CN101689597B - 压电变压器 - Google Patents

压电变压器 Download PDF

Info

Publication number
CN101689597B
CN101689597B CN2008800215699A CN200880021569A CN101689597B CN 101689597 B CN101689597 B CN 101689597B CN 2008800215699 A CN2008800215699 A CN 2008800215699A CN 200880021569 A CN200880021569 A CN 200880021569A CN 101689597 B CN101689597 B CN 101689597B
Authority
CN
China
Prior art keywords
mentioned
electrode
input part
piezoelectric
piezoelectric transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008800215699A
Other languages
English (en)
Other versions
CN101689597A (zh
Inventor
吉村健一
西村道明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of CN101689597A publication Critical patent/CN101689597A/zh
Application granted granted Critical
Publication of CN101689597B publication Critical patent/CN101689597B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/40Piezoelectric or electrostrictive devices with electrical input and electrical output, e.g. functioning as transformers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

提供一种能减小输入部的电容并能实现与输入侧的驱动电路的阻抗匹配的压电变压器。该压电变压器的结构包括:两主面的形状为长方形形状的压电基板(11);和在该压电基板(11)的两主面上形成的输入侧电极(12、13、15、16)及输出侧电极(14、17);具有输出部(B1),和该输出部(B1)两侧的第一输入部(A1)及第二输入部(A2);在第一输入部(A1)及第二输入部(A2)中的压电基板(11)的两主面上分别设置一对对置的输入侧电极(12、13、15、16),并且一对输入侧电极(12、13、15、16)中的至少一个电极是在第一输入部(A1)及第二输入部(A2)中的压电基板(11)的主面的中央部处设置的部分电极。

Description

压电变压器
技术领域
本发明涉及一种压电变压器,特别地涉及用于在各种电子设备中使用的AC适配器和DC-DC转换器,以及在笔记本电脑、携带终端等中使用的液晶显示器用的冷阴极管背光源的逆变器(inverter)等中的压电变压器。 
背景技术
在现有的开关电源中,虽然作为变压器可使用以电磁感应为原理的电磁变压器,但高频下的电磁变压器,存在磁滞损失、涡电流损失及因趋肤效应(skin effect)而引起的损失增大这样的问题。并且,电磁变压器自身的小型化、薄型化导致因绕线的极细线多匝而引起的铜损耗、磁耦合的下降及漏磁通(leakage flux)增加,无论哪一种都成为大大降低电源电路的效率的原因。此外还存在因绕线而产生电磁噪声等的问题。 
因此,近年来正在研发压电变压器。作为这种压电变压器,已知一种压电变压器,其在两主面是长方形状的压电基板的长度方向上顺序形成输入部、输出部、输入部,在上述输入部中的压电基板内在厚度方向上空出规定间隔设置一对输入部用内部电极层,同时在上述输出部中的压电基板内在厚度方向上空出规定间隔设置3以上的输出部用内部电极层(参照专利文献1、2)。 
专利文献1:JP特开2001-185775号公报专利文献2:JP特开2002-289937号公报 
发明内容
但是,在专利文献1、2中所述的压电变压器中,在输入部中的压电基板的两主面设置由与输入部中的压电基板的主面几乎相同面积的整面电极构成的一对输入侧电极,输入部中的电容增大,由此存在难以获得与连接到压电变压器的输入侧的驱动电路的阻抗的匹配这样的问题。
本发明的目的在于,提供一种能减小输入部的电容,并能获取与输入侧的驱动电路的阻抗匹配的压电变压器。
本发明的压电变压器结构包括:两主面的形状是长方形形状的压电基板,和形成在该压电基板的两主面上的输入侧电极及输出侧电极;具有在上述压电基板的两主面上形成上述输出侧电极的输出部、和该输出部的两侧的第一输入部及第二输入部。在上述压电基板的上述第一输入部以及上述第二输入部中的两主面上分别形成上述输入侧电极而构成上述第一输入部及上述第二输入部。在上述压电基板的两主面上相互对置地形成上述第一输入部及上述第二输入部的各上述输入侧电极,且相互对置地形成的上述输入侧电极中的至少一个是相对上述第一输入部及上述第二输入部中的上述压电基板的主面具有60%以下的面积的部分电极。
特别地,在本发明的压电变压器中,优选上述对置形成的上述输入侧电极中的至少一个电极是在上述第一输入部及上述第二输入部中的上述压电基板的主面的中央部处配置的部分电极。
在这种压电变压器中,一对对置的输入侧电极中的至少一个电极是在产生大的形变的、输入部中的压电基板的主面的中央部处设置的部分电极。由此,不使效率大大下降,就能减小在输入部的输入侧电极间产生的电容。此外,在输入部的输入侧电极间产生的电容能由设置在输入部中的压电基板的主面的中央部的部分电极的面积来控制,能与具有各种阻抗的驱动电路相匹配。
即,第一、第二输入部中的压电基板的主面的中央部是产生大的形变的部分,由于在此部分设置由部分电极构成的输入侧电极,所以不使效率大大降低就能减小电容,此外,通过在产生大的形变的部分的范围内调整输入侧电极的面积,不使效率大大降低就能调整输入侧电极间的电容,能与具有各种阻抗的驱动电路相匹配。 
可以在上述输出部中的上述压电基板内,在厚度方向上空出规定间隔形成多个输出侧电极。在这种压电变压器中,能控制升压比。 
对置形成的上述输入侧电极任何一个电极都可以是上述部分电极。在这种压电变压器中,由于在压电基板的两主面上形成部分电极,所以能形成同一形状的部分电极,能抑制因压电基板的两主面的电极不对称而产生的弯曲振动这样的无用振动的产生。由此,能得到很难受无用振动导致的寄生(spurious)的影响的压电变压器。再有,基于所谓容易制造的观点,输入侧电极中的一个电极也可以是整面电极。 
在本发明的压电变压器中,可以在上述长方形状的压电基板的周边形成切口部。在这种压电变压器中,能使在作为压电变压器使用的频率附近产生的无用振动模式的频率向低频侧或高频侧移动,能扩宽可作为变压器使用的频带宽度,同时能抑制无用振动引起的效率的下降。 
相互对置地形成的上述输入侧电极中的至少一个电极可以具备在上述第一输入部及上述第二输入部中的上述压电基板的主面中央部所配置的中央电极、和在上述主面的端部所配置的端部电极。在这种压电变压器中,虽然电容增加,但由于设置有在振动形变大的压电基板的端部处配置的端部电极,所以与仅在中央部配置电极的情况相比,能进一步提高效率。 
上述中央电极和上述端部电极可以由电极材料连接。在这种压电变压器中,中央电极和端部电极电连接,不需要分别向中央电极和端部电极输入功率。 
可以将上述第一输入部及上述第二输入部中的上述压电基板的主面的宽度方向两端部、和上述输出部的输出侧电极的宽度方向中央部作为用于在其它构件上进行安装的保持部。在这种压电变压器中,由于能抑制妨碍作为压电变压器使用的振动,所以能减小效率的劣化,将压电变压器支持固定在盒子等基板上。 
也可以在上述第一输入部及上述第二输入部中的上述保持部形成电极,上述输入侧电极一直被延长到上述保持部。在这种压电变压器中,能经由保持部输入功率。 
此外,本发明的压电变压器装置具有多个上述的压电变压器,并且分别串联连接上述多个压电变压器的上述第一输入部及上述第二输入部中的上述输入侧电极,并列地引出上述多个压电变压器的上述输出部中的上述输出侧电极。在这种压电变压器装置中,不使效率大大降低,串联连接输入侧电极就能降低输入侧电极间的电容,能与具有各种阻抗的驱动电路相匹配。此外,由于获得来自多个压电变压器的输出,所以能得到一个压电变压器中得不到的功率。 
发明效果
在本发明的压电变压器中,由于上下输入侧电极中的至少一个电极是在产生大的形变的部分处设置的部分电极,例如在输入部中的压电基板的主面的中央部处设置的部分电极,所以不会使效率大大降低,就能减小在输入部的输入侧电极间产生的电容,同时通过在不使效率大大降低的部分的范围内变更输入侧电极的面积,就能控制在输入部的输入侧电极间产生的电容。 
本发明的压电变压器装置具有多个压电变压器,并且分别串联连接上述多个压电变压器的上述第一输入部及上述第二输入部中的上述输入侧电极,并列地引出上述多个压电变压器的上述输出部中的上述输出侧电 极,因此不使效率大大降低,串联连接输入侧电极就能降低输入侧电极间的电容,能与具有各种阻抗的驱动电路相匹配。此外,由于获得来自多个压电变压器的输出,所以能得到一个压电变压器中得不到的功率。 
附图说明
图1是表示本发明的单板型压电变压器的一个实施方式的斜视图。图2是表示本发明的压电变压器中的电极形状的平面图。图3是表示本发明的压电变压器的振动模式的图。图4是示意性地表示本发明的叠层型压电变压器的一个实施方式的斜视图。图5是用于说明图4的叠层型压电变压器的制造方法的说明图。图6是表示DC-DC转换器的一例的说明图。图7是表示本发明的另一个实施方式的斜视图。图8是表示用于计算机模拟中的压电变压器的有限元网格模型(finite element mesh model)(1/4对称模型)的图。图9(S0)~图9(S8)是表示通过计算机模拟进行解析的解析模型的输入电极形状的图。图10(A)是计算机模拟的解析结果图。图10(B)是计算机模拟的解析结果图。图11是表示输入部关于整面电极的压电变压器、通过计算机模拟求出的形变SXX分布的图。图12是表示输入部关于整面电极的压电变压器、通过计算机模拟求出的位移分布(displacement distribution)的图。图13a~图13f是在形成部分电极的压电基板的周边处形成切口部的解析模型图和表示其解析结果的图表。图14是连接了本发明相关的2个压电变压器的压电变压器装置的电路图。图15是表示如图14所示连接了多个压电变压器的压电变压器装置的解析结果的图表。 图16是表示具备中央电极及端部电极的本发明相关的压电变压器的一例的平面图。图17是表示具备中央电极、端部电极及连接它们的电极材料的本发明相关的压电变压器的一例的平面图。图18是表示设置了保持部的本发明相关的压电变压器的一例的平面图。图19是表示设置了形成有从输入侧电极引伸出的电极的保持部的本发明相关的压电变压器的另一例的平面图。 
优选实施方式
如图1所示,根据本发明的单板型的压电变压器,在压电基板11的长度方向x上顺序具有第一输入部A1、输出部B1、第二输入部C1。压电基板11的主面为长L、宽W的长方形状。 
在这些第一输入部A1、输出部B1、第二输入部C1中的压电基板11的上侧的主面上分别形成输入侧电极12、输出侧电极14、输入侧电极13,在压电基板11的长度方向上空出规定间隔形成这些电极12、13、14。 
此外,在压电基板11的下侧的主面上,在压电基板11的长度方向上空出规定间隔分别形成输入侧电极15、输出侧电极17、输入侧电极16。输出部B1由输出侧电极14、17和输出侧电极14、17间的压电基板11的部分构成,输入部A1、C1为输出部B1的两侧的部分。 
即,在压电基板11的左侧两主面上形成对置的一对输入侧电极12、15构成第一输入部A1,在压电基板11的中央部两主面上形成对置的一对输出侧电极14、17构成输出部B1,在压电基板11的右侧两主面上形成对置的一对输入侧电极13、16构成第二输入部C1,设电极14、17一边为与压电基板11的主面的宽度W相同的长度,另一边为在主面的长度方向上L2的长度,设输出侧电极14、17为矩形状的整面电极。 
而且,在本发明中,设输入侧电极12、15为设置在第一输入部A1中的压电基板的两主面的中央部的部分电极,设输入侧电极13、16为设置在第二输入部C1中的压电基板的两主面的中央部的部分电极。输入侧电极12、15比第一输入部A1中的压电基板11的主面的面积更小,输入侧电极13、16具有比第二输入部C1中的压电基板的主面的面积更小的面积。即,在现有的输入侧、输出侧电极无论哪一个都是整面电极的情况下,为了阻止输入侧和输出侧电极的导通,形成固定的间隙,设输入部为除了输出部和间隙部以外的部分,在此部分中的压电基板的主面整面上形成输入侧电极。相对于此,在本发明中,设输出部B1的两侧的部分为输入部A1、C1,在这些输入部A1、C1中的主面的一部分上形成输入侧电极12、15、13、16。优选输入侧电极12、15、13、16相对于输入部A1、C1中的压电基板的主面(同一面积)具有60%以下的面积。为了获得与压电变压器的驱动电路的匹配,决定压电变压器的输入部的静电电容,基于此静电电容决定输入侧电极12、15、13、16相对于输入部A1、C1中的压电基板的主面的面积比。 
在本发明的压电变压器中,虽然是在输入部A1、C1中的压电基板11的主面的中央部产生大的形变这样地振动,但如图2所示,在产生此大的形变的部分设置圆形状的输入侧电极12、15、13、16。输入侧电极12、15为同一形状同一尺寸,从压电基板11的上方看时是重叠的。输入侧电极13、16也是同样的。 
在压电基板11中,虽然存在产生正的形变(拉伸方向的形变)的部分、和产生负的形变(压缩方向的形变)的部分,但输入侧电极12、15、13、16的尺寸基于提高效率这样的观点,希望仅在产生相同符号的大的形变的部分,例如产生正的形变(拉伸方向的形变)的部分形成输入侧电极12、15、13、16。因此,关于形状,虽然为圆形状,但也可以是椭圆形状,并且还可以是四角形状。 
即,通常为了获得与驱动电路的阻抗的匹配而需要调整由压电变压器的输入侧的静电电容决定的阻抗。但是,存在着各种驱动电路,为了获得与这些驱动电路的阻抗的匹配,优选能控制压电变压器的输入侧的静电电容。在为了获得阻抗的匹配,希望增大压电变压器的输入侧的电容的情况下,通过形成在厚度方向层叠输入侧的压电陶瓷的结构就能增大电容。 
另一方面,过去,如专利文献1、2所述,基于提高效率的观点,只有所谓的在输入部中的压电基板的两主面设置由整面电极构成的一对输入侧电极这样的想法,由于输入部中的电容大、且是固定的,所以难以获得与连接到压电变压器的输入侧的驱动电路的阻抗的匹配。相对于此,在本发明中,如1/4对称模型图即图11所示,输入部中的压电基板的主面的中央部C是产生大的形变的部分。因此,在此部分中设置由部分电极构成的输入侧电极12、15、13、16。由此,不使效率大大下降就能减小电容,此外,通过在产生大的形变的部分的范围内调整输入侧电极12、15、13、16的面积,不使效率大大降低就能与具有各种阻抗的驱动电路匹配。再有,在图11中,例如“E-04”代表×10-4。图12也同样。【0029】在本发明的压电变压器中,压电基板11的主面的长度L和宽度W之比(L/W)是1.1~1.4,且压电基板11的主面的长度L和驱动频率F的乘积(F×L)是4700~6000kHz·mm。通过使压电基板11的主面的长度L和宽度W之比(L/W)为1.1~1.4,就能具有高的能量转换效率。 
在本发明中,通过使压电基板11的主面的长度L和宽度W之比(L/W)为1.1~1.4,并且使压电基板11的主面的长度L和驱动频率F的乘积(F×L)为4700~6000kHz·mm,就如图3所示,虽然在压电基板11的长度方向x上振动的基波为主体,但在压电基板11上还产生加上宽度方向振动的复合模式的振动,能在形成在中央部的输出部B1中产生最大的振动,与常使用宽度方向上激发的振动的情形相比,在输出部感应的电荷量变 多,能获得高输出功率。 
基于获得高输出功率这样的观点,设压电基板11的主面的长度L和驱动频率F的乘积(F×L)为4700~6000kHz·mm。因此,为了获得高输出功率和高效率,设L/W为1.1~1.4,F×L为4700~6000kHz·mm。 
因此,在本发明中,通过利用上述结构,将驱动频率F和主面的长度L的乘积(F×L)设定在规定范围内,就具有高的能量转换效率,并且能在高输入电压中使用,可实现高输出功率、且高效率的压电变压器。 
本发明者们,利用使用有限元法的计算机模拟进行本发明的压电变压器的振动解析。作为解析条件,假设锆钛酸铅(以下PZT)类作为压电材料,在图1的压电变压器形状中,设输出侧电极为整面电极,输入侧电极为部分电极,设压电基板11的长度L=32.80mm,宽度W=25.5mm,厚度t=3.0mm。付与第一及第二输入部相同振幅、相同相位的电压,求压电基板的位移量的分布。 
图3中示出驱动频率F为159kHz(F×L=5215.2kHz·mm)的压电变压器的位移分布。在本发明的压电变压器中,如表示位移分布的图3所表明的,可知在输出部获得大的位移、得到高的输出功率和高的效率。 
即,由于压电变压器的能量传输通过压电基板11的振动来进行,所以在相同形状的压电基板11中,由于在相同振幅的输入电压中位移量越大,在输出部B1感应的电荷量就越多,所以可知在压电基板11的中央部的位移量大的图3的情况下,得到大输出功率、得到高的效率。 
例如,在由陶瓷构成的压电基板11上形成电极12~17后,在120℃的硅油中,在压电基板11的上面的3个电极12、13、14和压电基板11的下面的3个电极15、16、17之间施加直流电压,通过约30分钟的极化处理得到本发明的压电变压器。 
电极12~17例如,也可以在丝网印刷由Ag粉末和玻璃组成的膏后,经焙烧来形成。此外,还可以使用蒸镀、溅射等方法形成。此外,也可以使用Ag以外的导电性材料。 
另一方面,当设驱动频率为F、输出侧静电电容为Cd2时,则成为匹配阻抗的负载电阻RL′由RL′=1/(2πFCd2)决定。在本发明的压电变压器中,由于可容易地加大输出侧的静电电容,所以在低阻抗中获取阻抗匹配,成为高输出功率及高效率。 
压电变压器的电压转换,使用通过在输入侧电极间施加交流电压而产生的机械振动,强制地使输出侧电极间机械振动,再次在输出侧电极间取出交流电压。 
在本发明的压电变压器中,极化方向相对于压电基板的主面垂直地构成,在输入部激发压电变压器基板面内的振动,并向输出部传递振动,在输出部将传递的振动向电荷转换。基于此情况,作为适用于本发明的压电变压器的材料,优选压电常数d31大的材料。作为这样的材料,例如优选PZT类的压电陶瓷材料。 
当使用上述压电变压器作为开关电源电路用变压器时,就能制作相对于某一固定的频率变动幅度效率不下降的电路。此外,利用此特性,通过改变工作频率,就能制作获得以不降低效率为目标的输出功率的电路。 
图4是表示本发明的叠层型压电变压器的图。此叠层型压电变压器,在主面为长度L、宽度W的长方形状的压电基板21上沿其长度方向顺序形成有第一输入部A2、输出部B2、第二输入部C2。 
在这些第一输入部A2、输出部B2、第二输入部C2中的压电基板21的上侧的主面中分别形成输入侧电极22a、输出侧电极24a、输入侧电极 23a,在压电基板21的长度方向x上空出规定间隔形成这些电极22a、23a、24a。 
此外,在压电基板21的下侧的主面中,在压电基板21的长度方向上空出规定间隔分别形成输入侧电极22b、输出侧电极24j、输入侧电极23b。在此状态下,在输出部B2中的压电基板21的内部形成输出侧电极24b~24i。 
输入侧电极22a、22b为相同尺寸,输出侧电极24a~24j为相同尺寸,输入侧电极23a、23b为相同尺寸。 
即使此形态下,也设输入侧电极22a、22b为在第一输入部A2中的压电基板的两主面的中央部相对设置的部分电极,设输入侧电极23a、23b为在第二输入部C2中的压电基板的两主面的中央部相对设置的部分电极。即,输入部A2、C2中的压电基板的主面的中央部是产生大的形变的部分,在此部分设置由部分电极构成的圆形状的输入侧电极22a、22b、23a、23b。输出侧电极24a~24j通过一对外部电极25b1、2562交替连接。 
而且,即使在此压电变压器中也与图1所示的压电变压器相同,压电基板21的主面的长度L和宽度W之比(L/W)是1.1~1.4,并且压电基板21的主面的长度L和驱动频率F的乘积(F×L)是4700~6000kHz·mm。 
在这样的叠层型压电变压器中,虽然能得到与图1所示的压电变压器相同的效果,但由于还能增加输出侧电极的面积,所以与具有相同长度和宽度的单板型压电变压器相比,能加大获取输出电流。 
此外,成为叠层型压电变压器中的阻抗匹配的负载电阻RL′,与单板型压电变压器相比,由于能加大获取输出侧静电电容Cd2,所以能在更低阻抗中获得阻抗匹配。 
此外,由于当设输入侧静电电容为Cd1时,压电变压器中的电压的升降压比(=V2/V1)就会变为V2/V1∝(Cd1/Cd2)1/2,所以通过层叠压电变压器来控制Cd1、Cd2,就能任意地设定升降压比。即,本发明的压电变压器,通过任意地决定升降压比,就能适用于升降压转换器或升降压逆变器。 
说明这样的叠层型压电变压器的制造方法。在900~1100℃下预焙烧按所希望的组成混合的PZT类压电陶瓷。粉碎此预焙烧粉,添加粘合剂、可塑材料等,使它们分散进有机溶剂中,制作浆料。使用刮刀法(doctorblade method)等使得到的浆料成为所希望厚度的陶瓷生片。 
在此陶瓷生片的单侧面,丝网印刷例如Ag-Pd膏这样的高耐热性的导电膏。此情况下,如图5所示,制作形成了成为输入侧电极的图形36和成为输出侧电极的图形37的生片31、和仅形成了成为输出侧电极的图形37的生片32,如图5所示,将它们进行层叠,在最上层层叠未形成电极图形的生片,通过热压将它们连结,使其一体化,在400~500℃下加热,进行脱脂后,在1100~1300℃下进行烧结。再有在图5中,仅记载了一部分的生片。 
接着,在烧结体的上下面涂敷成为输入侧电极、输出侧电极的含有玻璃的导体膏,在烧结体的两侧面涂敷成为外部电极的含有玻璃的导电膏,进行烘焙,制作压电变压器。利用一对外部电极25b1、2562按每一层交替地连接输出侧电极24a~24j。即,输入侧电极及输出侧电极是叠层型电容器和叠层型压电传动器(actuator)这样的结构,内部电极每一层连接着一对外部电极。 
进一步,在120℃的硅油中对输入侧电极22a、22b、23a、23b及输出侧电极24a~24j分别施加直流电压,对叠层体进行约30分钟的极化处理,由此得到叠层型压电变压器。 
接着,说明由使用了本发明的压电变压器的DC-DC转换器构成的电源 装置。此DC-DC转换器,将直流电源电压转换成高频的交流信号,同时具备:控制向变压器的输入电压的开关部、对该高频交流信号进行升降压的压电变压器、将变压了的高频信号转换成直流的输出电压的整流电路、检测输出电压的电压检测部、和按照电压检测部的输出控制开关部的开闭的控制部。图6中示出其一个例子。 
控制部通过使开关部的开闭时间变化来使压电变压器的驱动频率F变化,使主面的长度L和驱动频率F的乘积成为4700~6000kHz·mm这样进行变化。或者在4700kHz·mm≤F×L≤6000kHz·mm的范围内,且使开关开闭时间的时间比率变化。在开关部,为了高效率尽量抑制开关中的损失,希望导入软开关(soft switching)的技术。 
再有,如图7(a)、(b)所示,能使压电基板的上面的输入侧电极12、13、22a、23a和下面的输入侧电极91、92、93、94的电极形状不同,使上侧的输入侧电极12、13、22a、23a的面积比下侧的输入侧电极91、92、93、94的面积更小。 
在本发明的另一形态的压电变压器中,如图13(b-1)~图13(f-1)所示,在长方形状的压电基板11的外周部形成切口部30。再有,图13(a-1)~图13(f-1)示出了与后述的图8相同的1/4对称模型,将图2中的用xy方向的箭头标记包围的右上部分的区域模型化(1/4对称模型)进行解析。因此,在此模型中,仅示出部分电极13单侧的一半。 
通过在长方形状的压电变压器的长边部和短边部形成2处至8处的切口部30,就能使无用振动模式引起的效率极端下降的频率远离使用的频带。其结果,能使无用振动模式引起的效率极端下降的频率向低频侧移动,能扩宽效率变高的频率的频带。再有,设置切口部30时,希望按保证压电变压器元件的1/4对称性这样进行形成。图13中,虽然切口部30无论哪一个都为长方形状,但也可以是半圆形状、半椭圆形状。要形成切口部,只要利用切割锯(dicing saw)和线 锯(wire saw)等进行加工即可。 
在本发明再另一形态的压电变压器中,对置形成的输入侧电极中至少一个具备配置在第一输入部及第二输入部中的压电基板的主面的中央部的中央电极、和设置在该中央电极的压电基板的宽度方向两侧的端部电极。并且,中央电极和宽度方向的端部电极可通过电极材料连接。具体地如图9(S6)及作为其模型的具体形态的图16所示,不仅仅是中央电极31,在宽度方向的两端还可以设置岛状的电极32。在图9(S6)中,中央电极31和两端的岛状电极32都形成在图11的形变SXX(x方向的形变)大的部分。只要按照FEM模拟的形变分布和允许的静电电容决定电极面积即可。 
通常,部分电极相对于第一输入部及第二输入部中的压电基板的主面的面积比为60%以下,特别地最好为5~60%,优选20~50%。再有,即使在上述面积比低于此值的情况下,通过形成上述的切口部30,也能使无用振动模式引起的效率极端下降的频率向低频侧移动,能扩宽效率变高的频率的频带。 
此外,也可以如图9(S7)所示,形成用电极材料35电连接中央电极33和宽度方向的两端的岛状的端部电极34的部分。在允许的静电电容大的情况下,如图9(S8)及作为其模型的具体形态的图17所示,能扩宽中央电极33′、端部电极34′及电极材料35′的电极面积。如图9(S7)、(S8)所示,在中央电极和端部电极连接的情况下,不需要用于获取另外电连接各个电极的布线,非常方便。 
在压电变压器装置的盒子中安装本发明的压电变压器,或直接在母板等上安装本发明的压电变压器时,利用焊料或粘合剂等固定压电变压器的振动位移小的部分,或者也可以用具有弹性的金属器具等夹持压电基板的两主面。此时,如图12及作为其模型的具体形态的图18所示,将压电变压器的振动位移小的5处的部分作为保持部40、41,如果用此保持部40、 41将压电变压器保持固定在未图示出的其它构件上的话,则能不大大阻碍振动地进行保持。通过保持固定元件的输出部中央的1处(保持部40)和输入部的4处(保持部41)合计5处,就能保证对称性、稳定地进行固定。在输入部的固定中,在其它构件上形成电极的情况下,优选利用焊料和导电性粘合剂等,在不形成电极的情况下,优选利用绝缘性的粘合剂。 
此外,在保持固定的部分形成岛状的电极(未图示),如图19所示,如果将输入部A1、C1的输入侧部分电极12、13一直延长到此岛状的电极的话,则通过用焊料等将其固定在基板的电极图形上,就能不大大阻碍振动、保持在其它构件上,同时能得到与其它构件的导通。 
电连接多个压电元件构成本发明的压电变压器装置。图14中示出了压电变压器的电路图。在图14中,虽然示出了电连接2个压电变压器元件Tr1、Tr2的状态,但3个以上的情形也可以同样地连接。相对于输入电压串联连接多个压电变压器Tr1、Tr2…的输入部。另一方面,在输出中,相对于负载电阻并联连接多个压电变压器元件Tr1、Tr2…的输出部。具体地,从输入侧的电路输入到压电变压器Tr1的外侧的2个输入侧电极。而且,从压电变压器Tr1的里侧的输入电极连接到压电变压器Tr2的外侧的2个输入电极。而且,在输入侧的地中设置压电变压器Tr2的里侧的2个输入电极。另一方面,在输出部,只要将2个压电变压器Tr1、Tr2的外侧的输出电极连接到负载电阻的正极侧(RL的上侧),将2个压电变压器Tr1、Tr2的里侧的输出电极连接到负载电阻的负极侧(RL的下侧)即可。如此通过串联连接输入部、并联连接输出部,就能将输入侧的静电电容降低到1/N(其中,N表示压电变压器的数量)。此连接法也能用于输入侧、输出侧电极是整面电极的情形。 
下面虽然列举实施例详细地说明本发明的压电变压器,但本发明的压电变压器不限于以下的实施例。 
实施例1
对于本发明的压电变压器进行使用有限元法的计算机模拟。 
作为压电变压器的材料,假定为Pb(Ti、Zr)O3类压电材料,在模拟中,设为压电常数d31=-125pC/m、相对介电常数εr=1420、Qm=1000,进行计算。 
在图8中示出了在模拟中使用的有限元模型的网格分割图。在模拟中,考虑压电变压器的对称性,如图2所示,对于同图的右上部分使用1/4对称模型进行模拟。在图8中,符号42表示1/4对称面。 
设压电变压器的尺寸为长度L=31.5mm、宽度W=26.0mm、压电基板的厚度T=2.1mm。此外,设输入部的长度Lin=10.5mm、输出部的长度Lout=10.5mm,输入部、输出部为单板。设输入部、输出部的压电陶瓷的极化方向任何一个都是厚度方向向上。 
在模拟中,如图6所示,在输入部A1、C1上直接施加交流电压,在输出侧电极14、17间连接负载电阻进行计算。在本次的计算中,连接RL=750Ω的负载电阻进行计算,在150kHz~185kHz的范围内使频率摆动进行计算。 
设输入功率为Pin、输出功率为Pout,通过Pout/Pin求效率。在图9中示出了在本次模拟中使用的输入侧电极的形状。电极12、13、15、16在压电基板的两主面中为相同形状。图9(S0)是在输入部C1的整面上形成输入侧电极43的比较例。图9(SS)是相当于本发明最希望的电极形状的模型。在本次的计算中,考虑椭圆状的区域不进行网格分割。因此,由于为了覆盖形变SXX大的区域而形成电极,所以在1/4对称模型中,成为凸字(半椭圆)的形状的电极。在图9中,示出了各输入侧电极相对于输入部的面积比(%)。以输出部的两侧的部分作为输入部,设此面积比为输入侧电极相对于这些输入部中的压电基板的主面的面积。 
作为模拟结果,在图10A、图10B中示出了效率的频率特性。SS(本发明),不管相对于作为比较例的S0输入侧的电极面积比是否变窄到22.5%,都将效率维持高的值不变。另一方面,如果观察比SS电极面积更宽的S3(面积比30.8%)和S5(面积比31.6%)的结果,则能确认与SS相比,效率大大下降的事实。另一方面,如果观察与S3、S5相同的电极面积比的S2、S4的结果,则可知虽然相比于SS,同样效率变低了,但维持着比较高的效率。可确认压电变压器的效率不能笼统地仅由在输入侧的电极面积比来决定,形成电极的位置也是重要的。 
在本发明的压电变压器中使用的振动模式是输入部的宽度方向的中央部附近在横方向(压电变压器的长度方向)上大大伸缩的振动模式。在作为压电变压器起作用方面,如何激发上述振动模式的振动变得重要。为了激发上述振动,认为使输入部的宽度方向中央部附近在横方向上大大发生形变是重要的。虽然在图11中作为S0的解析结果示出了形变SXX分布,但如果观察形变SXX分布,则可知在输入部的中央部附近存在椭圆状的形变SXX大的区域。在SS的情况下,为了覆盖此椭圆状的区域而形成了电极。其结果,无论电极面积是否变小,认为都能维持高的效率。此外,认为由于S2和S4在形变SXX比较大的区域的附近形成了电极,所以能维持高的效率。另一方面,认为S3、S5的电极,由于在远离形变SXX大的区域的位置形成了电极,所以无论电极面积是否同程度,其效率都下降。 
而且,虽然与SS相比,电极面积变宽,但尽可能选择形变SXX大的区域作成形成电极S6、S7、S8的模型,进行解析。可知如果是可允许作为输入部的电容的话,则最好按尽可能宽的电极面积这样形成电极。基于这些解析结果,可理解在缩小电极面积的时候,考虑图11的形变SXX分布决定电极的配置是重要的。 
实施例2
如果像S1那样将电极面积一直减少到约5%,则无论是否选择形变SXX大的区域,都能确认效率下降。特别地,可知比170kHz更低频侧的效率的峰值变小。由于输入电路的阻抗匹配和驱动用IC等的限制,实际中不得不在S1这样的电极中使用的情况下,虽然希望在175kHz附近的频率下使用,但由于在170kHz附近存在无用振动模式引起的寄生,所以能使用的频带变窄。 
因此,如图13所示,在压电变压器的周边部形成矩形状的切口部尝试寄生的控制。如图13所示,如果在压电基板的周边部形成4处切口部,则由于能使无用振动引起的寄生向低频侧移动,使寄生的影响变小,所以能扩宽效率的频带。图13(a-1)是未形成切口部的时候的解析模型。在此的解析中,是将电极面积比缩小到6.1%时的结果。虽然未图示出,但由于170kHz附近的寄生,与作为压电变压器利用的主模式的振动模式相同,是面内的振动,所以即使变更压电变压器的长度L、宽度W之比L/W或输出部L2和输入部(L-L2)之比L2/(L-L2)等,主模式和寄生模式的频率也同样地变化,看不到扩宽频带的效果。在图12中,示出了整面电极的S0压电变压器的位移分布。用淡灰色表示位移小的部分,用深灰色表示位移大的部分。基于此结果,在将压电变压器元件固定在压电变压器装置的盒子等中的情况下,如果固定图12所示的位移小的区域(图的四角形)的5处,则能抑制向振动的影响从而进行保持固定。 
实施例3
在图14中作为连接多个压电变压器构成的压电变压器装置的一例示出了连接2个压电变压器的压电变压器装置的电路图。在输入侧的连接中,2个压电变压器的输入部相对于输入电压为串联地连接。设连接的压电变压器的数为N时,输入部的静电电容就能降低到1个时的1/N。另一方面,在输出侧的连接中,相对于输出侧的负载,按为并联连接的方式连接。如此这样,虽然需要使输入电压成为N倍,但输出功率也能增加到N倍。虽 然也考虑重合多个压电变压器构成1个块,但如果构成1个块则压电变压器的厚度会增加到N倍,与压电变压器的面内的尺寸相比仅增加了厚度,不能实现规定的振动模式。为此,电路地连接多个压电变压器是有效的。图15示出连接了3个压电变压器时的模拟结果。在3元件时的计算中,施加1元件时的3倍的输入电压。观察其结果,可知输出功率在3元件的时候变成1元件时的几乎3倍的输出功率。与1元件时相比,3元件时,虽然效率的图表中产生无用的寄生,但能确认效率可维持高的值。在上文中,虽然说明了本发明的优选实施方式,但本发明不限于这些实施方式,在权利要求的范围内记载的范围内可进行各种变更和改良。 

Claims (10)

1.一种压电变压器,包括:两主面的形状为长方形形状的压电基板,和在该压电基板的两主面上形成的输入侧电极及输出侧电极;该压电变压器具有在上述压电基板的两主面上形成上述输出侧电极的输出部、和该输出部两侧的第一输入部及第二输入部;其特征在于,
在上述压电基板的上述第一输入部以及上述第二输入部中的两主面上分别形成上述输入侧电极而构成上述第一输入部及上述第二输入部,
在上述压电基板的两主面上相互对置地形成上述第一输入部及上述第二输入部的各上述输入侧电极,且相互对置地形成的上述输入侧电极中的至少一个电极是相对上述第一输入部及上述第二输入部中的上述压电基板的主面具有60%以下的面积的部分电极。
2.根据权利要求1所述的压电变压器,其特征在于,
上述部分电极被配置在上述第一输入部及上述第二输入部中的上述压电基板的主面的中央部。
3.根据权利要求1所述的压电变压器,其特征在于,
在上述输出部中的上述压电基板内,在厚度方向上空出规定间隔形成多个输出侧电极。
4.根据权利要求1所述的压电变压器,其特征在于,
相互对置地形成的上述输入侧电极中的任何一个电极都是上述部分电极。
5.根据权利要求1所述的压电变压器,其特征在于,
在上述压电基板的周边形成切口部。
6.根据权利要求1所述的压电变压器,其特征在于,
相互对置地形成的上述输入侧电极中的至少一个电极具备在上述第一输入部及上述第二输入部中的上述压电基板的主面中央部所配置的中央电极、和在上述主面的端部所配置的端部电极。
7.根据权利要求6所述的压电变压器,其特征在于,
上述中央电极和上述端部电极由电极材料连接。
8.根据权利要求1所述的压电变压器,其特征在于,
将上述第一输入部及上述第二输入部中的上述压电基板的主面的宽度方向两端部、和上述输出部的输出侧电极的宽度方向中央部作为用于在其它构件上进行安装的保持部。
9.根据权利要求8所述的压电变压器,其特征在于,
在上述第一输入部及上述第二输入部中的上述保持部形成电极,上述输入侧电极被一直延长到上述保持部。
10.一种压电变压器装置,其特征在于,
具有多个权利要求1所述的压电变压器,并且分别串联连接上述多个压电变压器的上述第一输入部及上述第二输入部中的上述输入侧电极,并列地引出上述多个压电变压器的上述输出部中的上述输出侧电极。
CN2008800215699A 2007-07-27 2008-07-28 压电变压器 Expired - Fee Related CN101689597B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007196079 2007-07-27
JP196079/2007 2007-07-27
PCT/JP2008/063536 WO2009017096A1 (ja) 2007-07-27 2008-07-28 圧電トランス

Publications (2)

Publication Number Publication Date
CN101689597A CN101689597A (zh) 2010-03-31
CN101689597B true CN101689597B (zh) 2012-07-04

Family

ID=40304326

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800215699A Expired - Fee Related CN101689597B (zh) 2007-07-27 2008-07-28 压电变压器

Country Status (4)

Country Link
US (1) US8395303B2 (zh)
JP (1) JP5113840B2 (zh)
CN (1) CN101689597B (zh)
WO (1) WO2009017096A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1799185A (zh) * 2003-05-29 2006-07-05 株式会社田村制作所 压电变压器的驱动方法和驱动电路

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175175A (ja) * 1983-03-23 1984-10-03 Nec Corp 圧電磁器トランスフイルタ
JP3079970B2 (ja) 1995-09-18 2000-08-21 株式会社村田製作所 圧電トランス
JP2842382B2 (ja) * 1996-06-11 1999-01-06 日本電気株式会社 積層型圧電トランスおよびその製造方法
JP2885188B2 (ja) 1996-06-19 1999-04-19 日本電気株式会社 圧電トランス
JPH11154768A (ja) * 1997-11-20 1999-06-08 Cosel Co Ltd 圧電磁器トランス
JP3137063B2 (ja) * 1997-12-16 2001-02-19 日本電気株式会社 圧電トランス素子とその製造方法
JP3082731B2 (ja) * 1997-12-17 2000-08-28 日本電気株式会社 積層型圧電トランス及びその製造方法
JP3709114B2 (ja) 1999-12-22 2005-10-19 京セラ株式会社 圧電トランス
US6342753B1 (en) * 2000-09-25 2002-01-29 Rockwell Technologies, Llc Piezoelectric transformer and operating method
JP4721540B2 (ja) 2001-03-27 2011-07-13 京セラ株式会社 圧電トランス及び電源装置
JP2003017772A (ja) * 2001-06-28 2003-01-17 Nippon Soken Inc 圧電セラミックトランス回路
US6812623B2 (en) * 2001-09-28 2004-11-02 Matsushita Electric Industrial Co., Ltd. Piezoelectric transformer
JP2004128431A (ja) * 2002-10-05 2004-04-22 ▲徳▼島 晃 圧電トランス駆動装置
JP2004140204A (ja) * 2002-10-18 2004-05-13 Nec Tokin Corp 圧電トランス

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1799185A (zh) * 2003-05-29 2006-07-05 株式会社田村制作所 压电变压器的驱动方法和驱动电路

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JP特开2004-128431A 2004.04.22
JP特开平10-12940A 1998.01.16
JP特开平11-154758A 1999.06.08

Also Published As

Publication number Publication date
US20100188185A1 (en) 2010-07-29
CN101689597A (zh) 2010-03-31
JPWO2009017096A1 (ja) 2010-10-21
WO2009017096A1 (ja) 2009-02-05
US8395303B2 (en) 2013-03-12
JP5113840B2 (ja) 2013-01-09

Similar Documents

Publication Publication Date Title
JP2001515279A (ja) 電圧フィードバックを有するピエゾ電気変成器
US5892318A (en) Piezoelectric transformer with multiple output
KR100436637B1 (ko) 압전트랜스포머
US20150179921A1 (en) Piezoelectric transformer
Priya High power universal piezoelectric transformer
CN109888086A (zh) 一种基于剪切振动的压电变压器及其制备方法
CN101689597B (zh) 压电变压器
JP3706509B2 (ja) 圧電トランス
JP5582261B2 (ja) 圧電トランス、圧電トランスモジュールおよびワイヤレス電力伝送システム
JP4721540B2 (ja) 圧電トランス及び電源装置
JP2940282B2 (ja) 厚み縦振動圧電磁器トランス及びその駆動方法
JP5574058B2 (ja) 降圧回路及び該降圧回路を用いた受電装置
EP1158586A1 (en) Piezoelectric transformer
JP3709114B2 (ja) 圧電トランス
KR100550848B1 (ko) 대칭 및 비대칭 전극구조를 갖는 압전 트랜스
JP3673433B2 (ja) 圧電トランス
JP4743936B2 (ja) 圧電トランス及びコンバータ
JP4743935B2 (ja) 圧電トランスおよびadコンバータ
Avadhanula et al. Finite Element Analysis and Mathematical Modelling of Rosen Piezoelectric Transformer: A Review
KR100574152B1 (ko) 압전 트랜스
JP4831859B2 (ja) 圧電トランス
TWI345322B (en) Piezoelectric transformer
JPH11145528A (ja) 圧電トランス
JPH11154768A (ja) 圧電磁器トランス
JP2003142747A (ja) 積層圧電トランス

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120704

Termination date: 20170728