CN101775561A - 低屈强比高强度厚板及其制备工艺 - Google Patents

低屈强比高强度厚板及其制备工艺 Download PDF

Info

Publication number
CN101775561A
CN101775561A CN 201010127855 CN201010127855A CN101775561A CN 101775561 A CN101775561 A CN 101775561A CN 201010127855 CN201010127855 CN 201010127855 CN 201010127855 A CN201010127855 A CN 201010127855A CN 101775561 A CN101775561 A CN 101775561A
Authority
CN
China
Prior art keywords
strength
ratio
low yield
yield strength
plank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010127855
Other languages
English (en)
Other versions
CN101775561B (zh
Inventor
辛星
曲锦波
方栋
曲之国
王炜
赵文贵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Shagang Iron and Steel Research Institute Co Ltd
Original Assignee
Jiangsu Shagang Iron and Steel Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Shagang Iron and Steel Research Institute Co Ltd filed Critical Jiangsu Shagang Iron and Steel Research Institute Co Ltd
Priority to CN 201010127855 priority Critical patent/CN101775561B/zh
Publication of CN101775561A publication Critical patent/CN101775561A/zh
Application granted granted Critical
Publication of CN101775561B publication Critical patent/CN101775561B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

本发明提供了一种低屈强比高强度厚板及其制备工艺。该厚板包含的成分及其重量百分比分别为:C 0.05~0.10%、Si 0.20~0.30%、Mn 1.60~1.80%、Nb 0.05~0.07%、Ni 0.30~0.40%、Cu 0.30~0.40%、Cr 0.15~0.30%、Mo 0.20~0.40%、Ti≤0.02%、Al≤0.045%以及余量的铁和杂质。该制备工艺是在采用上述成分设计的基础上,再采用控轧控冷工艺。本发明成功解决了建筑厚板高强度与低屈强比相矛盾、难调和的问题,同时,其工艺简单,可有效提高成材率,降低生产成本,适于工业化大生产。本发明适用于高层建筑、桥梁、管线等领域,应用前景广泛。

Description

低屈强比高强度厚板及其制备工艺
技术领域
本发明具体涉及一种可作为建筑结构用钢的低屈强比高强度厚板及其制备工艺。
背景技术
一般而言,在高层建筑中采用高强度钢可以使材料的断面减小,钢材及焊接材料的重量减轻,从而减轻钢材在施工方面带来的困难,同时降低整个钢结构的重量,减少成本,故而,结构钢因其特殊的应用性,高强度以及优良的安全性能已经成为了建筑用钢的一个重大发展方向。近十年以来,结构钢已占整个钢材生产的10%左右,并且仍以每年6%~8%的速度递增。
在严重的负荷变形下,建筑用钢塑性变形的一致性是关键,提高钢材的抗变形能力,即要求其具备较低的屈强比。在地质灾害发生时,屈强比越低,材料从开始塑性变形到断裂所需要的形变能就越大。较低的屈强比可使结构件吸收较多的地震能,从而提高了其抗大变形的能力,有效保证整个建筑的安全性。但屈强比过低,又会造成强度的损失,造成材料的浪费。另一方面,单纯的提高钢材的强度,又会使屈强比有升高的趋势。因此,同时合理的满足钢材的强韧性、塑性配合是提高建筑用钢过载能力的保证,也将适应广大市场对结构钢的要求。
日本JFE在世界范围内率先开发出了高强度,低屈强比,同时兼备良好韧性和良好的焊接性能的钢板。其中,抗拉强度为490~550MPa级钢(如,钢材HBL325、HBL355、HBL385)是通过适宜的TMCP工艺条件,得到软质的铁素体和硬质的珠光体或贝氏体的混合组织,来控制强度和屈强比。另外,JFE生产的HITEN系列钢板,强度达到780MPa,厚度从12mm~40mm不等,屈强比小于0.85。对于此类高强度低屈强比厚板的生产,JFE主要采用了在线热处理,即HOP技术,得到的钢板组织是贝氏体和岛状马氏体的混合组织。
北京科技大学于公开号为CN1323907、公开日为2001年11月28日的发明专利中提出了一种用于高强度低合金钢生产的弛豫-析出-控制相变技术,利用该工艺,可获得超细复合组织,能够获得高强度、高韧性、屈服强度在800MPa以上级别的低合金钢,但该种低合金钢的屈强比特别高(0.95以上),因此限制了其在某些领域的应用。
鞍山钢铁公司于公开号为CN1521285、公开日为2004年8月18日的发明专利中提出一种超低碳贝氏体钢及其生产方法,该种工艺生产的贝氏体钢的屈服强度在620~690MPa,屈强比在0.86~0.89,但该种工艺只能用于生产厚度≤10mm的钢板,且其应用还受到了桥梁、建筑等领域的限制。
北京科技大学于公开号为CN1786246公开日为2006年6月14日的发明专利中提出一种高强度高韧性低屈强比贝氏体钢及其生产方法。该发明采用的是TMCP+RPC+SQ(控轧空冷+弛豫控制相变+亚温淬火)的工艺,其可将所生产钢种的抗拉强度控制在800MPa级以上,屈强比控制在0.85,但该钢种需要在两相区进行亚温淬火,生产周期较长。
宝钢公司于公开号为CN101328564、公开日为2008年12月24日的发明专利中提出一种具有优良焊接性的低屈强比HT780钢板及其制造方法。该发明采用的DQ+N’+T(直接淬火+两相区正火+回火)的工艺,成本较高,且合金元素中B元素的添加,增加了炼钢的困难。
武汉钢铁公司于公开号为CN101497972、公开日为2009年8月5日的发明专利中提出一种高强度低屈强比焊接结构钢及其生产方法。该发明的焊接结构钢抗拉强度达到了780MPa以上级,且生产工艺趋于简单可行,但其层流缓冷方式在实际生产过程中较难控制,钢材生产的稳定性较差。
综上所述可知,现有的各种结构钢及其制备工艺均存在诸多不足。目前,业界亟待发展出一种低成本适合于工业化稳定生产的方法,来满足大批量生产低屈强比高强度建筑结构钢厚板的需求。
发明内容
本发明的目的在于提出一种低屈强比高强度厚板及其制备工艺,其通过特殊的合金成分的设计及普通TMCP技术,控制终轧终冷温度,实现降低材料的屈强比,达到工业化生产高强度低屈强比钢的目的,从而克服现有技术中的不足。
为实现上述发明目的,本发明采用了如下技术方案:
一种低屈强比高强度厚板,其特征在于,该厚板包含的成分及其重量百分比分别为:C 0.05%~0.10%、Si 0.20%~0.30%、Mn 1.60%~1.80%、Nb 0.05%~0.07%、Ni 0.30%~0.40%、Cu 0.30%~0.40%、Cr 0.15%~0.30%、Mo 0.20%~0.40%、Ti≤0.02%、Al≤0.045%以及余量的铁和杂质。
具体而言,该厚板抗拉强度为740~790MPa,屈服强度为520~560MPa,延伸率>18%,屈强比<0.75。
该厚板厚度在16~50mm,主要由铁素体和贝氏体组织构成。
一种如上所述低屈强比高强度厚板的制备工艺,其特征在于:该工艺为:
首先,制备具有与所述厚板具有相同组分的铸坯;其后,将铸坯加热;而后,采用两阶段控轧工艺对铸坯进行轧制,其中,开轧温度1050℃~1150℃,二开轧温度为920℃±20℃,道次间空冷,终轧温度为780℃±30℃,累积压下率大于70%;轧制完成后,以10℃/s以上的冷却速度将轧制形成的钢板迅速冷却,制得成品低屈强比高强度厚板。
进一步的讲:该工艺中,铸坯在轧前的加热温度为1200℃。
该工艺中,轧制形成的钢板是以10~15℃/s的冷却速度迅速冷至550℃±20℃,之后空冷。
所述成品低屈强比高强度厚板厚度在16~50mm,组织为铁素体和贝氏体,屈强比低于0.75。
所述成品低屈强比高强度厚板的屈服强度在520~560MPa,抗拉强度在740~790MPa,屈强比在0.75以下,延伸率大于18%。
以下对本发明的低屈强比高强度厚板中所含组分的作用及其用量的选择具体分析说明:
C:C对材料的强度、低温韧性、焊接性能都起着重要的作用。碳含量控制的过低(一般低于0.025%),则不能够保证强度,含量过高时(一般高于0.10%),则焊接性能和低温韧性较难控制。本案中,碳含量选择在0.05%~0.10%,能够保证的钢中一定的贝氏体含量,保证一定的强度、韧性及延展率。
Si:Si可以扩大α-γ区,使得临界区处理的温度加宽。同时硅是炼钢脱氧的必要元素,可以增加材料的强度,但损害材料的低温韧性及焊接性能,因此硅的含量应控制在0.2%~0.3%的范围内。
Mn:Mn元素是典型的奥氏体稳定化元素,能够提高钢的淬透性,并起到固溶强化和细化铁素体晶粒的作用,在低碳条件下对于提高材料的强度有着显著的作用,因此当生产强度较高的钢时,Mn的含量不宜低于1.5%。且Mn的价格相对低廉,是相对重要的一种合金元素。但过量的锰不但使得连铸过程较难控制,而且容易与P、S等元素形成偏析,严重恶化材料的冲击性能及焊接性能。因此本案中Mn含量定在1.6%~1.8%。
Nb:Nb是控轧控冷钢中的重要元素,Nb的加入能够阻止奥氏体变形后的再结晶,提高奥氏体再结晶温度。对于双相钢而言,Nb可显著抑制铁素体转变,随着冷速的增加,Nb的抑制作用增强,铁素体晶粒尺寸明显细化。一定量的Nb能与Mo复合促进针状铁素体的形成。因此Nb的含量控制在0.05%~0.07%。
Ni:Ni是一种提高钢板强度和低温韧性的元素,Ni作为一种奥氏体稳定元素,同时,还可以降低含铜钢中铜脆现象的产生,对于建筑用钢,可以提高钢板的耐大气腐蚀性。但是,Ni作为一种贵重金属,其含量范围应控制在0.30%~0.40%,有利于达到最优的性价比。
Cu:Cu也是一种奥氏体稳定元素,可以提高钢板的淬透性和耐大气腐蚀性。但是过高含量的铜容易使钢产生铜脆现象,恶化钢板的表面性能。因此,本案中Cu的含量控制在0.30%~0.40%。
Cr:Cr可显著提高钢的淬透性,推迟珠光体转变,同时促进了C向奥氏体扩散,并可降低铁素体的屈服强度,有利于获得低屈强比的双相钢。
Mo:Mo能显著提高钢板的抗拉强度,对于在临界区加热时所形成的奥氏体的淬透性有良好的影响,有助于微细贝氏体的形成。但含量过高,不仅增加了生产成本,而且降低了材料的焊接性能。因此Mo的添加范围选择在0.2%~0.4%。
Ti、Al主要作用是固氮和完全脱氧。Ti/N在3~4之间为最佳。Ti的含量过高,固氮效果达到饱和,过剩的Ti会使材料的韧性下降。Al作为AlN存在可有效的脱氧,但含量过高当脱氧效果达到饱和时,会损害钢的低温韧性及冲击性。
本发明通过上述成分设计,并采用控轧控冷工艺(TMCP),即在一阶段奥氏体再结晶区进行控制轧制,充分细化奥氏体晶粒,在二阶段奥氏体非再结晶区进行控制轧制,终轧温度接近Ac3,可阻止晶粒长大,同时由于合金元素Nb、Ni、Mo等的作用,在轧制过程中,能够阻止奥氏体形变后再结晶,使得晶粒进充分细化,最终获得包含贝氏体和少量铁素体的复相组织的高性能钢板,其抗拉强度为740~790MPa,屈服强度为520~560MPa,延伸率>18%,屈强比<0.75。
与现有技术相比,本发明具有以下优点:
本发明采用廉价的Mn为主要添加元素,辅助以少量的贵重金属元素,易于冶炼;同时由于本发明在仅依靠TMCP工艺条件下进行生产,不需后续调质处理,降低了生产成本,且工艺简单,生产过程易于控制,适用于工业化大生产。
附图说明
以下结合附图及具体实施方式对本发明的内容作进一步说明。
图1是实施例1中低屈强比高强度厚板的金相组织照片;
图2是实施例2中低屈强比高强度厚板的金相组织照片;
图3是实施例3中低屈强比高强度厚板的金相组织照片;
图4是实施例4中低屈强比高强度厚板的金相组织照片。
具体实施方式
实施例1本实施例的低屈强比高强度厚板采用了如下成分设计:C 0.06%、Si 0.22%、Mn 1.70%、Al 0.041%、Nb 0.062%、Ti 0.015%、Ni 0.34%、Cu 0.37%、Cr 0.20%、余量的铁及不可避免的杂质。
该低屈强比高强度厚板的生产工艺为:
按上述成分设计配制冶炼原料,经冶炼、浇铸,形成厚80mm的铸坯;
将铸坯加热至1200℃,其后进行两阶段轧制,一阶段开轧温度为1114℃,轧制4道次,中间坯厚42mm,二阶段开轧温度控制在926℃,终轧温度796℃,轧制5道次,板厚20mm;
将上述轧制后的板进行控制冷却,轧后的冷却速度为10℃/s,终冷温度为552℃,之后空冷,最终制得低屈强比高强度钢板,其厚度为20mm,金相组织为贝氏体和铁素体(如图1所示),力学性能为:屈服强度551MPa、抗拉强度775MPa、屈强比为71%、延伸率为20.6%、-40℃冲击功Akv136J。
实施例2本实施例的低屈强比高强度厚板采用了如下成分设计:C 0.08%、Si 0.25%、Mn 1.72%、Al 0.039%、Nb 0.058%、Ti 0.017%、Ni 0.32%、Cu 0.31%、Cr 0.25%、余量为铁及不可避免的杂质。
该低屈强比高强度厚板的生产工艺为:
按上述成分设计配制冶炼原料,经冶炼、浇铸,形成厚80mm的铸坯;
将铸坯加热至1200℃,其后进行两阶段轧制,一阶段开轧温度为1136℃,轧制4道次,中间坯厚42mm,二阶段开轧温度控制在923℃,终轧温度控制在776℃,轧制5道次,板厚20mm;
将上述轧制后的板进行控制冷却,轧后采用冷却速度为10℃/s,终冷温度为562℃,之后空冷,最终制得低屈强比高强度钢板,其厚度为20mm,金相组织为贝氏体和铁素体(如图2所示),力学性能为:屈服强度558MPa、抗拉强度766MPa、屈强比73%、延伸率21.5%、-40℃冲击功Akv159J。
实施例3本实施例的低屈强比高强度厚板采用了如下成分设计:C 0.07%、Si 0.20%、Mn 1.69%、Al 0.043%、Nb 0.065%、Ti 0.015%、Ni 0.37%、Cu 0.35%、Cr 0.17%,余量为铁及不可避免的杂质。
该低屈强比高强度厚板的生产工艺为:
按上述成分设计配制冶炼原料,经冶炼、浇铸,形成厚80mm的铸坯;
将铸坯加热至1200℃,其后进行两阶段轧制,一阶段开轧温度为1122℃,轧制4道次,中间坯厚42mm,二阶段开轧温度控制在917℃,终轧温度控制在806℃,轧制5道次,板厚20mm;
将上述轧制后的板进行控制冷却,轧后采用冷却速度为15℃/s,终冷温度为570℃,之后空冷,最终得到低屈强比高强度钢板,其厚度为20mm,金相组织为贝氏体和铁素体(如图3所示),力学性能为:屈服强度527MPa、抗拉强度746MPa、屈强比71%、延伸率18.8%、-40℃冲击功Akv153J。
实施例4本实施例的低屈强比高强度厚板采用了如下成分设计:C 0.06%、Si 0.27%、Mn 1.67%、Al 0.039%、Nb 0.059%、Ti 0.016%、Ni 0.36%、Cu 0.33%、Cr 0.23%,余量为铁及不可避免的杂质。
该低屈强比高强度厚板的生产工艺为:
按上述成分设计配制冶炼原料,经冶炼、浇铸,形成厚80mm的铸坯;
将铸坯加热至1200℃,其后进行两阶段轧制,一阶段开轧温度为1065℃,轧制4道次,中间坯厚42mm,二阶段开轧温度控制在926℃,终轧温度控制在758℃,轧制5道次,板厚20mm;
将上述轧制后的板进行控制冷却,轧后采用冷却速度为15℃/s,终冷温度为532℃,之后空冷,最终得到低屈强比高强度钢板,其厚度为20mm,金相组织为贝氏体和铁素体(如图4所示),力学性能为:屈服强度533MPa、抗拉强度765MPa、屈强比70%、延伸率19.2%、-40℃冲击功Akv233J。
以上实施例仅用于说明本发明的内容,除此之外,本发明还有其他实施方式。但是,凡采用等同替换或等效变形方式形成的技术方案均落在本发明的保护范围内。

Claims (8)

1.一种低屈强比高强度厚板,其特征在于,该厚板包含的成分及其重量百分比分别为:C 0.05%~0.10%、Si 0.20%~0.30%、Mn 1.60%~1.80%、Nb 0.05%~0.07%、Ni 0.30%~0.40%、Cu 0.30%~0.40%、Cr 0.15%~0.30%、Mo 0.20%~0.40%、Ti≤0.02%、Al≤0.045%以及余量的铁和杂质。
2.根据权利要求1所述的低屈强比高强度厚板,其特征在于,该厚板抗拉强度为740~790MPa,屈服强度为520~560MPa,延伸率>18%,屈强比<0.75。
3.根据权利要求1所述的低屈强比高强度厚板,其特征在于,该厚板厚度在16~50mm,主要由铁素体和贝氏体组织构成。
4.一种如权利要求1所述低屈强比高强度厚板的制备工艺,其特征在于:该工艺为:
首先,制备具有与所述厚板具有相同组分的铸坯;其后,将铸坯加热;而后,采用两阶段控轧工艺对铸坯进行轧制,其中,开轧温度1050℃~1150℃,二开轧温度为920℃±20℃,道次间空冷,终轧温度为780℃±30℃,累积压下率大于70%;轧制完成后,以10℃/s以上的冷却速度将轧制形成的钢板迅速冷却,制得成品低屈强比高强度厚板。
5.根据权利要求4所述的一种如权利要求1所述低屈强比高强度厚板的制备工艺,其特征在于:该工艺中,铸坯在轧前的加热温度为1200℃。
6.根据权利要求4所述的一种如权利要求1所述低屈强比高强度厚板的制备工艺,其特征在于:该工艺中,轧制形成的钢板是以10~15℃/s的冷却速度迅速冷至550℃±20℃,之后空冷。
7.根据权利要求4所述的一种如权利要求1所述低屈强比高强度厚板的制备工艺,其特征在于:所述成品低屈强比高强度厚板厚度在16~50mm,组织为铁素体和贝氏体,屈强比低于0.75。
8.根据权利要求4或7所述的一种如权利要求1所述低屈强比高强度厚板的制备工艺,其特征在于:所述成品低屈强比高强度厚板的屈服强度在520~560MPa,抗拉强度在740~790MPa,屈强比在0.75以下,延伸率大于18%。
CN 201010127855 2010-03-19 2010-03-19 低屈强比高强度厚板及其制备工艺 Active CN101775561B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010127855 CN101775561B (zh) 2010-03-19 2010-03-19 低屈强比高强度厚板及其制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010127855 CN101775561B (zh) 2010-03-19 2010-03-19 低屈强比高强度厚板及其制备工艺

Publications (2)

Publication Number Publication Date
CN101775561A true CN101775561A (zh) 2010-07-14
CN101775561B CN101775561B (zh) 2012-07-11

Family

ID=42512146

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010127855 Active CN101775561B (zh) 2010-03-19 2010-03-19 低屈强比高强度厚板及其制备工艺

Country Status (1)

Country Link
CN (1) CN101775561B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985725A (zh) * 2010-11-27 2011-03-16 东北大学 一种780MPa级低屈强比建筑用钢板及其制造方法
CN102162072A (zh) * 2011-03-16 2011-08-24 江苏省沙钢钢铁研究院有限公司 超高强度x100管线钢及其生产方法
CN103627869A (zh) * 2013-12-06 2014-03-12 攀钢集团西昌钢钒有限公司 一种低屈强比管线钢的轧后控冷工艺及制备方法
CN103882335A (zh) * 2012-12-21 2014-06-25 鞍钢股份有限公司 一种屈服强度800MPa级热轧高强度钢及其生产方法
CN107130191A (zh) * 2017-03-29 2017-09-05 江苏省沙钢钢铁研究院有限公司 一种低屈强比空冷铁素体贝氏体双相钢板及其生产方法
CN108118244A (zh) * 2017-12-19 2018-06-05 钢铁研究总院 一种高强耐候桥梁钢及其制备方法
CN110863139A (zh) * 2019-10-31 2020-03-06 鞍钢股份有限公司 耐超低温冲击的420MPa级耐候桥梁钢及生产方法
CN112048675A (zh) * 2020-07-30 2020-12-08 江阴兴澄特种钢铁有限公司 一种低温环境下使用的低屈强比粒状贝氏体高强钢板及其制造方法
CN112322995A (zh) * 2020-11-11 2021-02-05 江苏省沙钢钢铁研究院有限公司 低屈强比高韧性tmcp型桥梁钢板及其生产方法
CN113549828A (zh) * 2021-07-13 2021-10-26 鞍钢股份有限公司 一种低屈强比超高强海工钢及其制造方法
CN115181911A (zh) * 2022-08-04 2022-10-14 江苏省沙钢钢铁研究院有限公司 特厚Q500qE桥梁钢板及其生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248240A (ja) * 2004-03-03 2005-09-15 Nippon Steel Corp 焼付け硬化性を有する高バーリング熱延鋼板およびその製造方法
CN1989264A (zh) * 2004-07-21 2007-06-27 新日本制铁株式会社 高温强度优异的焊接结构用490MPa级高强度钢及其制造方法
JP2009132988A (ja) * 2007-04-19 2009-06-18 Nippon Steel Corp 低降伏比高ヤング率鋼板、溶融亜鉛メッキ鋼板、合金化溶融亜鉛メッキ鋼板、及び、鋼管、並びに、それらの製造方法
CN101619423A (zh) * 2008-06-30 2010-01-06 鞍钢股份有限公司 一种高强韧低屈强比易焊接结构钢板及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248240A (ja) * 2004-03-03 2005-09-15 Nippon Steel Corp 焼付け硬化性を有する高バーリング熱延鋼板およびその製造方法
CN1989264A (zh) * 2004-07-21 2007-06-27 新日本制铁株式会社 高温强度优异的焊接结构用490MPa级高强度钢及其制造方法
JP2009132988A (ja) * 2007-04-19 2009-06-18 Nippon Steel Corp 低降伏比高ヤング率鋼板、溶融亜鉛メッキ鋼板、合金化溶融亜鉛メッキ鋼板、及び、鋼管、並びに、それらの製造方法
CN101619423A (zh) * 2008-06-30 2010-01-06 鞍钢股份有限公司 一种高强韧低屈强比易焊接结构钢板及其制造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985725A (zh) * 2010-11-27 2011-03-16 东北大学 一种780MPa级低屈强比建筑用钢板及其制造方法
CN102162072A (zh) * 2011-03-16 2011-08-24 江苏省沙钢钢铁研究院有限公司 超高强度x100管线钢及其生产方法
CN103882335A (zh) * 2012-12-21 2014-06-25 鞍钢股份有限公司 一种屈服强度800MPa级热轧高强度钢及其生产方法
CN103627869A (zh) * 2013-12-06 2014-03-12 攀钢集团西昌钢钒有限公司 一种低屈强比管线钢的轧后控冷工艺及制备方法
CN103627869B (zh) * 2013-12-06 2016-03-02 攀钢集团西昌钢钒有限公司 一种低屈强比管线钢的轧后控冷工艺及制备方法
CN107130191B (zh) * 2017-03-29 2019-05-31 江苏省沙钢钢铁研究院有限公司 一种低屈强比空冷铁素体贝氏体双相钢板及其生产方法
CN107130191A (zh) * 2017-03-29 2017-09-05 江苏省沙钢钢铁研究院有限公司 一种低屈强比空冷铁素体贝氏体双相钢板及其生产方法
CN108118244A (zh) * 2017-12-19 2018-06-05 钢铁研究总院 一种高强耐候桥梁钢及其制备方法
CN110863139A (zh) * 2019-10-31 2020-03-06 鞍钢股份有限公司 耐超低温冲击的420MPa级耐候桥梁钢及生产方法
CN112048675A (zh) * 2020-07-30 2020-12-08 江阴兴澄特种钢铁有限公司 一种低温环境下使用的低屈强比粒状贝氏体高强钢板及其制造方法
WO2022022047A1 (zh) * 2020-07-30 2022-02-03 江阴兴澄特种钢铁有限公司 一种低温环境下使用的低屈强比粒状贝氏体高强钢板及其制造方法
CN112322995A (zh) * 2020-11-11 2021-02-05 江苏省沙钢钢铁研究院有限公司 低屈强比高韧性tmcp型桥梁钢板及其生产方法
CN113549828A (zh) * 2021-07-13 2021-10-26 鞍钢股份有限公司 一种低屈强比超高强海工钢及其制造方法
CN115181911A (zh) * 2022-08-04 2022-10-14 江苏省沙钢钢铁研究院有限公司 特厚Q500qE桥梁钢板及其生产方法

Also Published As

Publication number Publication date
CN101775561B (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
CN101775561B (zh) 低屈强比高强度厚板及其制备工艺
CN101613828B (zh) 屈服强度460MPa级低屈强比建筑用特厚钢板及制造方法
CN111172465B (zh) 一种低碳当量大厚度q390gj建筑结构用钢板及其制造方法
CN101497972B (zh) 一种高强度低屈强比焊接结构钢及其生产方法
CN103276312B (zh) 一种80-120mm特厚高强度钢板及其利用连铸坯生产的方法
CN103422025B (zh) 屈服强度≥690MPa的低屈强比结构用钢及其生产方法
US9663840B2 (en) 500 MPA grade longitudinally-welded steel pipe with low yield ratio and manufacturing method therefor
CN102011068B (zh) 一种800MPa级低屈强比结构钢板及其生产方法
CN105063509B (zh) 屈服强度500MPa级桥梁用结构钢及其生产方法
CN103422021B (zh) 一种屈服强度≥550MPa的低屈强比结构用钢及其生产方法
CN105506494A (zh) 一种屈服强度800MPa级高韧性热轧高强钢及其制造方法
KR20140017001A (ko) 낮은 항복 인장 비 및 고인성을 갖는 강판 및 이의 제조 방법
CN102699031B (zh) 一种900MPa级超高韧性低合金钢及其制造方法
CN102877007A (zh) 厚度大于等于80mm低裂纹敏感性压力容器用钢板及制备方法
CN108914007A (zh) 一种低碳低合金的低屈强比高性能桥梁用钢板及其制造方法
CN102839330B (zh) 800MPa级高强度大线能量焊接用厚板
CN105018856B (zh) 纵横向力学性能差异小的桥梁用结构钢板及其制造方法
CN102400062B (zh) 低屈强比超高强度x130管线钢
CN101235468A (zh) 一种屈服强度大于400MPa级的耐大气腐蚀钢
CN103276315A (zh) 一种900MPa级超高强高韧性管线钢板及其制造方法
CN103614630A (zh) 一种高强桥梁用钢及其制备方法
CN103305767B (zh) 一种屈服强度≥750MPa工程机械用钢及其生产方法
CN102605294B (zh) 屈服强度800MPa级易焊接高强韧钢板
CN114480949B (zh) 一种690MPa级低屈强比耐候焊接结构钢、钢板及其制造方法
CN105420632A (zh) 一种q690cf热轧钢板及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: High strength thick plate with low yield ratio and its preparation process

Effective date of registration: 20220721

Granted publication date: 20120711

Pledgee: China Construction Bank Zhangjiagang branch

Pledgor: INSTITUTE OF RESEARCH OF IRON & STEEL, JIANGSU PROVINCE/SHA-STEEL, Co.,Ltd.

Registration number: Y2022320010411

PE01 Entry into force of the registration of the contract for pledge of patent right