光线投射体绘制算法,计算心脏三维体数据集空间在像平面的投射区域;
步骤二:分别从投射区域的每个像素点出发沿着视线方向发射一条投射光线,在每条投射光线方向上按设定步长选取采样点,所述采样点包括体元素和非体元素,并对所述体元素以三维坐标(x,y,z)进行表示;
步骤三:在每条投射光线穿过心脏三维体数据集空间的过程中,计算心脏三维体数据集空间中的每条投射光线所穿过的每个体元素的梯度;
步骤四:根据光照模型,获得在光照下心脏三维体数据集空间中的每个体元素的亮度;
步骤五:根据光线投射体绘制算法,计算每个体元素的不透明度值和颜色值;
步骤六:在每条投射光线穿过心脏三维体数据集空间的过程中,对每条投射光线所穿过的每个非体元素进行采样插值计算,获得所述每个非体元素的不透明度值和颜色值;
步骤七:根据每条投射光线上的每个采样点的颜色值和不透明度值,并根据由前向后合成函数对所述每个采样点进行合成,获得像平面上对应每条投射光线的像素点颜色值;
步骤八:根据像平面上每个像素点颜色值绘制心脏三维解剖组织结构模型图像。
本发明的有益效果为:本发明实现了人体心脏三维解剖组织结构模型的可视化;本发明成功利用了光线投射体绘制算法,并利用光照模型逼真的模拟了在真实世界中光线落在心脏上的状态。
附图说明
图1是本发明的基于光线投射体绘制算法的人体心脏三维解剖组织结构模型可视化方法流程图,图2是本发明的利用原始的光线投射体绘制算法原理示意图,其中,E表示眼睛,L表示投射区域,S表示三维体数据集空间,D表示采样点,T表示投射光线,图3是本发明的利用原始的光线投射体绘制算法原理流程图,图4是具体实施方式七中三次线性插值原理示意图,图5是具体实施方式八中由前向后合成方法原理示意图,图6是具体实施方式八中心脏原始切片图像示意图,图7是具体实施方式八中与图6相应的图像分割结果示意图,图8是具体实施方式八中在第一个角度的基于原始的光线投射体绘制算法的心脏解剖组织结构模型的结果图像示意图,图9是具体实施方式八中在第二个角度的基于原始的光线投射体绘制算法的心脏解剖组织结构模型的结果图像示意图,图10是具体实施方式八中在第三个角度的基于原始的光线投射体绘制算法的心脏解剖组织结构模型的结果图像示意图,图11是具体实施方式八中在第四个角度的基于原始的光线投射体绘制算法的心脏解剖组织结构模型的结果图像示意图,图12是具体实施方式八中心脏组织内部细节结果图像前向示意图,图13是具体实施方式八中心脏组织内部细节结果图像后向示意图,图14是具体实施方式八中在第一个角度的对光线投射体绘制算法进行加速改进后绘制的心脏解剖组织结构模型的结果图像示意图,图15是具体实施方式八中在第二个角度的对光线投射体绘制算法进行加速改进后绘制的心脏解剖组织结构模型的结果图像示意图;
具体实施方式
具体实施方式一:根据说明书附图1具体说明本实施方式,本实施方式所述的基于光线投射体绘制算法的人体心脏三维解剖组织结构模型可视化方法,它的具体过程为:
步骤一:获得心脏三维体数据集空间S,并根据光线投射体绘制算法,计算心脏三维体数据集空间S在像平面的投射区域L;
步骤二:分别从投射区域L的每个像素点出发沿着视线方向发射一条投射光线T,在每条投射光线T方向上按设定步长选取采样点D,所述采样点D包括体元素和非体元素,并对所述体元素以三维坐标(x,y,z)进行表示;
步骤三:在每条投射光线T穿过心脏三维体数据集空间S的过程中,计算心脏三维体数据集空间S中的每条投射光线T所穿过的每个体元素的梯度;
步骤四:根据光照模型,获得在光照下心脏三维体数据集空间S中的每个体元素的亮度;
步骤五:根据光线投射体绘制算法,计算每个体元素的不透明度值和颜色值;
步骤六:在每条投射光线T穿过心脏三维体数据集空间S的过程中,对每条投射光线T所穿过的的每个非体元素进行采样插值计算,获得所述每个非体元素的不透明度值和颜色值;
步骤七:根据每条投射光线T上的每个采样点D的颜色值和不透明度值,并根据由前向后合成函数对所述每个采样点D进行合成,获得像平面上对应每条投射光线T的像素点颜色值;
步骤八:根据像平面上每个像素点颜色值绘制心脏三维解剖组织结构模型图像。
具体实施方式二:本实施方式是对具体实施方式一的进一步说明,具体实施方式一中在步骤五中,根据光线投射体绘制算法,计算每个体元素的不透明度值和颜色值的方法为:
步骤五一一:以心脏三维体数据集空间S中的每个体元素的亮度属性和梯度属性作为参数,构造不透明度传递函数,获得对应心脏三维体数据集空间S中的每个体元素的不透明度值,梯度属性包括梯度值和梯度方向;
步骤五一二:构造颜色传递函数,并依据心脏三体数据集空间中的体元素的灰度强度获得所述体元素的颜色值。
具体实施方式三:本实施方式是对具体实施方式二的进一步说明,具体实施方式二中在步骤五一一中,以心脏三维体数据集空间S中的每个体元素的亮度属性和梯度属性作为参数,构造不透明度传递函数,获得心脏三维体数据集空间S中的每个体元素的不透明度值的方法为:构造不透明度传递函数
Figure GSA00000050584200041
其中,fv表示心脏三维体数据集空间S中每一组织内大于或等于相应组织梯度阈值的体元素的光强度,所述组织包括心室和心房,如果将梯度值归一化为[0,1],则梯度阈值为0.8,r表示第i个体元素与光强度为fv的体元素的距离最大值,
Figure GSA00000050584200042
表示光强度为Ii的体元素i的梯度值,αi(r,fv)是第i个体元素的不透明度值,当Ii=fv时,αi(r,fv)=1。
本实施方式是基于原始的光线投射体绘制算法而实现的。
具体实施方式四:本实施方式是对具体实施方式一的进一步说明,具体实施方式一中在步骤五中,根据光线投射体绘制算法,计算每个体元素的不透明度值和颜色值的方法为:
步骤五二一:将心脏三维体数据集空间S按照心脏组织类别进行分类,同时将每类心脏组织中的体元素分为组织内部体元素和组织边界体元素;
步骤五二二:将心脏三体数据集空间中的一类心脏组织的组织内部体元素的灰度强度设定为一指定值,所述指定值大于与所述心脏组织相应的灰度值范围,并使心脏三维体数据集空间S中的同类心脏组织的组织边界体元素的灰度强度保持不变;
步骤五二三:构造颜色传递函数,依据每个组织边界体元素的灰度强度计算每个组织边界体元素的颜色值,同时依据每类心脏组织的组织内部体元素的特定值计算每类心脏组织的每个组织内部体元素的颜色值;
步骤五二四:在每条投射光线T穿过心脏三维体数据集空间S的过程中,将每类心脏组织的每个组织内部体元素的不透明度值设置为0,同时以每个组织边界体元素的亮度属性和梯度属性作为参数,构造不透明度传递函数,获得心脏三维体数据集空间S中的每个组织边界体元素的不透明度值,梯度属性包括梯度值和梯度方向。
本实施方式对原始光线投射体绘制算法进行了加速改进,极大地降低了计算量。
具体实施方式五:本实施方式是对具体实施方式一、二、三或四的进一步说明,具体实施方式一、二、三或四中在步骤三中,计算心脏三维体数据集空间S中的每条投射光线T所穿过的每个体元素的梯度的方法为中心差分法,利用中心差分法获得每个体元素的梯度:
Dx=[f(x-1,y,z)-f(x+1,y,z)]/2
Dy=[f(x,y-1,z)-f(x,y+1,z)]/2
Dz=[f(x,y,z-1)-f(x,y,z+1)]/2
Dx,y,z=[Dx,Dy,Dz]
其中,Dx表示心脏三维体数据集空间S中在(x,y,z)坐标处的体元素在x方向的梯度,Dy表示心脏三维体数据集空间S中在(x,y,z)坐标处的体元素在y方向的梯度,Dz表示心脏三维体数据集空间S中在(x,y,z)坐标处的体元素在z方向的梯度,f(x,y,z)表示心脏三维体数据集空间S中在(x,y,z)坐标处的体元素的光强度。
具体实施方式六:本实施方式是对具体实施方式一、二、三、四或五的进一步说明,具体实施方式一、二、三、四或五中在步骤四中,根据Phone光照模型,获得在光照下心脏三维体数据集空间S中的每个体元素的亮度的方法为:
步骤四一:获得每个体元素的环境反射亮度值IH=KcIc,其中Kc为环境反射系数,Ic为环境光强度;
步骤四二:获得每个体元素的漫反射亮度值
Figure GSA00000050584200061
其中,Kd为漫反射系数,Icd为当光线垂直入射时反射光强度,为入射方向上的单位向量,
Figure GSA00000050584200063
为反射点表面的法线方向的单位向量;
步骤四三:获得每个体元素的镜面反射亮度值其中,Ijs为镜面反射光强度,Ks是物体表面的镜面反射系数,
Figure GSA00000050584200065
表示视线方向和反射方向之间的夹角的余弦,m表示会聚指数;
步骤四四:根据每个体元素的环境反射亮度值IH、每个体元素的漫反射亮度值IM和每个体元素的镜面反射亮度值IJ获得每个体元素在光照下的亮度I=IH+IM+IJ
具体实施方式七:本实施方式是对具体实施方式一、二、三、四、五或六的进一步说明,具体实施方式一、二、三、四、五或六中在步骤六中,对每条投射光线T所穿过的每个非体元素进行采样差值计算,获得所述每个非体元素的不透明度值和颜色值的方法为:以投射光线T上每一个非体元素为中心,获得包含所述非体元素在内的立方体的8个顶点的体元素的坐标,并根据所述8个体元素的颜色值,使用三次线性插值法根据公式
Vp=V0(1-x)(1-y)(1-z)+V1(1-x)y(1-z)+V2(1-x)(1-y)z+V3(1-x)yz+V4x(1-y)(1-z)+V5xy(1-z)+V6x(1-y)z+V7xyz
获得每个非体元素的不透明度值和颜色值,其中,Vp表示非体元素的不透明度值或颜色值,VN表示体元素的不透明度值或颜色值,N=0、1、2、3、4、5、6、7。
本实施方式中的三次线性差值原理,如图4所示。
具体实施方式八:本实施方式是对具体实施方式一、二、三、四、五、六或七的进一步说明,具体实施方式一、二、三、四、五、六或七中在步骤七中,根据每条投射光线T上的每个采样点D的颜色值和不透明度值,并根据由前向后合成函数对所述每个采样点D进行合成,获得像平面上对应每条投射光线T的像素点颜色值的方法为:通过由前向后合成函数
αout=αinnow(1-αin)
Coutαout=Cinαin+Cnowαnow(1-αin)
,获得每条投射光线T经过第i个采样点D后的颜色值Cout=Ci和经过第i个采样点D后的不透明度值αout=αi,并获得每条投射光线T在像平面上的像素点颜色值C,
C = C 0 β 1 β 2 . . . β n + C 1 α 1 β 2 β 3 . . . β n + C 2 α 2 β 3 β 4 . . . β n
+ . . . + C n - 1 α n - 1 β n + C n α n
= C 0 Π i = 1 n β i + Σ i = 1 n C i α i Π j = i + 1 n β j
其中,αnow表示每条投射光线T上第i个采样点D的不透明度值,Cnow表示第i个采样点D的颜色值,αin表示进入第i个采样点D时的不透明度值,Cin表示进入第i个采样点D时的颜色值,C0表示初始颜色值,Ci表示第i个体元素的颜色值,αi表示第i个体元素的不透明度值,βi表示第i个体元素的透明度值,且有βi=1-αi
本实施方式中的由前向后合成方法的原理,如图5所示。
针对本实施方式,进行实例分析:
本实施方式中,利用半自动化的手段从胸腔切片中提取出心脏部分作为心脏三维体数据集空间S,切片图像如图6所示,并进一步按照心脏组织类别将其分为心室、心房等不同区域,切片图像分割结果如图7所示。
本实施方式中,计算投射到二维图像平面的每一行起始像素和终止像素位置的坐标:
1)计算世界坐标系,物体坐标系以及图像坐标系之间的坐标转换矩阵;
2)计算绘制图像的长宽大小;
3)将体数据的包围盒投射到图像平面,计算出投影后所占的空间范围及图像大小;
4)对投影到二维图像平面的每一行像素,计算每一行的起始像素和终止像素位置的坐标。
本实施方式中,计算对应于投射到二维图像平面每个像素点的射线的起始点和终止点坐标,并计算出单位采样间距:
1)分别得到图像平面坐标系中***面和远平面的两个中心点;
2)计算并标准化中心射线的方向向量;
3)遍历二维投影空间范围内的每一个像素点,计算图像空间中射线起始点和终止点坐标,并转换为物体空间中的坐标;
4)计算射线方向并归一化射线,得到射线的单位向量;
5)计算物体空间坐标系下的采样距离,使得每个采样间距相等。
本实施方式中,利用原始的光线投射体绘制算法的原理,如图2所示,相应的利用原始的光线投射体绘制算法的原理流程,如图3所示。
本实施方式中,基于原始的光线投射体绘制算法获得了四个角度的心脏解剖组织结构模型的结果图像,如图8、图9、图10和图11所示。
本实施方式中,获得了心脏组织内部细节结果图像前向示意图,如图12所示,以及心脏组织内部细节结果图像后向示意图,如图13所示。
本实施方式中,在第一个角度的利用加速改进后的光线投射体绘制算法绘制的心脏解剖组织结构模型的结果图像,如图14所示,在第二个角度的利用加速改进后的光线投射体绘制算法绘制的心脏解剖组织结构模型的结果图像,如图15所示。
本发明成功地利用了光线投射体绘制算法,以光强度、梯度属性作为参数,构造出适合心脏数据的不透明度传递函数,对心脏体元素赋不透明度值,对心脏内部不同组织进行分类,显示物体的内部结构,同时保留心脏内部细节信息。采用Phone光照模型,逼真的模拟在真实世界中光线落在心脏上而产生的阴影、光线的发散和吸收等状态,同时构造颜色传递函数,将心脏体元素的灰度强度映射为颜色,从而达到绘制具有较强真实感物体的目的,提高心脏三维解剖模型的绘制质量。对绘制方法进行加速改进,增强心脏解剖模型绘制的实时性。

Claims (8)

1.基于光线投射体绘制算法的人体心脏三维解剖组织结构模型可视化方法,其特征在于它的具体过程为:
步骤一:获得心脏三维体数据集空间(S),并根据光线投射体绘制算法,计算心脏三维体数据集空间(S)在像平面的投射区域(L);
步骤二:分别从投射区域(L)的每个像素点出发,沿着视线方向发射一条投射光线(T),在每条投射光线(T)方向上按设定步长选取采样点(D),所述采样点(D)包括体元素和非体元素,并对所述体元素以三维坐标(x,y,z)进行表示;
步骤三:在每条投射光线(T)穿过心脏三维体数据集空间(S)的过程中,计算心脏三维体数据集空间(S)中的每条投射光线(T)所穿过的每个体元素的梯度;
步骤四:根据光照模型,获得在光照下心脏三维体数据集空间(S)中的每个体元素的亮度;
步骤五:根据光线投射体绘制算法,计算每个体元素的不透明度值和颜色值;
步骤六:在每条投射光线(T)穿过心脏三维体数据集空间(S)的过程中,对每条投射光线(T)所穿过的每个非体元素进行采样插值计算,获得所述每个非体元素的不透明度值和颜色值;
步骤七:根据每条投射光线(T)上的每个采样点(D)的颜色值和不透明度值,并根据由前向后合成函数对所述每个采样点(D)进行合成,获得像平面上对应每条投射光线(T)的像素点颜色值;
步骤八:根据像平面上每个像素点颜色值绘制心脏三维解剖组织结构模型图像。
2.根据权利要求1所述的基于光线投射体绘制算法的人体心脏三维解剖组织结构模型可视化方法,其特征在于在步骤五中,根据光线投射体绘制算法,计算每个体元素的不透明度值和颜色值的方法为:
步骤五一一:以心脏三维体数据集空间(S)中的每个体元素的亮度属性和梯度属性作为参数,构造不透明度传递函数,获得对应体元素的不透明度值,所述梯度属性包括梯度值和梯度方向;
步骤五一二:构造颜色传递函数,并依据心脏三体数据集空间中的体元素的灰度强度获得所述体元素的颜色值。
3.根据权利要求2所述的基于光线投射体绘制算法的人体心脏三维解剖组织结构模型可视化方法,其特征在于在步骤五一一中,以心脏三维体数据集空间(S)中的每个体元素的亮度属性和梯度属性作为参数,构造不透明度传递函数,获得心脏三维体数据集空间(S)中的每个体元素的不透明度值的方法为:构造不透明度传递函数
Figure FSA00000050584100021
其中,fv表示心脏三维体数据集空间(S)中每一组织内大于或等于相应组织梯度阈值的体元素的光强度,所述组织包括心室和心房,如果将梯度值归一化为[0,1],则梯度阈值为0.8,r表示第i个体元素与光强度为fv的体元素的距离最大值,
Figure FSA00000050584100022
表示光强度为Ii的体元素i的梯度值,αi(r,fv)是第i个体元素的不透明度值,当Ii=fv时,αi(r,fv)=1。
4.根据权利要求1所述的基于光线投射体绘制算法的人体心脏三维解剖组织结构模型可视化方法,其特征在于在步骤五中,根据光线投射体绘制算法,计算每个体元素的不透明度值和颜色值的方法为:
步骤五二一:将心脏三维体数据集空间(S)按照心脏组织类别进行分类,同时将每类心脏组织中的体元素分为组织内部体元素和组织边界体元素;
步骤五二二:将心脏三体数据集空间中的一类心脏组织的组织内部体元素的灰度强度设定为一指定值,所述指定值大于与所述心脏组织相应的灰度值范围,并使心脏三维体数据集空间(S)中的同类心脏组织的组织边界体元素的灰度强度保持不变;
步骤五二三:构造颜色传递函数,依据每个组织边界体元素的灰度强度计算每个组织边界体元素的颜色值,同时依据每类心脏组织的组织内部体元素的特定值计算每类心脏组织的每个组织内部体元素的颜色值;
步骤五二四:在每条投射光线(T)穿过心脏三维体数据集空间(S)的过程中,将每类心脏组织的每个组织内部体元素的不透明度值设置为0,同时以每个组织边界体元素的亮度属性和梯度属性作为参数,构造不透明度传递函数,获得心脏三维体数据集空间(S)中的每个组织边界体元素的不透明度值,梯度属性包括梯度值和梯度方向。
5.根据权利要求1、2、3或4所述的基于光线投射体绘制算法的人体心脏三维解剖组织结构模型可视化方法,其特征在于在步骤三中,计算心脏三维体数据集空间(S)中的每条投射光线(T)所穿过的每个体元素的梯度的方法为中心差分法,利用中心差分法获得每个体元素的梯度:
Dx=[f(x-1,y,z)-f(x+1,y,z)]/2
Dy=[f(x,y-1,z)-f(x,y+1,z)]/2
Dz=[f(x,y,z-1)-f(x,y,z+1)]/2
Dx,y,z=[Dx,Dy,Dz]
其中,Dx表示心脏三维体数据集空间(S)中在(x,y,z)坐标处的体元素在x方向的梯度,Dy表示心脏三维体数据集空间(S)中在(x,y,z)坐标处的体元素在y方向的梯度,Dz表示心脏三维体数据集空间(S)中在(x,y,z)坐标处的体元素在z方向的梯度,f(x,y,z)表示心脏三维体数据集空间(S)中在(x,y,z)坐标处的体元素的光强度。
6.根据权利要求1、2、3或4所述的基于光线投射体绘制算法的人体心脏三维解剖组织结构模型可视化方法,其特征在于在步骤四中,根据Phone光照模型,获得在光照下心脏三维体数据集空间(S)中的每个体元素的亮度的方法为:
步骤四一:获得每个体元素的环境反射亮度值IH=KcIc,其中Kc为环境反射系数,Ic为环境光强度;
步骤四二:获得每个体元素的漫反射亮度值
Figure FSA00000050584100031
其中,Kd为漫反射系数,Icd为当光线垂直入射时反射光强度,
Figure FSA00000050584100032
为入射方向上的单位向量,
Figure FSA00000050584100041
为反射点表面的法线方向的单位向量;
步骤四三:获得每个体元素的镜面反射亮度值
Figure FSA00000050584100042
其中,Ijs为镜面反射光强度,Ks是物体表面的镜面反射系数,
Figure FSA00000050584100043
表示视线方向和反射方向之间的夹角的余弦,m表示会聚指数;
步骤四四:根据每个体元素的环境反射亮度值IH、每个体元素的漫反射亮度值IM和每个体元素的镜面反射亮度值IJ获得每个体元素在光照下的亮度I=IH+IM+IJ
7.根据权利要求1、2、3或4所述的基于光线投射体绘制算法的人体心脏三维解剖组织结构模型可视化方法,其特征在于在步骤六中,对每条投射光线(T)所穿过的每个非体元素进行采样插值计算,获得所述每个非体元素的不透明度值和颜色值的方法为:以投射光线(T)上每一个非体元素为中心,获得包含所述非体元素在内的立方体的8个顶点的体元素的坐标,并根据所述8个体元素的颜色值,使用三次线性插值法根据公式
Vp=V0(1-x)(1-y)(1-z)+V1(1-x)y(1-z)+V2(1-x)(1-y)z+V3(1-x)yz
+V4x(1-y)(1-z)+V5xy(1-z)+V6x(1-y)z+V7xyz
获得每个非体元素的不透明度值和颜色值,其中,Vp表示非体元素的不透明度值或颜色值,VN表示体元素的不透明度值或颜色值,N=0、1、2、3、4、5、6、7。
8.根据权利要求1、2、3或4所述的基于光线投射体绘制算法的人体心脏三维解剖组织结构模型可视化方法,其特征在于在步骤七中,根据每条投射光线(T)上的每个采样点(D)的颜色值和不透明度值,并根据由前向后合成函数对所述每个采样点(D)进行合成,获得像平面上对应每条投射光线(T)的像素点颜色值的方法为:通过由前向后合成函数
αout=αinnow(1-αin)
Coutαout=Cinαin+Cnowαnow(1-αin)
,获得每条投射光线(T)经过第i个采样点(D)后的颜色值Cout=Ci和经过第i个采样点(D)后的不透明度值αout=αi,并获得每条投射光线(T)在像平面上的像素点颜色值C,
C = C 0 β 1 β 2 . . . β n + C 1 α 1 β 2 β 3 . . . β n + C 2 α 2 β 3 β 4 . . . β n
+ . . . + C n - 1 α n - 1 β n + C n α n
= C 0 Π i = 1 n β i + Σ i = 1 n C i α i Π j = i + 1 n β j
其中,αnow表示每条投射光线(T)上第i个采样点(D)的不透明度值,Cnow表示第i个采样点(D)的颜色值,αin表示进入第i个采样点(D)时的不透明度值,Cin表示进入第i个采样点(D)时的颜色值,C0表示初始颜色值,Ci表示第i个体元素的颜色值,αi表示第i个体元素的不透明度值,βi表示第i个体元素的透明度值,且有βi=1-αi
CN 201010120304 2010-03-09 2010-03-09 基于光线投射体绘制算法的人体心脏三维解剖组织结构模型可视化方法 Pending CN101794460A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010120304 CN101794460A (zh) 2010-03-09 2010-03-09 基于光线投射体绘制算法的人体心脏三维解剖组织结构模型可视化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010120304 CN101794460A (zh) 2010-03-09 2010-03-09 基于光线投射体绘制算法的人体心脏三维解剖组织结构模型可视化方法

Publications (1)

Publication Number Publication Date
CN101794460A true CN101794460A (zh) 2010-08-04

Family

ID=42587131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010120304 Pending CN101794460A (zh) 2010-03-09 2010-03-09 基于光线投射体绘制算法的人体心脏三维解剖组织结构模型可视化方法

Country Status (1)

Country Link
CN (1) CN101794460A (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074051A (zh) * 2011-01-13 2011-05-25 深圳市蓝韵实业有限公司 一种体绘制平行投影的数据包围体快速定位方法
CN103338707A (zh) * 2011-01-26 2013-10-02 株式会社日立医疗器械 超声波诊断装置以及图像处理方法
CN103646417A (zh) * 2013-04-18 2014-03-19 上海交通大学 基于灰度-3d susan算子两维直方图体可视化方法
CN103914864A (zh) * 2012-09-11 2014-07-09 辉达公司 采用梯度域米特罗波利斯光传输的图形渲染的方法和***
CN104079832A (zh) * 2014-06-30 2014-10-01 苏州科达科技股份有限公司 一种一体化摄像机自动跟踪聚焦方法及***
CN103106685B (zh) * 2013-01-16 2015-08-12 东北大学 一种基于gpu的腹部脏器三维可视化方法
CN105512489A (zh) * 2015-12-10 2016-04-20 哈尔滨工业大学 一种基于多尺度心脏Thimthy综合症发病机制的建模方法
CN105809731A (zh) * 2016-03-09 2016-07-27 哈尔滨工业大学深圳研究生院 并行化光线投射方法、***及装置
WO2017114479A1 (zh) * 2015-12-31 2017-07-06 上海联影医疗科技有限公司 图像处理的方法及***
CN107464242A (zh) * 2017-08-17 2017-12-12 上海联影医疗科技有限公司 三维图像定位方法、装置及设备
CN108133512A (zh) * 2017-12-20 2018-06-08 肖连祥 基于磁共振扫描的胎儿体表结构可视化三维成像方法
CN108701372A (zh) * 2017-05-19 2018-10-23 华为技术有限公司 一种图像处理方法及装置
CN109887064A (zh) * 2013-07-23 2019-06-14 玛口外科股份有限公司 用于x射线图像生成的方法和***
CN110728744A (zh) * 2018-07-16 2020-01-24 青岛海信电器股份有限公司 一种体绘制方法、装置及智能设备
CN111145336A (zh) * 2019-12-12 2020-05-12 东软医疗***股份有限公司 图像绘制方法及装置
CN116531089A (zh) * 2023-07-06 2023-08-04 中国人民解放军中部战区总医院 基于图像增强的阻滞麻醉超声引导数据处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760781A (en) * 1994-09-06 1998-06-02 The Research Foundation Of State University Of New York Apparatus and method for real-time volume visualization
CN1818974A (zh) * 2006-03-08 2006-08-16 杭州电子科技大学 一种多模态医学体数据三维可视化方法
CN101577001A (zh) * 2009-05-20 2009-11-11 电子科技大学 基于光线投射体绘制的三维医学图像剖分方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760781A (en) * 1994-09-06 1998-06-02 The Research Foundation Of State University Of New York Apparatus and method for real-time volume visualization
CN1818974A (zh) * 2006-03-08 2006-08-16 杭州电子科技大学 一种多模态医学体数据三维可视化方法
CN101577001A (zh) * 2009-05-20 2009-11-11 电子科技大学 基于光线投射体绘制的三维医学图像剖分方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《中国优秀硕士学位论文全文数据库信息科技辑》 20070915 景孝凯 基于体绘制的图像三维重建算法研究 正文第22-33、46-56页 1-7 , 2 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074051B (zh) * 2011-01-13 2013-02-20 深圳市蓝韵网络有限公司 一种体绘制平行投影的数据包围体快速定位方法
CN102074051A (zh) * 2011-01-13 2011-05-25 深圳市蓝韵实业有限公司 一种体绘制平行投影的数据包围体快速定位方法
CN103338707A (zh) * 2011-01-26 2013-10-02 株式会社日立医疗器械 超声波诊断装置以及图像处理方法
CN103338707B (zh) * 2011-01-26 2015-09-30 株式会社日立医疗器械 超声波诊断装置以及图像处理方法
CN103914864A (zh) * 2012-09-11 2014-07-09 辉达公司 采用梯度域米特罗波利斯光传输的图形渲染的方法和***
CN103106685B (zh) * 2013-01-16 2015-08-12 东北大学 一种基于gpu的腹部脏器三维可视化方法
CN103646417B (zh) * 2013-04-18 2016-12-07 上海交通大学 基于灰度-3d susan算子两维直方图体可视化方法
CN103646417A (zh) * 2013-04-18 2014-03-19 上海交通大学 基于灰度-3d susan算子两维直方图体可视化方法
CN109887064A (zh) * 2013-07-23 2019-06-14 玛口外科股份有限公司 用于x射线图像生成的方法和***
CN109887064B (zh) * 2013-07-23 2023-10-27 玛口外科股份有限公司 用于x射线图像生成的方法和***
CN104079832A (zh) * 2014-06-30 2014-10-01 苏州科达科技股份有限公司 一种一体化摄像机自动跟踪聚焦方法及***
CN105512489B (zh) * 2015-12-10 2018-03-30 哈尔滨工业大学 一种基于多尺度心脏Thimthy综合症发病机制的建模方法
CN105512489A (zh) * 2015-12-10 2016-04-20 哈尔滨工业大学 一种基于多尺度心脏Thimthy综合症发病机制的建模方法
WO2017114479A1 (zh) * 2015-12-31 2017-07-06 上海联影医疗科技有限公司 图像处理的方法及***
US11769249B2 (en) 2015-12-31 2023-09-26 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for image processing
US10748280B2 (en) 2015-12-31 2020-08-18 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for image processing
CN105809731A (zh) * 2016-03-09 2016-07-27 哈尔滨工业大学深圳研究生院 并行化光线投射方法、***及装置
CN105809731B (zh) * 2016-03-09 2018-10-19 哈尔滨工业大学深圳研究生院 并行化光线投射方法、***及装置
CN108701372A (zh) * 2017-05-19 2018-10-23 华为技术有限公司 一种图像处理方法及装置
US10970918B2 (en) 2017-05-19 2021-04-06 Huawei Technologies Co., Ltd. Image processing method and apparatus using a pixelated mask image and terminal orientation for a reflection effect
CN107464242B (zh) * 2017-08-17 2020-10-20 上海联影医疗科技有限公司 三维图像定位方法、装置及设备
CN107464242A (zh) * 2017-08-17 2017-12-12 上海联影医疗科技有限公司 三维图像定位方法、装置及设备
CN108133512A (zh) * 2017-12-20 2018-06-08 肖连祥 基于磁共振扫描的胎儿体表结构可视化三维成像方法
CN110728744A (zh) * 2018-07-16 2020-01-24 青岛海信电器股份有限公司 一种体绘制方法、装置及智能设备
CN110728744B (zh) * 2018-07-16 2023-09-19 海信视像科技股份有限公司 一种体绘制方法、装置及智能设备
CN111145336A (zh) * 2019-12-12 2020-05-12 东软医疗***股份有限公司 图像绘制方法及装置
CN111145336B (zh) * 2019-12-12 2023-05-30 东软医疗***股份有限公司 图像绘制方法及装置
CN116531089A (zh) * 2023-07-06 2023-08-04 中国人民解放军中部战区总医院 基于图像增强的阻滞麻醉超声引导数据处理方法
CN116531089B (zh) * 2023-07-06 2023-10-20 中国人民解放军中部战区总医院 基于图像增强的阻滞麻醉超声引导数据处理方法

Similar Documents

Publication Publication Date Title
CN101794460A (zh) 基于光线投射体绘制算法的人体心脏三维解剖组织结构模型可视化方法
CN102096941B (zh) 虚实融合环境下的光照一致性方法
CN111508052B (zh) 三维网格体的渲染方法和装置
CN101336831B (zh) 实时三维医学超声图像的重建方法
CN104318569B (zh) 基于深度变分模型的空间显著性区域提取方法
CN110047144A (zh) 一种基于Kinectv2的完整物体实时三维重建方法
CN106570929B (zh) 一种动态体积云的构建与绘制方法
CN100498839C (zh) 一种多模态医学体数据三维可视化方法
DE102019118838A1 (de) Virtuelle photogrammetrie
US12002150B2 (en) Systems and methods for physically-based neural face shader via volumetric lightmaps
CN104574263A (zh) 一种基于gpu的快速三维超声重建和显示方法
CN101763649B (zh) 一种增强模型轮廓的表面点绘制方法
JP2004252935A (ja) 3dオブジェクトをモデル化する方法
CN103530907B (zh) 基于图像的复杂三维模型绘制方法
CN104077808A (zh) 一种用于计算机图形图像处理的、基于深度信息的实时三维人脸建模方法
Jenny et al. Interactive design of 3D maps with progressive projection
CN112132945B (zh) 一种高清云渲染方法
CN103544731B (zh) 一种基于多相机的快速反射绘制方法
Wang et al. Illustrative visualization of segmented human cardiac anatomy based on context-preserving model
Luo Distance-based focus+ context models for exploring large volumetric medical datasets
CN116678862A (zh) 一种植株叶绿素荧光三维成像装置及方法
CN114332337B (zh) 一种顾及积云密度的阴影分析与三维可视化方法
CN116524101A (zh) 基于辅助缓冲区信息和直接光照的全局光照渲染方法及装置
CN111179398A (zh) 基于3dgis的机动车尾气扩散模拟和体视化方法
CN108682042B (zh) 基于蜻蜓视觉成像模型设置的三维纹理图案合成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20100804