CN101776727B - 一种利用真空环境测量电子元器件工作结温和热阻的方法 - Google Patents

一种利用真空环境测量电子元器件工作结温和热阻的方法 Download PDF

Info

Publication number
CN101776727B
CN101776727B CN 201010034446 CN201010034446A CN101776727B CN 101776727 B CN101776727 B CN 101776727B CN 201010034446 CN201010034446 CN 201010034446 CN 201010034446 A CN201010034446 A CN 201010034446A CN 101776727 B CN101776727 B CN 101776727B
Authority
CN
China
Prior art keywords
temperature
thermo
sensitive resistor
heating
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201010034446
Other languages
English (en)
Other versions
CN101776727A (zh
Inventor
冯士维
张光沉
乔彦斌
郭春生
丁凯凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN 201010034446 priority Critical patent/CN101776727B/zh
Publication of CN101776727A publication Critical patent/CN101776727A/zh
Application granted granted Critical
Publication of CN101776727B publication Critical patent/CN101776727B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

一种利用真空环境测量电子元器件工作结温和热阻的方法涉及电子器件测量领域。本发明将被测器件置于一真空***中,真空***外部装置相连;外部装置包括A/D采集板、计算机、电源、和加热电源;在靠近被测器件的热源部分即有源区处放置一温敏电阻A,将温敏电阻B与加热薄片一面接触,加热薄片另一面与被测器件的底部即散热端点接触;获取建立有源区到散热端点的温度梯度所需时间t1;建立散热端点到有源区的温度梯度所需时间t2;对被测器件施加功率为P,接通时间为t1+t2,当温敏电阻A和B趋于一恒定值,该温度即为被测器件正常工作时的温度,可得被测到器件的工作温升及热阻。该方法对半导体器件或功能模块的封装形式没有要求,且属于非破坏性测试。

Description

一种利用真空环境测量电子元器件工作结温和热阻的方法
技术领域
本发明涉及电子器件的生产测量,以及研究、开发领域。
背景技术
电子元器件或功能模块工作时有源区热量集中,温升高,是影响其特性、可靠性以及寿命的关键因素。由于有源区区域小,测量其工作温度比较困难。常用的方法有,红外测温法,电学参数法,液晶显示和发光光谱移动法等。红外测温法和液晶显示法可以测量芯片表面温度分布,可能对器件的封装带来破坏。发光光谱移动法测温,被测器件本身必须具备发光特性,不适合不发光的微电子器件。电学参数法能够方便迅速测量器件有源区温升,但对于大部分器件来说,可提取的测温温敏参数很有限,个别器件还要配备昂贵的专用测试电路和设备。
本方法利用真空绝热环境下,通过采集电子元器件或功能模块正常工作时,散热路径上两端点的温度上升曲线(正向),以及在器件散热端等功率加热后,再次采集测量两端点的温升曲线(反向),分别获取器件正反向施加等功率加热条件下,器件达到稳定温度分布所需的加热时间,即分别获取器件稳态工作温度梯度建立过程加热热量。由此测量出电子元器件正常工作条件下温度。
本技术可广泛应用于任何封装形式的电子元器件和功能模块,测量方法简单、准确,适用于电子器件的生产测量,以及研究、开发领域。
发明内容
本发明的主要目的是:电子元器件正常工作时有源区的温升是决定其寿命和可靠性的重要参数。利用真空环境下,精确计量稳态温度梯度建立过程所需热量,提供一种测量半导体器件工作温升的方法。
本发明工作原理
电子元器件通常由管芯、热沉、焊料和管壳组成。大气环境下,热量由器件有源区产生,流经热沉、管壳向四周环境散去。当有源区产生的热量与耗散的热量相等时,经过一段时间后,器件上温度分布达到一种稳定状态,形成由热源到管壳从高到低的温度分布。器件电源接通后,有源区温度上升瞬态过程示意图见图1。图中曲线1和2分别是电子元器件正常工作,以及热源位于器件散热底部的温度瞬态上升曲线。由于半导体器件两端点之间热阻一定,达到稳态的温升一定,但需要的时间不同。
当把电子元器件放入一个真空***后,由于周围散热路经中断,有源区产生的热量只能通过热传导方式向管壳传递。此时,有源区温度不断升高,温度梯度加大。当热量传导到封装管壳的末端,热量不再有耗散的路经,维持有源区和管壳末端的温度差不变,整体温度迅速提升(当器件温度不太高时,可忽略辐射散热)。如果在器件两个不同位置(其中一个为散热末端)放置测温温敏元件,两点温升过程见示意图2中的曲线1和2。
当这两点温度差开始恒定时刻,即为热源到管壳温度梯度建立完成时刻。图2中的曲线3即是两点温度差的测量曲线。元器件正常工作,其有源区为热源,从有源区到管壳温度梯度建立过程,称为正向加热过程。温差曲线开始恒定的时间t1,即为稳态温升建立所需的时间。工作功率P乘以t1,即为建立这一温度梯度所需热量Q1=P*t1。
当在封装管壳底部通过加热薄片施加相同电功率P,此时底部为加热端,上面为散热末端,测量接通电源后两检测点温度上升过程。当两点温差达到恒定时刻t2,即为从封装管壳底部到有源区的温度梯度建立完成。我们称该过程为反向加热过程。由于器件两端热阻互逆性,两次温升过程的温差相等。一般来说,器件管芯有源区端的热容小,管壳端的热容大。因此,达到同样温差所需加热功率不同,即t2>t1,Q2=P*t2,为第二次温度梯度建立所需热量。
正向加热过程和反向加热过程中,从高温到低温的温度空间分布呈现互补状态。即温度达到稳态分布后,热源到衬底的散热路径上温度空间分布曲线出现互补。见示意图3。物理上讲,曲线与位置坐标构成的面积表示建立稳态分布所需热量。正向加热和反向加热所需热量不同,但两者之和即为使元器件整体均匀达到有源区温度时所需热量。
正、反向加热过程所形成的温度梯度相同,即热阻相同。将正反向温度梯度建立过程所需热量相加,即P*(t1+t2),注入到器件中,真空环境下,没有热量的损失,整个***达到均匀平衡后的温度,就是器件正常工作时的温度。
本发明的技术方案叙述如下:
(1)将被测器件2置于一真空***1中,该真空***留有接线柱与外部装置相连;外部装置包括A/D采集板6、计算机7、电源8、和加热电源9;
(2)被测器件2通过真空***中接线柱,与电源8连接;
(3)在靠近被测器件2的热源部分即有源区处放置一温敏电阻A3,温敏电阻A3通过接线柱与A/D采集板6连接;
(4)选择一热阻已知,加热功率可控的加热薄片4,加热薄片4通过接线柱与加热电源9连接;
(5)将另一温敏电阻B5通过接线柱与A/D采集板6连接,并将温敏电阻B5与加热薄片4一面接触,加热薄片4另一面与被测器件2的底部即散热端点接触;
(6)计算机7控制电源8、A/D采集板6、加热电源9;A/D采集板6采集温敏电阻位置温度随时间的变化,测量数据保存,每次施加电功率前,通过温敏电阻获取被测器件上的温度;
(7)当接通电源8,同时触发A/D采集板测量并记录温敏电阻A3和温敏电阻B5随时间变化过程,通过两温敏电阻测量值之差变为恒定时,获取建立有源区到散热端点的温度梯度所需时间t1;
(8)通过对真空***充气等方法,使被测器件温度不再变化,再通过加热电源9加热加热薄片4,同时触发A/D采集板6,测量并记录温敏电阻A3和温敏电阻B5随时间变化过程,通过求两温敏电阻测量值之差恒定时间t2,即为建立散热端点到有源区的温度梯度所需时间;
(9)通过对真空***充气等方法,使被测器件温度不再变化,接通被测器件电源,施加功率为P,接通时间为t1+t2,关断电源,当温敏电阻A3和温敏电阻B5趋于一恒定值,该温度即为被测器件正常工作时的温度,减去加功率前被测器件温度,即得被测到器件的工作温升;由于加热薄片的热阻和加热功率已知,减去加热薄片热阻,即得实际被测器件的热阻。
在被测器件建立稳定温度梯度时间过短情况下,可以减小所加功率的占空比,减小使被测器件升温的热量,使t1、t2时间加长,减小测量误差;
该方法对半导体器件或功能模块的封装形式没有要求,且属于非破坏性测试。特别是对于一些常规测量结温技术无法测量的器件或功能模块,该方法更能显示出其适用性和先进性。
附图说明
图1.大气环境下电子元器件温度上升的瞬态过程示意图
图2.真空环境下温度上升的瞬态过程示意图
图3.正反向加热过程中,器件形成的互补温度分布状态
1:器件正向加热时形成的内部温升分布(环境温度为300K)
2:器件反向加热时形成的内部温升分布(环境温度为300K)
3:两条曲线的和
图4测试结构示意图
1:真空***  2:被测器件  3:温敏电阻A  4:加热薄片  5:温敏电阻B;6:A/D采集板  7:计算机  8:电源  9:加热电源
图5实施例正向加热时间测量
图6实施例反向加热时间测量
具体实施方式
1、使用一个真空***1,该***通过内部密封接线柱与外部测量装置相连。被测器件为功率VDMOS,正常工作电压V=3.5V,I=1.2A,工作功率p=V*I=4.2W,工作电源受计算机控制;
2、选择两个温敏电阻,本实施例中采用两个100欧姆铂电阻,一个放在管壳的上部,另一个放在加热薄膜的底端,薄膜的另一端与管壳的底部接触,两铂电阻通过内部接线柱与外部的1mA电流源相接,电阻两端电压分别接入高速采集板,加热薄膜的加热功率与外部电源相连,加热功率施加同时,触发高速采集板,采集温敏电阻两端的电压,也就是温度随加热时间的变化;
3、温敏电阻电压(温度)随时间变化的采集是采用高速采集板。为保证测量的精度,本实施例中采用1M采样速率,12位,双通道AC1050采集板。最短时间间隔可达1微秒,本实施例中,采集的时间间隔为2ms,测量的数据随时存盘;
4、对测试真空***抽真空,使真空度达到1.6×10-3帕斯卡,测量时,计算机发指令给程控电源,对被测器件VDMOS加功率,同时触发高速采集板测量温敏电阻随时间变化曲线,即温升曲线。测量结果见图5;
5、对测量的曲线做差,其差值达到恒定时刻为t1=4秒。即正向加热时,稳态温度梯度建立时间t1,加热热量Q=P*t1=16.8焦耳。
6、使用一个陶瓷带有加热电阻的加热薄片加热,同时触发高速采集板测量并记录温敏电阻3和5随时间变化过程,即反向加热时的温升曲线,测量结果见图6;
7、对测量的曲线做差,其差值达到恒定时刻为t2=7s,即反向加热时,稳态温度梯度建立时间t2,加热热量Q=P*t2=29.4焦耳。
8、对被测器件加功率,功率持续时间为t1+t2,撤掉功率后,触发A/D采集板测量并记录温敏电阻3端电压随时间变化过程,当电压不再变化时,对应的温度就是器件在大气下正常工作时的工作结温,在本例中,器件工作结温升为9.2K,本例中加热薄膜热阻为0.5K/W,因此减去加热薄膜引入的2.1K温升,器件热阻为(9.2K-2.1K)/4.2W=1.7K/W。

Claims (1)

1.一种利用真空环境测量电子元器件工作结温和热阻的方法,其特征在于,包括以下步骤:
(1)将被测器件置于一真空***中,该真空***留有接线柱与外部装置相连;外部装置包括A/D采集板、计算机、电源和加热电源;
(2)被测器件通过真空***中接线柱,与电源连接;
(3)在靠近被测器件的热源部分即有源区处放置一温敏电阻A,温敏电阻A通过接线柱与A/D采集板连接;
(4)选择一热阻已知,加热功率可控的加热薄片,加热薄片通过接线柱与加热电源连接;
(5)将另一温敏电阻B通过接线柱与A/D采集板连接,并将温敏电阻B与加热薄片一面接触,加热薄片另一面与被测器件的底部即散热端点接触;
(6)计算机控制电源、A/D采集板、加热电源;A/D采集板采集温敏电阻位置温度随时间的变化,测量数据保存,每次施加电功率前,通过温敏电阻获取被测器件上的温度;
(7)当接通电源,同时触发A/D采集板测量并记录温敏电阻A和温敏电阻B随时间变化过程,通过两温敏电阻测量值之差变为恒定时,获取建立有源区到散热端点的温度梯度所需时间t1;
(8)当被测器件温度不再变化,再通过加热加热薄片,同时触发A/D采集板,测量并记录温敏电阻A和温敏电阻B随时间变化过程,通过求两温敏电阻测量值之差恒定时间t2,即为建立散热端点到有源区的温度梯度所需时间;
(9)当被测器件温度不再变化,接通被测器件电源,施加功率为P,接通时间为t1+t2,关断电源,测量并记录温敏电阻A端电压随时间变化过程,当电压不再变化时,对应的温度就是被测器件在大气下正常工作时的工作结温,该温度即为被测期间正常工作时的温度,减去加功率前被测器件温度,即得到被测到器件的工作温升;由于加热薄片的热阻和加热功率已知,减去加热薄片热阻,即得实际被测器件的热阻。
CN 201010034446 2010-01-21 2010-01-21 一种利用真空环境测量电子元器件工作结温和热阻的方法 Expired - Fee Related CN101776727B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010034446 CN101776727B (zh) 2010-01-21 2010-01-21 一种利用真空环境测量电子元器件工作结温和热阻的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010034446 CN101776727B (zh) 2010-01-21 2010-01-21 一种利用真空环境测量电子元器件工作结温和热阻的方法

Publications (2)

Publication Number Publication Date
CN101776727A CN101776727A (zh) 2010-07-14
CN101776727B true CN101776727B (zh) 2011-11-23

Family

ID=42513236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010034446 Expired - Fee Related CN101776727B (zh) 2010-01-21 2010-01-21 一种利用真空环境测量电子元器件工作结温和热阻的方法

Country Status (1)

Country Link
CN (1) CN101776727B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102103184B (zh) * 2011-01-23 2012-11-07 杭州电子科技大学 一种提取晶体管非线性热阻的方法
CN102540043B (zh) * 2011-12-10 2014-06-18 中国振华集团永光电子有限公司 轴向半导体器热阻测试方法及接口
CN103278761B (zh) * 2013-05-19 2015-08-26 北京工业大学 一种测量薄层异质半导体材料界面温升和热阻的方法
CN103336024B (zh) * 2013-06-17 2017-08-01 中华人民共和国上海出入境检验检疫局 热电材料的热电性能测试***
CN103822731B (zh) * 2014-03-06 2016-08-24 北京工业大学 一种vdmos器件结温的测试方法
CN104391004B (zh) * 2014-11-27 2016-11-16 陕西科技大学 一种无损灯具散热性能的测试装置及方法
CN104502367A (zh) * 2014-12-09 2015-04-08 中国科学院上海应用物理研究所 一种可进行热化学气相沉积的原位测试平台
CN105043572B (zh) * 2015-08-10 2018-03-16 北京工业大学 一种用于扫描电镜真空环境的高温测试装置
CN105651808B (zh) * 2016-02-28 2018-06-01 北京工业大学 一种降低发热电子器件表面过热度的实验***和实施方法
CN109781769A (zh) * 2019-01-03 2019-05-21 新冶高科技集团有限公司 一种测量石墨烯薄膜电热材料电热特性的装置及测量方法
CN112858865B (zh) * 2021-01-19 2022-07-12 元山(济南)电子科技有限公司 一种监测碳化硅功率模块老化程度的方法及装置
CN113030686A (zh) * 2021-05-27 2021-06-25 武汉乾希科技有限公司 用于半导体制冷器的测试设备和测试方法

Also Published As

Publication number Publication date
CN101776727A (zh) 2010-07-14

Similar Documents

Publication Publication Date Title
CN101776727B (zh) 一种利用真空环境测量电子元器件工作结温和热阻的方法
CN201653950U (zh) 一种测量电子元器件工作结温和热阻的装置
TWI472768B (zh) 偵測感測器之熱時間常數之風速計
CN102608511B (zh) 一种金属氧化物半导体管的结温和热阻测量方法
US7965094B2 (en) Packaged die heater
CN103323486B (zh) 一种高阻值材料的塞贝克系数的测试芯片
CN103245694B (zh) 一种测量半导体器件和接触材料间接触热阻的方法
CN102759544B (zh) 一种大功率碳化硅二极管热阻测试方法
CN104034749A (zh) 基于3ω法的薄层材料间接触热阻的测试方法
CN109613051B (zh) 一种采用对比法测量材料Seebeck系数的装置及方法
CN106482752B (zh) 传感器装置和用于校准传感器装置的方法
US20070009240A1 (en) Semiconductor test device
CN109815596B (zh) 基于温控散热器的半导体器件环境温度模拟***及方法
CN109709470A (zh) 一种多芯片混合功率运放结壳热阻测试方法
CN103823170B (zh) 一种功率型led集成模块热阻测试新方法
CN102721721B (zh) 一种硅杯结构的热扩散率传感器芯片及其制备方法
CN112689890A (zh) 工艺温度测量装置制造技术及其校正及数据内插的方法
CN109211963B (zh) 一种导热材料热阻性能检测***及检测方法
CN203773016U (zh) 一种smd-0.5封装功率半导体器件热阻测试装置
CN206756727U (zh) 一种Seebeck系数测试装置
CN203069740U (zh) 半导体功率器件热阻测试装置
CN104237300A (zh) 一种玻封表贴二极管稳态热阻测试夹具和测试方法
CN111736052A (zh) 探针卡、具有其的晶圆检测设备及使用其的裸晶测试流程
CN105784786A (zh) 用于检测气态分析物的方法和传感器设备及其制造方法
CN108291843A (zh) 具有第一温度测量元件的半导体构件以及用于确定流过半导体构件的电流的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111123

Termination date: 20120121