CN101789329B - 三维多方向敏感的微机械惯性电学开关 - Google Patents

三维多方向敏感的微机械惯性电学开关 Download PDF

Info

Publication number
CN101789329B
CN101789329B CN201010127247A CN201010127247A CN101789329B CN 101789329 B CN101789329 B CN 101789329B CN 201010127247 A CN201010127247 A CN 201010127247A CN 201010127247 A CN201010127247 A CN 201010127247A CN 101789329 B CN101789329 B CN 101789329B
Authority
CN
China
Prior art keywords
microns
electrode
cantilever beam
electrical switch
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201010127247A
Other languages
English (en)
Other versions
CN101789329A (zh
Inventor
杨卓青
丁桂甫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201010127247A priority Critical patent/CN101789329B/zh
Publication of CN101789329A publication Critical patent/CN101789329A/zh
Application granted granted Critical
Publication of CN101789329B publication Critical patent/CN101789329B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micromachines (AREA)

Abstract

一种微机电***技术领域的三维多方向敏感的微机械惯性电学开关,包括:质量块电极、悬臂梁水平固定电极、螺旋型水平固定电极、悬臂梁垂直固定电极、若干组蛇形弹簧、绝缘衬底、螺旋固定电极支撑座、弹簧支撑座、垂直固定电极支撑座以及悬臂梁支撑座,其中:质量块电极分别与四组蛇形弹簧的一端相连,蛇形弹簧的另一端与弹簧支撑座相连接并将质量块电极悬空于绝缘衬底和悬臂梁垂直固定电极之间,弹簧支撑座和悬臂梁支撑座分别固定设置于绝缘衬底上并位于质量块电极的四周,螺旋型水平固定电极和螺旋固定电极支撑座依次固定设置于衬底上。本发明使微机械惯性电学开关对来自水平和垂直多个方向上的加速度冲击反应敏感。

Description

三维多方向敏感的微机械惯性电学开关
技术领域
本发明涉及的是一种微机电***技术领域的装置,具体是一种三维多方向敏感的微机械惯性电学开关。
背景技术
以微机电***技术为基础设计和制造的惯性开关因其具有体积小、成本低及批量生产等优点备受关注。以往的微机械惯性开关,因其加工方法是基于微机电***技术,很多情况下开关的制备是以硅为基础进行刻蚀或电镀,通过干法刻蚀SOI(Silicon on Insulator)硅片得到能够悬空的可水平运动结构,并利用刻蚀出的侧壁斜面实现惯性开关的接通功能,这即为水平驱动的微机械惯性开关;而通过在单晶硅基底上的电镀和牺牲层工艺技术,则可实现垂直驱动的微机械惯性开关,但由于电镀过程中难以避免的内应力,这就决定了整个器件的高度不可能太厚,为了有足够大的质量块来感应外界的加速度作用,最终导致器件的整体面积较大。
微机械惯性电学开关的设计多数采用悬臂梁或弹簧连接质量块电极去接触碰撞另一固定电极的形式,制作的开关器件或为水平驱动,或为仅垂直驱动,当需要同时检测水平和垂直方向上的加速度作用时,只能联合使用这两种不同驱动方式的惯性电学开关,不但造成了开关器件数量上的浪费,而且也使***的封装集成更为困难、复杂。因而,如何尽可能使用少的惯性开关器件数量来感应、检测来自多方向的加速度冲击作用,集能够敏感三维多方向加速度作用于一种微开关器件一直是人们努力的方向,结果各种用以改善上述不足的微机械惯性电学开关设计不断被提出。
经对现有技术的文献检索发现,Wei Ma等在《Sensors and Actuators A》(《传感器与执行器A》,2004年111期63-70页)发表了题为“Fabrication and packaging of inertiamicro-switch using low-temperature photo-resist molded metal-electroplatingtechnology”(“用低温金属电镀技术制造与封装的惯性微型电学开关”)的论文,提出以硅衬底为基础,在其上电镀金属的方法来实现微机械惯性开关的制备,该微型惯性开关是以悬臂梁连接的质量块作为电极之一,另一电极位于质量块下方的衬底上、或者与质量块在同一个平面,从而实现垂直方向上的驱动、或者水平方向上的驱动。对于水平驱动的惯性电学开关,由于在硅基底上无法电镀太厚的质量块,质量块需要占据较大的面积来产生足够大的惯性驱动力以触发开关,惯性开关没有很明显的立体结构;而对于垂直驱动的惯性开关,其质量块电极与直接位于基底上的另一电极碰撞接触时,两者的刚度都很大,以至于接触效果不良且时间短暂,再加上高速回弹的质量块没有任何边界防护,可能会导致器件受损。更重要的是,论文中提出的任何一种驱动方式的开关器件都不能独立使用来同时检测多个方向的加速度冲击作用。
发明内容
本发明针对现有技术存在的上述不足,提供一种三维多方向敏感的微机械惯性电学开关,使整个微机械惯性电学开关可以同时敏感来自水平和垂直多个方向上的加速度冲击作用,并使其可动质量块电极和固定电极具有较好的接触效果,质量块电极的运动限制在绝缘衬底和固定电极之间,对器件受到的意外过载冲击起到一定的保护作用。
本发明是通过以下技术方案实现的,本发明包括:质量块电极、悬臂梁水平固定电极、螺旋型水平固定电极、悬臂梁垂直固定电极、若干组蛇形弹簧、绝缘衬底、螺旋固定电极支撑座、弹簧支撑座、垂直固定电极支撑座和悬臂梁支撑座,其中:质量块电极分别与四组蛇形弹簧的一端相连,蛇形弹簧的另一端与弹簧支撑座相连接并将质量块电极悬空于绝缘衬底和悬臂梁垂直固定电极之间,弹簧支撑座和悬臂梁支撑座分别固定设置于绝缘衬底上并位于质量块电极的四周,螺旋型水平固定电极和螺旋固定电极支撑座依次固定设置于衬底上。
所述的质量块电极为叠层金属电镀形成的环形体结构,其外径1000~2000微米、内径200~1200微米、高50~500微米,四个周边突出的半圆内半径为400~1000微米。
所述的悬臂梁水平固定电极为一层或多层金属电镀形成的悬臂结构,其宽度为50~200微米,长度为100~400微米,厚度50~500微米,斜截面角度为30~60°,该悬臂梁水平固定电极采用悬空结构,可以有效降低其结构刚度,并配合相应的斜截面接触,可很好地提高两电极间接触效果。
所述的螺旋型水平固定电极为三圈以上金属电镀形成的螺旋结构,其根部宽度为50~200微米,厚度50~500微米,螺旋半径为100~500微米,螺旋角60~120°。
所述的悬臂梁垂直固定电极为金属电镀形成的圆形结构或风叶形结构,所述圆形结构的半径为150~650微米;所述风叶形结构为三风叶或多风叶,其中:三风叶之间的夹角为120°,根部宽度为50~200微米,厚度10~50微米,端部半径为10~50微米。
所述的蛇形弹簧为金属电镀形成的一匝或多匝结构,其线宽为5~50微米,厚度为4~50微米,半圆的内径为20~100微米,连接半圆间的竖直长为50~500微米,该蛇形弹簧在受到外界加速度作用后,悬空蛇形弹簧和质量块电极的运动能够保持一致性、协调性,有利于接触的稳定可靠。
所述的绝缘衬底可以是石英、玻璃等绝缘材料制备。
所述的螺旋固定电极支撑座是通过电镀镍或铜等金属形成的方形或者圆形柱状结构。
所述的弹簧支撑座是通过电镀镍或铜等金属形成的方形或者环形柱状结构。
所述的垂直固定电极支撑座是通过电镀镍或铜等金属形成的方形或者圆形柱状结构。
所述的悬臂梁支撑座是通过电镀镍或铜等金属形成的方形或者环形柱状结构。
当外界足够大的负加速度沿绝缘衬底上表面法线方向作用于本发明三维多方向敏感的微机械惯性电学开关时,或者足够大的正加速度沿绝缘衬底下表面法线方向作用于上述电学开关时,质量块电极将接触到悬臂梁垂直固定电极,从而在垂直方向上实现对外电路的接通;当外界足够大的加速度沿平行于绝缘衬底上表面任一方向作用于上述电学开关时,质量块电极将接触到悬臂梁水平固定电极或螺旋型水平固定电极,从而在水平多方向上实现对外电路的接通。
本发明以微机电***加工技术为基础,采用室温下在石英或玻璃等绝缘衬底上多次互不干扰叠层电镀整个开关结构的方法制作。本发明在外界加速度作用下,依靠惯性力驱动蛇形弹簧悬空的质量块电极运动,从而接触到与其有一定间距的悬臂梁水平固定电极、螺旋型水平固定电极或悬臂梁垂直固定电极,随后又在弹簧作用力下快速将质量块电极拉回,最终实现对电路瞬间开关。
本发明针对以往微机械惯性电学开关仅为单一的水平驱动或垂直驱动,只能联合使用这两种不同驱动方式的开关来同时检测来自水平和垂直方向上的加速度作用,造成了开关器件在数量上的浪费等问题,提出了一种带有蛇形弹簧、螺旋型水平固定电极和悬臂梁垂直固定电极的三维多方向敏感微机械惯性电学开关,仅使用一只微开关器件即可同时检测来自多方向的加速度冲击作用,在很好地改善电极间接触效果的同时,也方便了其使用过程中的***封装。
附图说明
图1是实施例1具有风叶状悬臂梁垂直固定电极的三维多方向敏感微机械惯性电学开关结构示意图
图2是实施例1的质量块电极结构示意图
图3是实施例1的带风叶状悬臂梁垂直固定电极结构示意图
图4是实施例1的螺旋型水平固定电极、悬臂梁水平固定电极结构示意图
图5是实施例2具有一层悬臂梁水平固定电极的三维多方向敏感微机械惯性电学开关结构示意图
图6是实施例3具有圆形多孔垂直固定电极的三维多方向敏感微机械惯性电学开关结构示意图
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
如图1所示,本实施例包括:质量块电极1、悬臂梁垂直固定电极2、悬臂梁水平固定电极3、螺旋型水平固定电极4、蛇形弹簧5、绝缘衬底6、弹簧支撑座7、悬臂梁支撑座8、螺旋固定电极支撑座9以及垂直固定电极支撑座10,其中:质量块电极1分别与四组蛇形弹簧5的一端相连,四组蛇形弹簧5的另一端与弹簧支撑座7相连接并将质量块电极1悬空于绝缘衬底6的上方以及悬臂梁垂直固定电极2下方10~50微米处,弹簧支撑座7和悬臂梁支撑座8分别固定在绝缘衬底6上且位于质量块电极1四周,该悬臂梁支撑座8与质量块电极1之间的间隔为10~50微米,螺旋型水平固定电极4位于质量块1中心,并由螺旋固定电极支撑座9固定在衬底6上,且与质量块电极1之间有10~50微米的间隙。
所述的质量块电极1为环形,其尺寸大小为:外半径长1500微米、内半径500微米、高100微米,四个周边突出的半圆内半径为400微米,采用多次叠层电镀镍或铜等金属制作;
所述的风叶状悬臂梁垂直固定电极2三个风叶之间的夹角为120°,根部宽度为150微米,厚度30微米,端部半径为20微米;
所述的悬臂梁水平固定电极3长度为300微米,宽度为100微米,厚度50微米,斜截面角度为60°;
所述的螺旋型水平固定电极4根部宽度为150微米,厚度100微米,螺旋半径为100微米,螺旋角120°;
所述的蛇形弹簧5,其线宽10微米、厚度20微米,半圆处的内直径20微米、外直径40微米;
所述的绝缘衬底6尺寸为半径2000微米、高50~100微米;
所述的弹簧支撑座7为环状扇形结构,外半径为2000微米,内半径1800微米,高100微米,扇形夹角为30°;
所述的水平悬臂梁固定电极支撑座8为环状扇形结构,外半径为2000微米,内半径1800微米,高100微米,扇形夹角为30°;
所述的螺旋固定电极支撑座9为圆形柱状结构,其截面内半径为200微米,高度为15微米;
所述的垂直悬臂梁固定电极支撑座10为圆形柱状结构,其截面内半径为200微米,高度为20微米。
如图2所示,为本实施例具有风叶状悬臂梁垂直固定电极2的质量块电极1的立体结构示意图,位于质量块电极1周围的弹簧支撑座7和水平悬臂梁固定电极支撑座8电镀在绝缘衬底6上,将蛇形弹簧5和与之相连的质量块电极1以及悬臂梁水平固定电极3悬空起来。
如图3所示,为本实施例作为垂直悬臂梁固定电极2的风叶状挡板梁的结构示意图,螺旋固定电极支撑座9电镀在绝缘衬底6上,将螺旋型固定电极4悬空,其上方连接的垂直悬臂梁固定电极支撑座10将风叶状挡板梁悬空,组成的层状结构整体与绝缘衬底6相连,位于绝缘衬底6中央、环形质量块1中心。
如图4所示,为本实施例螺旋型水平固定电极4的结构示意图,由图可见螺旋型水平固定电极4由三个螺旋叶片组成,并由螺旋固定电极支撑座9将其悬空在绝缘衬底6中央,与位于绝缘衬底6周边的三组悬臂梁水平固定电极3之间有一定间距,悬臂梁水平固定电极支撑座8电镀在绝缘衬底6周边。
将外电路的两极分别接于上述三维多方向敏感的微机械惯性电学开关的质量块电极1和垂直悬臂梁固定电极2或悬臂梁水平固定电极3(或螺旋型水平固定电极水平4),当受到外界足够大的加速度作用在该开关的敏感轴方向(这里为绝缘衬底6表面的法线方向或与绝缘衬底6表面平行的方向)后,在质量块惯性力的驱动下,由蛇形弹簧5悬空的质量块电极1运动向并接触到垂直悬臂梁固定电极2,或者悬臂梁水平固定电极3,或螺旋型水平固定电极水平4,随后又被蛇形弹簧5拉开,从而实现对外电路的快速通断,垂直悬臂梁固定电极2的结构、螺旋型固定电极4以及悬臂梁水平固定电极3的结构都减小了其各自刚度,对惯性力驱动下质量块电极1的快速碰撞起到了一定的缓解作用,增进了开关接触效果。同时,本发明仅使用一只惯性开关即可敏感来自水平和垂直多个方向上的加速度冲击作用,实现了集能够敏感三维多方向加速度作用于一种微开关器件的优点。
实施例2
如图5所示,本实施例中采用单层结构的悬臂梁水平固定电极3设置于质量块电极1的***,该微机械惯性电学开关的尺寸与实施例1中具有风叶状悬臂梁垂直固定电极的三维多方向敏感微机械惯性电学开关一致,并且除了水平悬臂梁固定电极,其余部件的形状、尺寸与实施例1一致。
实施例3
如图6所示,本实施例中采用带孔的圆柱平面的悬臂梁垂直固定电极2,该垂直固定电极2的圆柱平面半径为500~1000微米,厚度为20~50微米,其上的通孔11半径为10~50微米,均匀地分布于圆柱上,分布间距为50~100微米,该微机械惯性电学开关的其余特征与实施例1类似。

Claims (9)

1.一种三维多方向敏感的微机械惯性电学开关,包括:质量块电极、悬臂梁水平固定电极、螺旋型水平固定电极、悬臂梁垂直固定电极、若干组蛇形弹簧、绝缘衬底、螺旋固定电极支撑座、弹簧支撑座、垂直固定电极支撑座以及质量块***水平电极悬臂梁支撑座,其特征在于:质量块电极分别与四组蛇形弹簧的一端相连,蛇形弹簧的另一端与弹簧支撑座相连接并将质量块电极悬空于绝缘衬底和悬臂梁垂直固定电极之间,且螺旋型水平固定电极设置于环形质量块的中心位置,弹簧支撑座和质量块***水平电极悬臂梁支撑座分别固定设置于绝缘衬底上并位于质量块电极的四周,螺旋型水平固定电极和螺旋固定电极支撑座固定设置于衬底上。
2.根据权利要求1所述的三维多方向敏感的微机械惯性电学开关,其特征是,所述的质量块电极为叠层金属电镀形成的环形结构,其外径1000~2000微米、内径200~1200微米、高50~500微米,四个周边突出的半圆内半径为400~1000微米。
3.根据权利要求1所述的三维多方向敏感的微机械惯性电学开关,其特征是,所述的悬臂梁水平固定电极为一层或多层金属电镀形成的悬臂结构,其宽度为50~200微米,长度为100~400微米,厚度50~500微米,悬臂梁结构悬空一端的截面倾角为30~60°。
4.根据权利要求1所述的三维多方向敏感的微机械惯性电学开关,其特征是,所述的螺旋型水平固定电极为三圈以上金属电镀形成的螺旋结构,其根部宽度为50~200微米,厚度50~500微米,螺旋半径为100~500微米,螺旋角为60~120°。
5.根据权利要求1所述的三维多方向敏感的微机械惯性电学开关,其特征是,所述的悬臂梁垂直固定电极为金属电镀形成的圆形结构或风叶形结构。
6.根据权利要求5所述的三维多方向敏感的微机械惯性电学开关,其特征是,所述的圆形结构的半径为150~650微米。
7.根据权利要求5所述的三维多方向敏感的微机械惯性电学开关,其特征是,所述的风叶形结构为三风叶形或多风叶,其中:三风叶之间的夹角为120°,根部宽度为50~200微米,厚度10~50微米,端部半径为10~50微米。
8.根据权利要求1所述的三维多方向敏感的微机械惯性电学开关,其特征是,所述的蛇形弹簧为金属电镀形成的一匝或多匝结构,其线宽为5~50微米,厚度为4~50微米,半圆的内径为20~100微米,连接半圆间的竖直长为50~500微米。
9.根据权利要求1所述的三维多方向敏感的微机械惯性电学开关,其特征是,所述的悬臂梁支撑座与质量块电极之间的间隔为10~50微米。
CN201010127247A 2010-03-19 2010-03-19 三维多方向敏感的微机械惯性电学开关 Expired - Fee Related CN101789329B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010127247A CN101789329B (zh) 2010-03-19 2010-03-19 三维多方向敏感的微机械惯性电学开关

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010127247A CN101789329B (zh) 2010-03-19 2010-03-19 三维多方向敏感的微机械惯性电学开关

Publications (2)

Publication Number Publication Date
CN101789329A CN101789329A (zh) 2010-07-28
CN101789329B true CN101789329B (zh) 2012-10-17

Family

ID=42532497

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010127247A Expired - Fee Related CN101789329B (zh) 2010-03-19 2010-03-19 三维多方向敏感的微机械惯性电学开关

Country Status (1)

Country Link
CN (1) CN101789329B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102306583B (zh) * 2011-08-31 2013-08-07 上海交通大学 三维多方向敏感的微型压力开关
CN102426959B (zh) * 2011-11-28 2014-01-15 上海交通大学 应用于医疗介入的由环形弹簧支撑的三维多方向压力开关
CN102522262A (zh) * 2011-12-15 2012-06-27 华东光电集成器件研究所 一种mems加速度开关
CN106871885A (zh) * 2015-12-10 2017-06-20 上海矽睿科技有限公司 用于mems传感器的折叠弹簧组以及mems传感器
CN107359057B (zh) * 2016-05-09 2019-07-12 南京理工大学 一种可识别载荷方位区间的mems万向惯性开关
CN106908718A (zh) * 2017-01-18 2017-06-30 沈阳理工大学 阈值可调mems惯性开关的测试***
CN106971915B (zh) * 2017-03-07 2019-08-09 上海交通大学 一种步进吸合静电锁定的微机械惯性开关
CN107919254B (zh) * 2017-10-30 2019-12-10 上海交通大学 一种具有柔性阵列触点的静电锁定惯性开关
CN109212261B (zh) * 2018-10-28 2023-11-24 曲靖师范学院 一种能有效避免非敏感方向误触发的三轴阈值加速度计
CN110021497B (zh) * 2019-05-17 2022-10-21 北京大学 一种万向导通微冲击开关及其制备方法
CN110571069B (zh) * 2019-08-20 2021-07-02 南京理工大学 一种微机械碰撞开关控制装置
CN112428958A (zh) * 2020-11-23 2021-03-02 广西贵港高曼信息科技有限公司 一种可以防止误报的机动车防盗警报设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2175466Y (zh) * 1993-11-09 1994-08-24 吴铭辉 万向触动开关
DE19819919A1 (de) * 1998-05-05 1999-11-11 Bosch Gmbh Robert Mikromechanisches Bauelement
US6765160B1 (en) * 2002-08-21 2004-07-20 The United States Of America As Represented By The Secetary Of The Army Omnidirectional microscale impact switch
CN101174518A (zh) * 2007-11-01 2008-05-07 上海交通大学 可调控接触时间的微型惯性电学开关

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2175466Y (zh) * 1993-11-09 1994-08-24 吴铭辉 万向触动开关
DE19819919A1 (de) * 1998-05-05 1999-11-11 Bosch Gmbh Robert Mikromechanisches Bauelement
US6765160B1 (en) * 2002-08-21 2004-07-20 The United States Of America As Represented By The Secetary Of The Army Omnidirectional microscale impact switch
CN101174518A (zh) * 2007-11-01 2008-05-07 上海交通大学 可调控接触时间的微型惯性电学开关

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨卓青 等.用于MEMS惯性开关的微弹簧有限元动力学分析.《机械强度》.2008,第30卷(第4期),586-589. *

Also Published As

Publication number Publication date
CN101789329A (zh) 2010-07-28

Similar Documents

Publication Publication Date Title
CN101789329B (zh) 三维多方向敏感的微机械惯性电学开关
US9584003B2 (en) Energy-harvesting device
EP3382400B1 (en) Three-axis inertial sensor for detecting linear acceleration
CN1602428A (zh) 加速器
JPH06213923A (ja) 平面のあらゆる方向に向いた加速に感応する容量性センサー
JP4996771B2 (ja) 電子デバイス
CN102384984B (zh) 电容式单质量块全梳齿电极三轴加速度传感器及制作方法
CN103575931A (zh) 用纳微柔性阵列实现接触时间延长的多向振动阈值传感器
CN101174518A (zh) 可调控接触时间的微型惯性电学开关
CN109212261B (zh) 一种能有效避免非敏感方向误触发的三轴阈值加速度计
CN102193002A (zh) 加速度传感器及其制造方法
CN106024507A (zh) 一种静电锁定垂直敏感的微机械惯性开关
CN100477053C (zh) 连体蛇形弹簧微型惯性电学开关
CN101699604A (zh) 常闭式微机械惯性电学开关
CN103728467A (zh) 平行板电容器
CN102306583B (zh) 三维多方向敏感的微型压力开关
CN109781097B (zh) 一种集成化微pnt单元
CN100510629C (zh) 双定子静电稳定电磁悬浮微转动陀螺
CN102543591B (zh) Mems开关及其制作方法
CN116067481A (zh) 一种基于双质量块多边形结构的mems压电矢量水听器芯片
CN110108267A (zh) 一种振动梁、振动梁制备方法及硅微陀螺
CN208969124U (zh) 一种能有效避免非敏感方向误触发的三轴阈值加速度计
JP2007192794A (ja) マイクロアレイ慣性装置に応用されるシングルチップ
CN110021497B (zh) 一种万向导通微冲击开关及其制备方法
US20060033598A1 (en) MEMS-based inertial switch

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121017

Termination date: 20200319

CF01 Termination of patent right due to non-payment of annual fee