CN101706558B - 一种直流电源及蓄电池在线监测*** - Google Patents

一种直流电源及蓄电池在线监测*** Download PDF

Info

Publication number
CN101706558B
CN101706558B CN 200910108924 CN200910108924A CN101706558B CN 101706558 B CN101706558 B CN 101706558B CN 200910108924 CN200910108924 CN 200910108924 CN 200910108924 A CN200910108924 A CN 200910108924A CN 101706558 B CN101706558 B CN 101706558B
Authority
CN
China
Prior art keywords
accumulator
signal
voltage
current
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 200910108924
Other languages
English (en)
Other versions
CN101706558A (zh
Inventor
王汝钢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pite Tech Inc
Original Assignee
Pite Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pite Tech Inc filed Critical Pite Tech Inc
Priority to CN 200910108924 priority Critical patent/CN101706558B/zh
Publication of CN101706558A publication Critical patent/CN101706558A/zh
Application granted granted Critical
Publication of CN101706558B publication Critical patent/CN101706558B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种直流电源及蓄电池在线监测***,所述***由在线监测仪、监测中心、用户终端、监测网络、管理网络组成;所述在线监测仪由CPU、蓄电池电压内阻测试单元、直流充电机特性测试单元、供电单元、通信单元、输入输出单元、故障报警单元、复位单元、存贮单元组成,实现对现场蓄电池和直流充电机的在线监测并将监测数据通过所述监测网络传送到所述监测中心;所述监测中心是一台大型服务器,接收所述在线监测仪传来的监测数据,并以大型数据库形式对监测数据进行存贮管理;响应所述用户终端的各种命令;接受所述用户终端的命令对安装于现场的所述在线监测仪进行各种控制。

Description

一种直流电源及蓄电池在线监测***
技术领域
本发明涉及一种直流电源及蓄电池在线监测***,属于检测技术领域。
背景技术
由蓄电池及直流充电机组成的后备电源***作为电源***的重要组成部分,起着储备电能、应付电网异常和特殊工作情况、维持***正常运转的关键作用,是需要高可靠电能保障领域的最后一道防线。该***广泛应用于电力、通信、政府机关、金融、证券、保险、广播电视、交通运输、制造、军队、教育、科研、公共设施等行业领域。后备电源***的稳定性和在放电过程中能提供给负载的实际容量对确保设备的安全运行具有十分重要的意义。但是在实际应用中,由于缺乏有效的监测手段,不能及时、准确地掌握后备电源***的状态,无法消除存在的隐患,在电力供应异常或中断时后备电源***不能正常投入工作,或工作时间很短就失效,从而造成停电事故,产生重大经济损失的事例屡见不鲜。
由于受当前技术诊断水平的制约,对后备电源***的检测大都采取人工巡检的方式,或只针对蓄电池的功能单一的在线监测方式,存在着很多缺陷:
1、人工巡检方式的缺陷:(1)安全风险大。由于现场条件复杂、空间小、电压高,并且存在易燃及腐蚀性气体,工作人员到现场检测,存在较大的风险。(2)费时费力,成本高,工作效率低下;(3)无法随时随地掌握现场设备的状况,出现安全隐患时,无法立即得知,往往酿成重大事故,造成重大经济和人员损失。(4)无法实现设备状况的趁势预测。(5)数据量大时,数据管理及各种报表、查询统计较为困难。
2、没有用***的观点来认识问题。实际上,直流***包含着多个子***,各个子***相互影响。蓄电池只是其中的一个子***。只针对蓄电池的功能单一的检测、监测方式的缺陷:蓄电池是复杂的电化学产品,为保证其正常使用和延长寿命,需要精细的管理和维护。很多蓄电池不是用坏的,而是充坏的,其根本原因,是由于充电机的特性较差,特别是稳压精度、稳流精度、纹波电压系数等指标较差,造成蓄电池早期损坏。
因此,为保证后备电源***的可靠性,需要一种直流电源及蓄电池在线监测***,对直流电源及蓄电池进行综合监测。
发明内容
本发明的目的在于:提供一种直流电源及蓄电池在线监测***,对直流电源及蓄电池进行综合监测,保证后备电源***的可靠性。
为了克服上述不足,本发明提供了改善上述不足之最新的直流电源及蓄电池在线监测***。本发明解决其技术问题所采用的方案是:一种直流电源及蓄电池在线监测***,所述***由在线监测仪、监测中心、用户终端、监测网络、管理网络组成。所述在线监测仪由CPU、蓄电池电压内阻测试单元、直流充电机特性测试单元、供电单元、通信单元、输入输出单元、故障报警单元、复位单元、存贮单元组成,实现对现场蓄电池和直流充电机的在线监测并将监测数据通过所述监测网络传送到所述监测中心。所述监测中心是一台大型服务器,运行着数据库应用管理软件,接收所述在线监测仪传来的监测数据,并以大型数据库形式对监测数据进行存贮管理;响应所述用户终端的各种命令,以网页的形式经由所述管理网络向所述用户终端传送数据;接所述受用户终端的命令对安装于现场的所述在线监测仪进行各种控制。所述用户终端是多台个人计算机,通过浏览器访问所述监测中心并发布各种访问控制命令,接收所述监测中心传来的网页数据,实现对现场的蓄电池和直流充电机的在线监测。监测网络、管理网络实现在线监测仪、监测中心、用户终端之间的相互通信。
优选的,所述蓄电池电压内阻测试单元由CPU、大功率MOS管、耦合电容、运算放大器、多路开关、可编程带通滤波器、低通滤波器、模数转换器A/D、数模转换器D/A等组成;大功率MOS管串联在蓄电池放电检测回路中,由CPU控制大功率MOS管使蓄电池放电以产生设定频率的正弦波交流激励电流信号,在蓄电池正负极柱上感应出相应的交流电压信号;CPU控制模数转换器A/D采样交流电流信号的同时,还控制多路开关及模数转换器A/D采样蓄电池正负极柱间的交流电压;交流电流信号和交流电压信号经所述耦合电容去除直流分量,由所述运算放大器将信号放大,再经所述可编程带通滤波器去除干扰信号后送入模数转换器A/D变为数字信号;CPU控制模数转换器A/D高速采样,并将所有采样数据送入所述CPU进行数字信号处理,CPU再进一步计算电流、电压信号的实部、虚部、相位、有效值等参数,最终得出蓄电池的内阻。
优选的,所述蓄电池电压内阻测试单元由CPU、大功率MOS管、耦合电容、运算放大器、多路开关、可编程带通滤波器、低通滤波器、模数转换器A/D、数模转换器D/A等组成;大功率MOS管串联在蓄电池放电检测回路中,由CPU控制大功率MOS管使蓄电池放电以产生设定频率的正弦波交流激励电流信号,在蓄电池间的连线上也感应出相应的交流电压信号;CPU控制模数转换器A/D采样交流电流信号的同时,还控制多路开关及模数转换器A/D采样蓄电池间的连线上的交流电压;交流电流信号和交流电压信号经所述耦合电容去除直流分量,由所述运算放大器将信号放大,再经所述可编程带通滤波器去除干扰信号后送入模数转换器A/D变为数字信号;CPU控制模数转换器A/D高速采样,并将所有采样数据送入所述CPU进行数字信号处理,CPU再进一步计算电流、电压信号的实部、虚部、相位、有效值等参数,最终得出蓄电池间的连线电阻。
优选的,每节蓄电池的电压信号经运算放大器放大,经低通滤波器去除干扰信号,再经过模数转换器A/D变为数字信号,之后送入CPU,测量出每节蓄电池的电压(直流分量)。
优选的,由CPU控制所述多路开关,可以顺序检测蓄电池组中每节蓄电池的内阻、蓄电池间的连线电阻、蓄电池电压;采用交流放电法测量蓄电池的内阻及蓄电池间的连线电阻,测量信号频率可以避开充电机纹波频率及其他干扰信号频率,并不受直流信号的影响,可以实现在蓄电池充放电过程中在线监测蓄电池的内阻、电压、及连线电阻;采用了可编程带通滤波器对电流信号和电压信号进行滤波,以适应不同测量频率下干扰信号的处理。
优选的,所述直流充电机特性测试单元由主CPU、从CPU、运算放大器、数模转换器D/A、高速同步模数转换器A/D、多路开关、低通滤波器等组成;所述主CPU为LPC2468芯片,完成控制、显示、通信等功能;所述从CPU为DSP芯片,接收高速同步模数转换器传送来的数字信号,进行高速数据运算和处理;所述高速同步模数转换器采用了一片THS1206高速同步模数转换器A/D,精度为12位,采样速率为6MSPS,可支持4路信号的高速同步采样。
优选的,蓄电池组电压的测量:主CPU根据蓄电池组电压测量信号的大小自动控制数模转换器D/A输入一个基准信号,同经衰减电路后的蓄电池组电压测量信号相减,再经低通滤波和放大器放大,送入高速同步模数转换器A/D变为数字信号;主CPU控制高速同步模数转换器A/D高速采样数千个值,送入从CPU(DSP)进行数学处理,取均值后作为蓄电池组电压测量值;蓄电池组充放电电流的测量:主CPU根据蓄电池组充放电电流测量信号的大小自动控制数模转换器D/A输入一个基准信号,同经霍尔电流传感器测得的蓄电池组充放电电流测量信号相减,再经低通滤波和放大器放大,送入高速同步模数转换器A/D变为数字信号;主CPU通过控制多路开关从而自动调节放大器的放大倍数;主CPU控制高速同步模数转换器A/D高速采样数千个值,送入从CPU(DSP)进行数学处理,取均值后作为蓄电池组充放电电流测量信号的测量值。
优选的,充电机稳压精度的测量:主CPU根据测量电压的大小自动控制数模转换器D/A输入一个基准信号,同经衰减电路后的电压测量信号相减,再经低通滤波和放大器放大,送入高速同步模数转换器A/D变为数字信号;主CPU控制高速同步模数转换器A/D高速采样,送入从CPU进行数字运算处理而计算出充电机的稳压精度;充电机稳流精度的测量:主CPU根据充电机电流测量信号的大小自动控制数模转换器D/A输入一个基准信号,同经衰减电路后的充电机电流测量信号相减,再经低通滤波和放大器放大,送入高速同步模数转换器A/D变为数字信号。主CPU控制高速同步模数转换器A/D高速采样,送入从CPU进行数字运算处理而计算出充电机的稳流精度。充电机纹波电压系数的测量:主CPU根据测量电压的大小自动控制数模转换器D/A输入一个基准信号,同经衰减电路后的电压测量信号相减,再经放大器放大,送入高速同步模数转换器A/D变为数字信号;主CPU通过控制多路开关从而自动调节放大器的放大倍数;主CPU控制高速同步模数转换器A/D高速采样,送入从CPU进行数字运算处理而计算出充电机的纹波电压系数;充电模块均流不平衡度的测量:霍尔电流传感器测量得的电流信号经运算放大器和模数转换器A/D变为数字信号送入主CPU;主CPU控制多路开关可以顺序检测1号至8号充电模块的输出电流,充电模块均流不平衡度的计算方法:β=[(I-IP)/IN]×100%,式中β:均流不平衡度;I:实测模块输出电流的极限值;IP:N个工作模块输出电流的平均值;IN-模块的额定电流值。
优选的,其特征在于:所述直流充电机特性测试单元设有电流触发阀值,准确地判断并记录下充电机蓄电池组从正常的浮充状态→发生停电后蓄电池放电状态→来电后自动转入恒流限压充电状态→电压达到设定值后自动转入恒压限流充电状态→电流减小到设定值时自动转入到正常的浮充状态这样一个完整的充放电循环过程,并计算出充电机在浮充工作状态、恒压限流工作状态下的稳压精度、纹波电压系数;计算出充电机在恒流限压工作状态下的稳流精度及充电模块均流不平衡度,并将这些充电机性能指标传送给主CPU。
优选的,所述通信单元包括RS232、RS485、USB、LAN接口,可组成监测网络,并可以和放电仪等其他设备进行通信,完成对蓄电池组的核对性容量测试,完整地记录蓄电池在充放电过程中蓄电池组电流、蓄电池组电压、每节蓄电池电压的变化,并生成核容报表;所述复位单元用来给在线监测仪复位;所述存贮单元为SRAM、FLASH、EEPROM,可以存贮测试数据;所述输入输出单元为LCD、按键、打印机等,实现测量数据的显示及测量指令参数的修改;监测中心通过监测网络实时接收在线监测仪传来的现场监测数据,以数据库的形式进行存贮和记录,并以此数据库为基础,定时或根据操作员命令,生成蓄电池核容报表、蓄电池及充电机月报年报、不同的组合查询统计条件下的查询统计报表等。
本发明所述的直流电源及蓄电池在线监测***,采用精密测量技术、信号分析处理技术、网络技术和数据库管理技术,对蓄电池的内阻、电压、电流、温度等参数,对充电机稳压精度、稳流精度、纹波电压系数和充电模块均流不平衡度等特性参数进行监测。和传统的蓄电池检测方式相比,具有明显的优点:
1、将蓄电池组作为直流***的一个子***,充分考虑了充电机特性对蓄电池的影响,使对蓄电池的监测和管理上了一个新的台阶,从而提高了整个***的安全性和可靠性。
2、实时监控每一节蓄电池的状态,随时发现几万只蓄电池中的落后的蓄电池并立刻发出报警,提醒维修管理人员及时处理,确保供电***的安全。
3、对***停电放电、来电充电等异常运行情况自动实时监测记录。
4、对放电仪进行控制,不用人工进行复杂的接线的拆线及频繁的检测记录工作,自动完成整个核容放电过程,并自动生成核容报表。
5、实时监测蓄电池电流、电压、内阻、温度等参数,当有异常情况发生时,***自动进行报警,提示维修管理人员及时处理,防止事故的发生,保障电力***的安全运行。
6、对每一节蓄电池都建立起了终身档案,并随时对档案进行更新,实现现代化管理、科学管理、精细化管理。
7、节省了人力、物力和财力。
附图说明
下面结合附图对本发明进一步说明:
附图1是本发明的一种直流电源及蓄电池在线监测***的***结构图;
附图2是本发明的直流电源及蓄电池在线监测***的在线监测仪的硬件框图;
附图3是本发明的直流电源及蓄电池在线监测***的在线监测仪的蓄电池电压内阻测试单元原理图。
附图4是本发明的直流电源及蓄电池在线监测***的在线监测仪的直流充电机特性测试单元原理图。
附图5是蓄电池在整个放电及充电过程中电压和电流的变化曲线图。
具体实施方式
如图1~5所示的本发明的一种直流电源及蓄电池在线监测***,所述***由在线监测仪、监测中心、用户终端、管理网络和监测网络组成。所述在线监测仪由CPU、蓄电池电压内阻测试单元、直流充电机特性测试单元、供电单元、通信单元、输入输出单元、故障报警单元、复位单元、存贮单元组成,实现对现场蓄电池和直流充电机的在线监测并将监测数据通过所述监测网络传送到所述监测中心。所述监测中心是一台大型服务器,运行着数据库应用管理软件,接收所述在线监测仪传来的监测数据,并以大型数据库形式对监测数据进行存贮管理;响应所述用户终端经由管理网络发来的各种命令,以网页的形式经由所述管理网络向所述用户终端传送数据;接受所述受用户终端的命令经由监测网络对安装于现场的所述在线监测仪进行各种控制。所述用户终端是多台个人计算机,通过浏览器访问所述监测中心并发布各种访问控制命令,接收所述监测中心传来的网页数据,实现对现场的蓄电池和直流充电机的在线监测。监测网络和管理网络实现在线监测仪、监测中心、用户终端之间的相互通信。
在线监测仪的蓄电池电压内阻测试单元的作用是测量每节蓄电池的内阻、蓄电池间的连线电阻和每节蓄电池的电压,由CPU、大功率MOS管、耦合电容、运算放大器、多路开关、可编程带通滤波器、低通滤波器、模数转换器A/D、数模转换器D/A等组成。1、每节蓄电池的内阻、蓄电池间的连线电阻的测量:大功率MOS管串联在蓄电池放电检测回路中,由CPU控制大功率MOS管使蓄电池放电以产生设定频率的正弦波交流激励电流信号,由于蓄电池内阻及蓄电池间连接线电阻的存在,激励电流信号将在蓄电池正负极柱上以及蓄电池间的连接线上感应出相应的交流电压信号。CPU控制模数转换器A/D采样交流电流信号的同时,还控制多路开关及模数转换器A/D采样蓄电池正负极柱间的交流电压和蓄电池连接线上的交流电压。交流电流信号和交流电压信号经所述耦合电容去除直流分量,由所述运算放大器将信号放大,再经所述可编程带通滤波器去除干扰信号后送入模数转换器A/D变为数字信号。CPU控制模数转换器A/D高速采样4000~8000次,并将所有采样数据送入所述CPU进行数字信号处理,用数字锁相技术进一步去除谐波干扰信号,只保留与设定频率相同的有效交流信号,以保证在现场蓄电池处于工作状态下如浮充状态、均充状态、停电放电状态等强干扰环境下测量的准确性,CPU再进一步计算电流、电压信号的实部、虚部、相位、有效值等参数,最终得出蓄电池的内阻以及蓄电池间连接线的电阻。CPU在采样交流电流信号的同时,以巡检的方式分别检测每节蓄电池正负极柱间的交流电压以及蓄电池间的连接线上的交流电压,经过计算最终得出每节蓄电池的内阻以及蓄电池间每根连接线的电阻。蓄电池内组及连接线电阻最后送入在线监测仪主机的CPU并进行存贮显示,并经监测网络送入监测中心再进一步送往用户终端。2、每节蓄电池直流电压的测量:每节蓄电池电压信号经运算放大器和低通滤波器处理后送入模数转换器A/D变为数字信号,CPU控制模数转换器A/D高速采样2000~4000次,并将所有采样数据送入所述CPU进行数字信号处理,取其平均值作为蓄电池直流电压。CPU控制多路开关,以巡检的方式分别检测每节蓄电池正负极柱间的直流电压,最终得出每节蓄电池的直流电压。蓄电池的直流电压最后送入在线监测仪主机的CPU并进行存贮显示,并经监测网络送入监测中心再进一步送往用户终端。
在线监测仪的直流充电机特性测试单元的作用是测量蓄电池组电压、充放电电流、环境温度以及直流充电机特性参数如稳压精度、稳流精度、纹波电压系数、充电模块均流不平衡度等数据,由主CPU(LPC2468)、从CPU(DSP)、运算放大器、数模转换器D/A、高速同步模数转换器A/D、多路开关、低通滤波器等组成。1、蓄电池组电压的测量:主CPU根据蓄电池组电压测量信号的大小自动控制数模转换器D/A输入一个基准信号,同经衰减电路后的蓄电池组电压测量信号相减,再经低通滤波和放大器放大,送入高速同步模数转换器A/D变为数字信号。由于蓄电池组电压测量信号和电压基准信号相减,后级的运算放大器的放大倍数可以很高,从而提高了蓄电池组电压测量信号的测量精度。主CPU控制高速同步模数转换器A/D高速采样数千个值,送入从CPU(DSP)进行数学处理,取均值后作为蓄电池组电压测量值。蓄电池组电压测量值再送入主CPU,最后送入在线监测仪主机的CPU并进行存贮显示,并经监测网络送入监测中心再进一步送往用户终端。2、蓄电池组充放电电流的测量:主CPU根据蓄电池组充放电电流测量信号的大小自动控制数模转换器D/A输入一个基准信号,同经霍尔电流传感器测得的蓄电池组充放电电流测量信号相减,再经低通滤波和放大器放大,送入高速同步模数转换器A/D变为数字信号。由于蓄电池组充放电电流测量信号和电流基准信号相减,后级的运算放大器的放大倍数可以很高,从而提高了蓄电池组充放电电流测量信号的测量精度。主CPU通过控制多路开关从而自动调节放大器的放大倍数。主CPU控制高速同步模数转换器A/D高速采样数千个值,送入从CPU(DSP)进行数学处理,取均值后作为蓄电池组充放电电流测量信号的测量值。蓄电池组充放电电流测量信号测量值再送入主CPU,最后送入在线监测仪主机的CPU并进行存贮显示,并经监测网络送入监测中心再进一步送往用户终端。3、温度的测量:温度传感器测量得的温度信号经运算放大器和模数转换器A/D变为数字信号送入主CPU,最后送入在线监测仪主机的CPU并进行存贮显示,并经监测网络送入监测中心再进一步送往用户终端。4、充电机稳压精度的测量:主CPU根据测量电压的大小自动控制数模转换器D/A输入一个基准信号,同经衰减电路后的电压测量信号相减,再经低通滤波和放大器放大,送入高速同步模数转换器A/D变为数字信号。由于电压测量值和电压基准值相减,后级的运算放大器的放大倍数可以很高,从而提高了电压信号的测量精度。主CPU控制高速同步模数转换器A/D高速采样数千个值,送入从CPU进行数字运算处理而计算出充电机的稳压精度。稳压精度计算方法:δu=(UM-UZ)/UZ×100%,其中δu:稳压精度;UM:电压波动极限值;UZ:电压整定值。充电机的稳压精度再送入主CPU,最后送入在线监测仪主机的CPU并进行存贮显示,并经监测网络送入监测中心再进一步送往用户终端。5、充电机稳流精度的测量:主CPU根据充电机电流测量信号的大小自动控制数模转换器D/A输入一个基准信号,同经衰减电路后的充电机电流测量信号相减,再经低通滤波和放大器放大,送入高速同步模数转换器A/D变为数字信号。由于充电机电流测量信号和电流基准值相减,后级的运算放大器的放大倍数可以很高,从而提高了充电机电流信号的测量精度。主CPU通过控制多路开关从而自动调节放大器的放大倍数。主CPU控制高速同步模数转换器A/D高速采样数千个值,送入从CPU进行数字运算处理而计算出充电机的稳流精度。稳流精度计算方法:δi=(IM-IZ)/IZ×100%,其中δi:稳流精度;IM:电流波动极限值;IZ:电流整定值。充电机的稳流精度再送入主CPU,最后送入在线监测仪主机的CPU并进行存贮显示,并经监测网络送入监测中心再进一步送往用户终端。6、充电机纹波电压系数的测量:主CPU根据测量电压的大小自动控制数模转换器D/A输入一个基准信号,同经衰减电路后的电压测量信号相减,再经放大器放大,送入高速同步模数转换器A/D变为数字信号。由于电压测量值和电压基准值相减,后级的运算放大器的放大倍数可以很高,从而提高了电压信号的测量精度。主CPU通过控制多路开关从而自动调节放大器的放大倍数。主CPU控制高速同步模数转换器A/D高速采样数千个值,送入从CPU进行数字运算处理而计算出充电机的纹波电压系数。纹波电压系数计算方法:δpp=Upp/Udc/2×100%,其中δpp:纹波电压系数;Upp:纹波电压峰-峰值;Udc:直流电压平均值。充电机的纹波电压系数再送入主CPU,最后送入在线监测仪主机的CPU并进行存贮显示,并经监测网络送入监测中心再进一步送往用户终端。7、充电模块均流不平衡度的测量:霍尔电流传感器测量得的电流信号经运算放大器和模数转换器A/D变为数字信号送入主CPU。主CPU控制多路开关可以顺序检测1号至8号充电模块的输出电流,充电模块均流不平衡度的计算方法:β=[(I-IP)/IN]×100%,式中β:均流不平衡度;I:实测模块输出电流的极限值;IP:N个工作模块输出电流的平均值;IN:模块的额定电流值。主CPU计算出充电模块均流不平衡度后,送入在线监测仪主机的CPU并进行存贮显示,并经监测网络送入监测中心再进一步送往用户终端。
所述直流充电机特性测试单元设有电流触发阀值,可以准确地判断并记录下充电机蓄电池组从正常的浮充状态→发生停电后蓄电池放电状态→来电后自动转入恒流限压充电状态→电压达到设定值后自动转入恒压限流充电状态→电流减小到设定值时自动转入到正常的浮充状态这样一个完整的充放电循环过程。并计算出充电机在浮充工作状态、恒压限流工作状态下的稳压精度、纹波电压系数;计算出充电机在恒流限压工作状态下的稳流精度、充电模块均流不平衡度,并将这些充电机性能指标传送给主CPU。最后送入在线监测仪主机的CPU并进行存贮显示,并经监测网络送入监测中心再进一步送往用户终端。
所述在线监测仪的存贮单元为SRAM、FLASH、EEPROM,可以存贮监测数据。所述在线监测仪的通信单元为RS232/485、LAN及USB,可以和计算机设备进行通信,实现对蓄电池及充电机的在线监测和档案管理。所述在线监测仪的输入输出单元为LCD、按键、打印机等,实现监测数据的显示及监测参数的修改。
本发明所述的直流电源及蓄电池在线监测***,采用精密测量技术、信号分析处理技术、网络技术和数据库管理技术,对蓄电池的单体内阻、单体电压、连线电阻、蓄电池组电压、充放电电流、温度等参数,对充电机稳压精度、稳流精度、纹波电压系数、充电模块均流不平衡度等特性参数进行在线监测。和传统的蓄电池检测方式相比,具有明显的优点:
1、将蓄电池组作为直流***的一个子***,充分考虑了充电机特性对蓄电池的影响,使对蓄电池的监测和管理上了一个新的台阶,从而提高了整个***的安全性和可靠性。
2、实时监控每一节蓄电池的状态,随时发现几万只蓄电池中的落后的蓄电池并立刻发出报警,提醒维修管理人员及时处理,确保供电***的安全。
3、对***停电放电、来电充电等异常运行情况自动实时监测记录。
4、对放电仪进行控制,不用人工进行复杂的接线的拆线及频繁的检测记录工作,自动完成整个核容放电过程,并自动生成核容报表。
5、实时监测蓄电池电流、电压、内阻、温度等参数,当有异常情况发生时,***自动进行报警,提示维修管理人员及时处理,防止事故的发生,保障电力***的安全运行。
6、对每一节蓄电池都建立起了终身档案,并随时对档案进行更新,实现现代化管理、科学管理、精细化管理。
7、节省了人力、物力和财力。
直流电源及蓄电池在线监测***的应用领域极为广泛,可以应用于电力、通信、政府机关、金融、证券、保险、广播电视、交通运输、制造、军队、教育、科研、公共设施等行业领域后备电源***的在线监测及评估。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围内。

Claims (10)

1.一种直流电源及蓄电池在线监测***,所述***由在线监测仪、监测中心、用户终端、监测网络、管理网络组成;
所述在线监测仪由CPU、蓄电池电压内阻测试单元、直流充电机特性测试单元、供电单元、通信单元、输入输出单元、故障报警单元、复位单元、存贮单元组成,用于实现对现场蓄电池和直流充电机的在线监测并将监测数据通过所述监测网络传送到所述监测中心;所述蓄电池电压内阻测试单元用于测量每节蓄电池的内阻、蓄电池间的连线电阻和每节蓄电池的电压;所述直流充电机特性测试单元用于测量蓄电池组电压、充放电电流、环境温度以及直流充电机特性参数,所述直流充电机特性参数包括稳压精度、稳流精度、纹波电压系数、充电模块均流不平衡度数据;
所述监测中心是一台大型服务器,用于接收所述在线监测仪传来的监测数据,并以大型数据库形式对监测数据进行存贮管理,并响应所述用户终端的各种命令;接受所述用户终端的命令对安装于现场的所述在线监测仪进行各种控制。
2.根据权利要求1所述的直流电源及蓄电池在线监测***,其特征在于:所述蓄电池电压内阻测试单元包括CPU、大功率MOS管、耦合电容、运算放大器、多路开关、可编程带通滤波器、低通滤波器、模数转换器A/D、数模转换器D/A;其中大功率MOS管串联在蓄电池放电检测回路中,并由CPU控制大功率MOS管使蓄电池放电以产生设定频率的正弦波交流激励电流信号,在蓄电池正负极柱上感应出相应的交流电压信号;所述CPU控制模数转换器A/D采样交流电流信号的同时,还控制多路开关及模数转换器A/D采样蓄电池正负极柱间的交流电压;交流电流信号和交流电压信号经所述耦合电容去除直流分量,由所述运算放大器将信号放大,再经所述可编程带通滤波器去除干扰信号后送入模数转换器A/D变为数字信号;CPU控制模数转换器A/D高速采样,并将所有采样数据送入所述CPU进行数字信号处理,由CPU再进一步计算电流、电压信号的实部、虚部、相位、有效值参数,最终得出蓄电池的内阻。
3.根据权利要求1所述的直流电源及蓄电池在线监测***,其特征在于:所述蓄电池电压内阻测试单元包括CPU、大功率MOS管、耦合电容、运算放大器、多路开关、可编程带通滤波器、低通滤波器、模数转换器A/D、数模转换器D/A;所述大功率MOS管串联在蓄电池放电检测回路中,并由CPU控制大功率MOS管使蓄电池放电以产生设定频率的正弦波交流激励电流信号,在蓄电池间的连线上也感应出相应的交流电压信号;所述CPU控制模数转换器A/D采样交流电流信号的同时,还控制多路开关及模数转换器A/D采样蓄电池间的连线上的交流电压;交流电流信号和交流电压信号经所述耦合电容去除直流分量,由所述运算放大器将信号放大,再经所述可编程带通滤波器去除干扰信号后送入模数转换器A/D变为数字信号;CPU控制模数转换器A/D高速采样,并将所有采样数据送入所述CPU进行数字信号处理;所述CPU再进一步计算电流、电压信号的实部、虚部、相位、有效值参数,最终得出蓄电池间的连线电阻。
4.根据权利要求2或3所述的直流电源及蓄电池在线监测***,其特征在于:每节蓄电池的电压信号经运算放大器放大,经低通滤波器去除干扰信号,再经过模数转换器A/D变为数字信号,之后送入CPU,测量出每节蓄电池的电压直流分量。
5.根据权利要求2或3所述的直流电源及蓄电池在线监测***,其特征在于:所述蓄电池电压内阻测试单元:由CPU控制所述多路开关,顺序检测蓄电池组中每节蓄电池的内阻、蓄电池间的连线电阻、蓄电池电压;采用交流放电法测量蓄电池的内阻及蓄电池间的连线电阻,测量信号频率可以避开充电机纹波频率及其他干扰信号频率,并不受直流信号的影响,可以实现在蓄电池充放电过程中在线监测蓄电池的内阻、电压、及连线电阻;采用了可编程带通滤波器对电流信号和电压信号进行滤波,以适应不同测量频率下干扰信号的处理。
6.根据权利要求1所述的直流电源及蓄电池在线监测***,其特征在于:所述直流充电机特性测试单元包括主CPU、从CPU、运算放大器、数模转换器D/A、高速同步模数转换器A/D、多路开关、低通滤波器,用于测量直流充电机特性参数;所述直流充电机特性参数包括充电机稳压精度、充电机稳流精度、充电机纹波电压系数和充电模块均流不平衡度;
所述主CPU根据测量电压的大小自动控制数模转换器D/A输入一个基准信号,同经衰减电路后的电压测量信号相减,再经低通滤波和放大器放大,送入高速同步模数转换器A/D变为数字信号,主CPU控制高速同步模数转换器A/D高速采样,送入从CPU进行数字运算处理而计算出充电机的稳压精度;
所述主CPU根据充电机电流测量信号的大小自动控制数模转换器D/A输入一个基准信号,同经衰减电路后的充电机电流测量信号相减,再经低通滤波和放大器放大,送入高速同步模数转换器A/D变为数字信号,主CPU控制高速同步模数转换器A/D高速采样,送入从CPU进行数字运算处理而计算出充电机的稳流精度;
所述主CPU根据测量电压的大小自动控制数模转换器D/A输入一个基准信号,同经衰减电路后的电压测量信号相减,再经放大器放大,送入高速同步模数转换器A/D变为数字信号,主CPU通过控制多路开关从而自动调节放大器的放大倍数,主CPU控制高速同步模数转换器A/D高速采样,送入从CPU进行数字运算处理而计算出充电机的纹波电压系数;
霍尔电流传感器测量得的电流信号经运算放大器和模数转换器A/D变为数字信号送入主CPU,主CPU控制多路开关顺序检测1号至8号充电模块的输出电流,充电模块均流不平衡度的计算方法:β=[(I-IP)/IN]×100%,式中β:均流不平衡度;I:实测模块输出电流的极限值;IP:N个工作模块输出电流的平均值;IN-模块的额定电流值。
7.根据权利要求6所述的直流电源及蓄电池在线监测***,其特征在于:所述直流充电机特性测试单元设有电流触发阀值,准确地判断并记录下充电机蓄电池组从正常的浮充状态→发生停电后蓄电池放电状态→来电后自动转入恒流限压充电状态→电压达到设定值后自动转入恒压限流充电状态→电流减小到设定值时自动转入到正常的浮充状态这样一个完整的充放电循环过程,并计算出充电机在浮充工作状态、恒压限流工作状态下的稳压精度、纹波电压系数;计算出充电机在恒流限压工作状态下的稳流精度及充电模块均流不平衡度,并将这些充电机性能指标传送给主CPU。
8.根据权利要求6所述的直流电源及蓄电池在线监测***,其特征在于:所述直流充电机特性测试单元还用于测量蓄电池组电压测量值,所述主CPU根据蓄电池组电压测量信号的大小自动控制数模转换器D/A输入一个基准信号,同经衰减电路后的蓄电池组电压测量信号相减,再经低通滤波和运算放大器放大,送入高速同步模数转换器A/D变为数字信号;主CPU控制高速同步模数转换器A/D高速采样数千个值,送入从CPU进行数学处理,取均值后作为蓄电池组电压测量值。
9.根据权利要求6所述的直流电源及蓄电池在线监测***,其特征在于:所述直流充电机特性测试单元还用于测量蓄电池组充放电电流,主CPU根据蓄电池组充放电电流测量信号的大小自动控制数模转换器D/A输入一个基准信号,同经霍尔电流传感器测得的蓄电池组充放电电流测量信号相减,再经低通滤波和运算放大器放大,送入高速同步模数转换器A/D变为数字信号;主CPU通过控制多路开关从而自动调节运算放大器的放大倍数;主CPU控制高速同步模数转换器A/D高速采样数千个值,送入从CPU进行数学处理,取均值后作为蓄电池组充放电电流测量信号的测量值。
10.根据权利要求1所述的直流电源及蓄电池在线监测***,其特征在于:所述在线监测仪还包括供电单元、通信单元、输入输出单元、故障报警单元、复位单元以及存贮单元,其中所述通信单元包括RS232、RS485、USB、LAN接口,以组成监测网络,并和放电仪进行通信,完成对蓄电池组的核对性容量测试,完整地记录蓄电池在充放电过程中蓄电池组电流、蓄电池组电压、每节蓄电池电压的变化,并生成核容报表;所述复位单元用来给在线监测仪复位;所述存贮单元为SRAM、FLASH、EEPROM,用于存贮测试数据;所述输入输出单元用于实现测量数据的显示及测量指令参数的修改,其包括为LCD、按键、打印机。
CN 200910108924 2009-07-20 2009-07-20 一种直流电源及蓄电池在线监测*** Active CN101706558B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910108924 CN101706558B (zh) 2009-07-20 2009-07-20 一种直流电源及蓄电池在线监测***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910108924 CN101706558B (zh) 2009-07-20 2009-07-20 一种直流电源及蓄电池在线监测***

Publications (2)

Publication Number Publication Date
CN101706558A CN101706558A (zh) 2010-05-12
CN101706558B true CN101706558B (zh) 2013-07-03

Family

ID=42376797

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910108924 Active CN101706558B (zh) 2009-07-20 2009-07-20 一种直流电源及蓄电池在线监测***

Country Status (1)

Country Link
CN (1) CN101706558B (zh)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101950476B (zh) * 2010-10-15 2012-02-29 绵阳市维博电子有限责任公司 一种多路电压信号监控装置
CN102095953B (zh) * 2010-11-26 2015-11-25 广东电网公司中山供电局 一种蓄电池充电机性能在线检测方法
CN102479979B (zh) * 2010-11-30 2015-07-29 欣旺达电子股份有限公司 动力电池组管理方法以及***
CN102570597A (zh) * 2010-12-27 2012-07-11 华北电力科学研究院有限责任公司 直流电源远程监控***
CN102540080B (zh) * 2010-12-27 2015-05-20 联芯科技有限公司 电池电压检测方法及终端设备
CN102213748B (zh) * 2011-04-11 2013-06-19 王宜俊 电池监控装置及其监控方法
CN103033751B (zh) * 2011-09-29 2015-06-24 联想(北京)有限公司 一种电池检测方法、电池及电子设备
CN102967831B (zh) * 2012-09-17 2015-04-22 常州大学 一种铅酸蓄电池性能在线检测***及检测方法
CN102854474A (zh) * 2012-09-25 2013-01-02 深圳市泰昂能源科技股份有限公司 蓄电池实际容量在线检测方法
CN102946144B (zh) * 2012-11-25 2016-01-20 国家电网公司 基于三级网络架构的变电站直流电源信息管理***
US9343911B2 (en) * 2012-11-30 2016-05-17 Tesla Motors, Inc. Response to detection of an overcharge event in a series connected battery element
CN103425124B (zh) * 2013-08-20 2015-11-18 重庆长安汽车股份有限公司 基于电流检测的汽车电器连接性检测装置及方法
CN103592605B (zh) * 2013-10-31 2016-08-31 聚光科技(杭州)股份有限公司 一种锂亚硫酰氯电池组管理***及方法
CN104597400A (zh) * 2013-11-01 2015-05-06 董玮 智能蓄电池信息化检测管理方法及***
CN103760499B (zh) * 2014-01-26 2016-08-17 广州视源电子科技股份有限公司 一种电源板测试方法及装置
CN104198836A (zh) * 2014-08-06 2014-12-10 国家电网公司 一种新型变电站直流***充电装置输出参数检测装置
CN105116349A (zh) * 2015-09-22 2015-12-02 苏州达力客自动化科技有限公司 一种电池测试***
CN105445661A (zh) * 2015-11-21 2016-03-30 成都科瑞信科技有限责任公司 基于带通滤波及电压检测的转速自动调整型电机测试***
CN105425168A (zh) * 2016-01-08 2016-03-23 国网浙江宁波市鄞州区供电公司 一种供电***中蓄电池核容检测方法和装置
EP3285361B1 (en) 2016-02-05 2020-10-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Terminal charging system, charging method, and power adapter
CN106093780A (zh) * 2016-05-31 2016-11-09 青岛海信移动通信技术股份有限公司 一种终端剩余电量确定方法及终端
CN107589383B (zh) * 2016-07-07 2021-03-30 北京普源精电科技有限公司 一种测量设备的参数显示方法
CN106443479A (zh) * 2016-10-26 2017-02-22 深圳供电局有限公司 一种蓄电池智能监测***
CN107167746A (zh) * 2017-05-05 2017-09-15 邓亚军 一种分级四段式直流电源性能评价模型及其实现方法
CN107390131B (zh) * 2017-07-17 2019-12-24 国网黑龙江省电力有限公司电力科学研究院 变电站蓄电池综合监测***
CN107843855A (zh) * 2017-12-14 2018-03-27 株洲广锐电气科技有限公司 蓄电池内阻检测***
CN108152708A (zh) * 2017-12-20 2018-06-12 广州勤正电力科技有限公司 直流电路***中多参数测试装置
CN108387800B (zh) * 2018-03-13 2020-04-10 深圳市安特智能控制有限公司 一种蓄电池组主回路状态多维判断方法
CN109188313B (zh) * 2018-11-17 2024-03-19 邓亚军 一种阶变电压采集原理的电源检测装置
CN110687471A (zh) * 2019-08-29 2020-01-14 国网浙江省电力有限公司金华供电公司 一种直流电源老化监测***
CN110907848B (zh) * 2019-11-28 2021-11-12 国网河北省电力有限公司电力科学研究院 直流电源故障智能录波与分级告警装置
CN111175663A (zh) * 2020-02-17 2020-05-19 李树成 一种电池活化内阻的测试方法及测试仪
CN111965557A (zh) * 2020-08-21 2020-11-20 浙江华电器材检测研究所有限公司 一种后备电源可靠性的评估方法和装置
CN112234708A (zh) * 2020-09-17 2021-01-15 国网江苏省电力有限公司沭阳县供电分公司 变电站站用蓄电池智慧管理***
CN112164833B (zh) * 2020-09-28 2021-09-28 珠海市科宏电子科技有限公司 一种具有数据化模型的蓄电池在线监测管理***
CN113466729A (zh) * 2021-06-22 2021-10-01 盛德东南(福建)新能源科技有限公司 一种锂离子动力蓄电池的绝缘电阻检测方法及***
CN115420940B (zh) * 2022-11-04 2023-03-03 山东恒美电子科技有限公司 一种多用途的直流信号检测***
CN116525978A (zh) * 2023-07-03 2023-08-01 北京恩天科技发展有限公司 蓄电池在线检测感知养护***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2194516Y (zh) * 1994-07-12 1995-04-12 吕勇军 直流电源***在线监测仪
CN2426242Y (zh) * 2000-03-28 2001-04-04 张毅 变电站蓄电池状态监测及开路保护装置
CN1536829A (zh) * 2003-04-09 2004-10-13 华为技术有限公司 一种通讯网络设备蓄电池在线监测方法
CN1975444A (zh) * 2005-11-28 2007-06-06 孙斌 蓄电池内阻及劣化状态在线监测方法及***
CN201029103Y (zh) * 2007-02-12 2008-02-27 北京汇众实业总公司 一种蓄电池组在线监测维护***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2194516Y (zh) * 1994-07-12 1995-04-12 吕勇军 直流电源***在线监测仪
CN2426242Y (zh) * 2000-03-28 2001-04-04 张毅 变电站蓄电池状态监测及开路保护装置
CN1536829A (zh) * 2003-04-09 2004-10-13 华为技术有限公司 一种通讯网络设备蓄电池在线监测方法
CN1975444A (zh) * 2005-11-28 2007-06-06 孙斌 蓄电池内阻及劣化状态在线监测方法及***
CN201029103Y (zh) * 2007-02-12 2008-02-27 北京汇众实业总公司 一种蓄电池组在线监测维护***

Also Published As

Publication number Publication date
CN101706558A (zh) 2010-05-12

Similar Documents

Publication Publication Date Title
CN101706558B (zh) 一种直流电源及蓄电池在线监测***
CN101577438B (zh) 基于远程监控平台的大容量后备电源的维护方法所用设备
CN202177669U (zh) 变电站直流***设备状态监测管理***
CN104682556A (zh) 变电站直流电源的远程智能维护***及其应用
CN116632983B (zh) 一种适用于户外储能电源的充放电控制***
CN202929124U (zh) 变电站高压并联电容器智能在线监测***
CN112467831A (zh) 蓄电池组远程式在线核容管理***
CN106353618A (zh) 一种接地网的接地状态综合监测装置及监测方法
CN110908360B (zh) 一种通信电源监控***及高频开关电源充电模块自检方法
JPWO2015040725A1 (ja) 蓄電池システム
CN108169693A (zh) 一种蓄电池组在线评估检测***
CN104333107B (zh) 一种使用混合电源的直流屏电源装置
CN102946144A (zh) 基于三级网络架构的变电站直流电源信息管理***
CN107359676A (zh) 一种蓄电池在线充放电控制及容量核对***和方法
CN112418638A (zh) 站用直流电源***运维风险的预警***及预警方法
CN106443363A (zh) 一种电力网中供电能力异常的监测方法、装置及***
CN206114799U (zh) 一种接地网的接地状态综合监测装置
KR20060107473A (ko) 임피던스 측정 및 개별 자동 충·방전 기능을 가진 축전지관리장치
CN115177893A (zh) 一种主变排油充氮消防装置及其控制方法
CN204928219U (zh) 一种铅酸蓄电池***及智能***
KR20180078482A (ko) 중계기용 배터리 관리 시스템
CN204361705U (zh) 备用电源管理***
CN210142171U (zh) 蓄电池监测***
CN107390131B (zh) 变电站蓄电池综合监测***
CN102608538A (zh) 蓄电池组的容量在线测算***

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant