CN101667911B - Secret communication method based on fraction order Fourier transform order-multiplexing - Google Patents

Secret communication method based on fraction order Fourier transform order-multiplexing Download PDF

Info

Publication number
CN101667911B
CN101667911B CN2009100937244A CN200910093724A CN101667911B CN 101667911 B CN101667911 B CN 101667911B CN 2009100937244 A CN2009100937244 A CN 2009100937244A CN 200910093724 A CN200910093724 A CN 200910093724A CN 101667911 B CN101667911 B CN 101667911B
Authority
CN
China
Prior art keywords
mrow
msub
centerdot
msup
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009100937244A
Other languages
Chinese (zh)
Other versions
CN101667911A (en
Inventor
陶然
孟祥意
王越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN2009100937244A priority Critical patent/CN101667911B/en
Publication of CN101667911A publication Critical patent/CN101667911A/en
Application granted granted Critical
Publication of CN101667911B publication Critical patent/CN101667911B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Complex Calculations (AREA)

Abstract

The invention relates to a secret communication method based on fraction order Fourier transform order-multiplexing, belonging to the information safety field. The secret communication method comprises the following steps: establishing linear equations by using the relation among filters in a multiplex transmission multiplexer accurately reestablished by fraction order Fourier domains with different orders and selecting discrete-sampling discrete fraction order Fourier transform as a basic tool, realizing the demodulation of the fraction order Fourier transform order-multiplexing; and realizing effective recovery of transmission information by using the multiplexed fraction order Fourier transform order as a secret in the information decryption. The secret communication method based on the fraction order Fourier transform order-multiplexing completely utilizes the order change characteristic of the fraction order Fourier transform, enlarges the secret space relative to the traditional secret communication method based on fraction order Fourier transform, improves the safety of the system, can realize secret communication under a multi-carrier mode, and can provide a new way for the design of a multi-user communication system.

Description

Secret communication method based on fractional order Fourier transform order multiplexing
Technical Field
The invention relates to a secret communication method based on fractional order Fourier transform order multiplexing, and belongs to the technical field of information security.
Background
With the rapid development of modern data communication services, the phenomenon of illegal interception of information occurs occasionally, and therefore, the secure communication technology is developed accordingly. In a secure communication system, both parties of communication perform encryption processing before information transmission based on a key for realizing an agreement, and decrypt the information using a set key after the information is received, and the original information cannot be recovered if the decryption key is wrong. Therefore, the size of a secret communication system key space directly determines the security of the system.
The concept of fractional fourier transform was proposed as early as 1929, and was applied to the optical field in the 80 s of the 20 th century, and it became one of the research hotspots in the signal processing field from the 90 s. Fractional order fourier transform is a generalized form of fourier transform, which performs signal processing on a uniform time-frequency domain, is more flexible than conventional fourier transform, and can give all the characteristics of signal transformation from time domain to frequency domain by selecting orders from 0 to 1. Therefore, the fractional Fourier transform is widely applied to the field of information security, and a few scholars propose an image encryption technology and a secret communication technology based on the fractional Fourier transform, and use parameters of the fractional Fourier transform which are excessive relative to the Fourier transform as keys in information decryption, so that the key space is enlarged, and the security of the system is improved. For example, some researchers have designed a secure communication system using the fractional Hilbert transform based on the fractional fourier transform, which expands the key space and improves the security of the system compared with the secure communication system based on the fractional Hilbert transform.
However, the existing secure communication system based on fractional fourier transform is only a simple extension of the traditional secure communication system based on fourier transform, that is, fractional fourier transform or fractional fourier domain is adopted to replace fourier transform or fourier domain in the traditional system, and the order of fractional fourier transform is not fully utilized.
Disclosure of Invention
The invention aims to provide a secret communication method based on fractional Fourier transform order multiplexing in order to improve the security of a system and fully utilize the order of fractional Fourier transform. The secret communication method selects discrete sampling type discrete fractional Fourier transform and fractional circumferential convolution theorem as basic tools, utilizes a fractional Fourier domain to accurately reconstruct a multiplexer to realize fractional Fourier transform order multiplexing, utilizes the multiplexed fractional Fourier transform order as a secret key, overcomes the defect that the existing secret communication system based on the fractional Fourier transform is only based on simple expansion of a Fourier transform system and cannot fully utilize the fractional Fourier transform order, expands the space of the secret key, and improves the safety of the system.
The invention relates to a secret communication method based on fractional Fourier transform order multiplexing, which comprises two parts of information encryption and information decryption;
the steps for realizing information encryption are as follows:
step one, constructing a fractional Fourier domain accurate reconstruction N-channel transmission multiplexer shown in figure 1. According to the length L of the information to be transmitted, an N-channel multiplexer with the Fourier domain length of NxL and the time domain sampling interval of delta t is selected, and a comprehensive filter bank of the N-channel multiplexer is composed of { G }l(k) 0, 1, N-1, and an analysis filter bank is denoted by { H }l(k)}l=0,1,...,N-1And (4) showing. P is designed by, for example, formula (1) and formula (2) according to the number M of users in the systemiOrder (i ═ 1, 2, …, M2) Fractional order Fourier domain multiplexer
G l , p i ( k ) = G l ( k ) - - - ( 1 )
<math> <mrow> <msub> <mi>H</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mo>&CenterDot;</mo> <mi>cot</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mi>&pi;</mi> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msup> <mi>k</mi> <mn>2</mn> </msup> <msubsup> <mi>&Delta;u</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> <mn>2</mn> </msubsup> </mrow> </msup> <msub> <mi>H</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein,
Figure GDA0000114928210000023
is piA first-path synthesis filter in the fractional-order Fourier domain N-channel multiplexer,
Figure GDA0000114928210000024
is piThe first path analysis filter in the fractional order fourier domain N-channel multiplexer,
Figure GDA0000114928210000025
is piFractional Fourier domain sampling interval of order, and fractional Fourier domain order piSatisfies the relationship shown in the formula (3)
Figure GDA0000114928210000031
Step two, modulating the information to be transmitted by adopting the fractional order Fourier domain multiplexer comprehensive filter group obtained in the information encryption step one to obtain M fractional order Fourier transform order multiplexing signals
Figure GDA0000114928210000032
M is 1, 2,.. times.m, and its mathematical expression is shown in formula (4)
<math> <mrow> <msub> <mover> <mi>s</mi> <mo>&RightArrow;</mo> </mover> <mi>m</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>G</mi> <msub> <mrow> <mi>l</mi> <mo>,</mo> <mi>p</mi> </mrow> <mrow> <mrow> <mo>(</mo> <mi>m</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>M</mi> <mo>+</mo> <mi>i</mi> </mrow> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <msub> <mi>p</mi> <mrow> <mrow> <mo>(</mo> <mi>m</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>M</mi> <mo>+</mo> <mi>i</mi> </mrow> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>x</mi> <mo>&RightArrow;</mo> </mover> <mrow> <mi>l</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein,the ith channel transmission information representing the ith user, and a matrix thetaint∈□NL×LRepresents an interpolation operation, which is defined as shown in equation (5)
Figure GDA0000114928210000035
Matrix array
Figure GDA0000114928210000036
Represents piAn order fractional Fourier domain synthesis filtering operation defined as shown in equation (6)
<math> <mrow> <msub> <mrow> <mo>[</mo> <msub> <mi>G</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>]</mo> </mrow> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>j</mi> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>&CenterDot;</mo> <mi>cot</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mi>&pi;</mi> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msup> <mi>k</mi> <mn>2</mn> </msup> <msubsup> <mi>&Delta;u</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> <mn>2</mn> </msubsup> </mrow> </msup> <msub> <mi>G</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
Matrix array
Figure GDA0000114928210000038
Represents piDiscrete fractional order Fourier transform of order defined as shown in equation (7)
<math> <mrow> <msub> <mrow> <mo>[</mo> <msub> <mi>F</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> </msub> <mo>]</mo> </mrow> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mfrac> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mi>&pi;</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>-</mo> <mi>j</mi> <mo>&CenterDot;</mo> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mi>&pi;</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> <mi>N</mi> </mfrac> </msqrt> <mo>&CenterDot;</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>&CenterDot;</mo> <mi>cot</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mi>&pi;</mi> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <msubsup> <mi>&Delta;u</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> <mn>2</mn> </msubsup> <mo>-</mo> <mi>j</mi> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> <mi>N</mi> </mfrac> <mi>mn</mi> <mo>+</mo> <mi>j</mi> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>&CenterDot;</mo> <mi>cot</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mi>&pi;</mi> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msup> <mi>n</mi> <mn>2</mn> </msup> <msup> <mi>&Delta;t</mi> <mn>2</mn> </msup> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
Step three, M fractional Fourier transform order multiplexing signals obtained in the information encryption step two
Figure GDA00001149282100000310
And sending out in sequence.
The steps for realizing information decryption are as follows:
step one, received M fractional Fourier transform order multiplexing signalsSequentially by a selected p by an information encryption step(m-1)M+1M is 1, 2,.. M, an analysis filter bank of an order fractional order fourier domain multiplexer to obtain M output signal vectors;
step two, extracting k (k is 0, 1, and L-1) elements of M output signal vectors obtained in the step one of information decryption to form a vector
Figure GDA00001149282100000312
By matrix multiplication
Figure GDA00001149282100000313
Demodulating the vector formed by the k-th element in all the transmitted signal vectors
Figure GDA0000114928210000041
The m-th element in (b) is the m-th userThe kth element of the l channel input signal vector;
step three, using all input signal vectors obtained in the information decryption step two
Figure GDA0000114928210000042
Resuming sending information
Figure GDA0000114928210000043
The decryption process is completed.
Advantageous effects
Compared with the traditional secret communication technology based on fractional order Fourier transform, the secret communication method provided by the invention fully utilizes the order change characteristic of the fractional order Fourier transform, enlarges the key space and improves the safety of the system;
the secret communication method is realized by utilizing a fractional Fourier domain multiplexer, and compared with the traditional secret communication technology based on fractional Fourier transform, the secret communication under a multi-carrier transmission mode can be realized;
the secret communication method provided by the invention utilizes the multiplexed fractional Fourier transform order to distinguish different users, and provides a new mode for the design of a future multi-user communication system.
Drawings
FIG. 1-a fractional Fourier domain multiplexer;
FIG. 2-two-user secure communication system based on fractional Fourier transform order multiplexing;
FIG. 3-two-user secure communication system encrypted signal constellations based on fractional Fourier transform order multiplexing;
FIG. 4-decrypted signal constellation under wrong key;
figure 5(a) -decrypted signal mean square error with decryption key p'1And p'2Variogram map, (b) -decrypted signal mean square error with decryption key p'3And p'4A variable surface map;
FIG. 6(a) -decrypted Signal error Rate with decryption Key p'1And p'2Graph of varying surface, (b) -decrypted signal bit error rate as a function of decryption key p'3And p'4A variable surface map;
Detailed Description
The secret communication method based on the fractional Fourier transform comprises the following steps
Design of fractional Fourier domain multiplexer
According to the number M of users in the designed system, M satisfying the reversible condition of the matrix C in the formula (3) is selected2Fractional order Fourier transform order, multiplexing order p discussed belowiThe determinant value of the matrix C in the formula (3) can be expressed as shown in the formula (8)
<math> <mrow> <mrow> <mo>|</mo> <mi>C</mi> <mo>|</mo> <mo>=</mo> <munderover> <mi>&Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>j</mi> <mo>&CenterDot;</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>&CenterDot;</mo> <mi>cot</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>p</mi> <mrow> <mi>i</mi> <mo>&CenterDot;</mo> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mi>&pi;</mi> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msup> <mi>k</mi> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <msup> <mi>&Delta;t</mi> <mn>2</mn> </msup> </mrow> </msup> <mo>&times;</mo> <mo>|</mo> <msub> <mi>C</mi> <mn>1</mn> </msub> <mo>|</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein,
Figure GDA0000114928210000052
as can be seen from the basic rules of mathematical operations,
Figure GDA0000114928210000053
not zero, then to make | C | not zero, then p is choseniUsing determinant | C1The simplest method is to construct the non-zero | into a vandermonde determinant, i.e. to select p Mi+11, and
<math> <mrow> <mi>cot</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>p</mi> <mrow> <mi>Mi</mi> <mo>+</mo> <mi>l</mi> </mrow> </msub> <mi>&pi;</mi> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mi>l</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>cot</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>p</mi> <mrow> <mi>Mi</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mi>&pi;</mi> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein
Figure GDA0000114928210000055
Are different from each other;
selecting a corresponding Fourier domain accurate reconstruction filter bank according to the size of the data volume transmitted by each user and the number of channels required by information transmission of each user;
thirdly, accurately reconstructing a filter bank according to the fractional Fourier domain order and the sampling interval selected in the first step and the Fourier domain selected in the second step, and obtaining an integrated filter bank and an analysis filter bank of each order fractional Fourier domain accurately-reconstructed multiplexer through the formulas (1) and (2);
secondly, an encryption step
Modulating a signal to be transmitted by utilizing the comprehensive filter group of the different-order fractional Fourier domain multiplexer obtained in the step (III) of designing the fractional Fourier domain multiplexer, and then obtaining M fractional Fourier transform order multiplexing signals through a formula (4)
Figure GDA0000114928210000056
m=1,2,...,M;
(II) the fractional Fourier domain order multiplexing signal obtained in the step (I)
Figure GDA0000114928210000057
And sending out in sequence.
Step three, decryption step
Firstly, the received M fractional Fourier transform order multiplexing signals
Figure GDA0000114928210000061
Respectively through p corresponding to the encryption terminal(m-1)M+1An order, M ═ 1, 2., M, fractional order fourier domain multiplexer analysis filter bank, to obtain M groups of demodulated signals;
(II) taking out the vector formed by the kth element in all the signal vectors obtained in the step (I)
Figure GDA0000114928210000062
By passing
Figure GDA0000114928210000063
Obtaining a signal vector consisting of kth elements in all the signal vectors;
and (III) reconstructing all the signal vectors obtained in the step (II) to recover the transmitted information, and finishing the decryption process.
The following is a detailed theoretical verification of the embodiments in connection with the basic principles of the fractional fourier domain multiplexer.
In the fractional fourier domain multiplexer system shown in fig. 1, the output signal at the end of the system synthesis filter bank can be expressed in matrix form as shown in formula (11)
<math> <mrow> <msub> <mover> <mi>s</mi> <mo>&RightArrow;</mo> </mover> <mi>p</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>G</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mi>p</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>x</mi> <mo>&RightArrow;</mo> </mover> <mrow> <mi>l</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
Accordingly, the output signal at the system analysis filter bank end can be expressed in the form as shown in equation (12)
<math> <mrow> <msub> <mover> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>&RightArrow;</mo> </mover> <mrow> <mi>l</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mrow> <mo>-</mo> <mi>p</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>s</mi> <mo>&RightArrow;</mo> </mover> <mi>p</mi> </msub> </mrow> </math>
<math> <mrow> <mo>=</mo> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mrow> <mo>-</mo> <mi>p</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>G</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mi>p</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>x</mi> <mo>&RightArrow;</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> <mi>andm</mi> <mo>&NotEqual;</mo> <mi>l</mi> </mrow> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mrow> <mo>-</mo> <mi>p</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>G</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mi>p</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>x</mi> <mo>&RightArrow;</mo> </mover> <mrow> <mi>l</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein Hl,p∈□NL×NLRepresenting a fractional Fourier domain analysis filtering operation, i.e.
<math> <mrow> <msub> <mrow> <mo>[</mo> <msub> <mi>H</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> <mo>]</mo> </mrow> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>j</mi> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>&CenterDot;</mo> <mi>cot</mi> <mrow> <mo>(</mo> <mfrac> <mi>p&pi;</mi> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msup> <mi>k</mi> <mn>2</mn> </msup> <msubsup> <mi>&Delta;u</mi> <mi>p</mi> <mn>2</mn> </msubsup> </mrow> </msup> <msub> <mi>H</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
Hi,p(k) Is hi(n) discrete fractional Fourier transform of order p, matrix thetadec∈□L×NLRepresents the decimation operation of the signal, which is defined as
Figure GDA0000114928210000068
To satisfy the exact reconstruction conditions of a fractional Fourier domain multiplexer, i.e.
<math> <mrow> <msub> <mover> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>&RightArrow;</mo> </mover> <mrow> <mi>l</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>l</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
Then
θdec·F-p·Hl,p·Gl,p·Fp·θint=IN (16)
When l ≠ m,
θdec·F-p·Hl,p·Gm,p·Fp·θint=0N (17)
wherein, INIs an N × N identity matrix, 0NIs an N multiplied by N zero matrix.
Suppose that the transmission information of the system utilizes p as shown in formulas (1) and (2), respectively1、p2、...、pMThe fractional order Fourier domain multiplexer implements the transmission, and pi≠pjI ≠ j, then the output signal at the transmitting end of the system can be written in the form shown in equation (18)
<math> <mrow> <msub> <mover> <mi>s</mi> <mo>&RightArrow;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>G</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>x</mi> <mo>&RightArrow;</mo> </mover> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
Then, at the receiving end of the system, if the received signal passes through pjThe demodulation end of the order fractional Fourier domain multiplexer, the output signal of the receiving endThe number may be written in the form shown in equation (19)
<math> <mrow> <msub> <mover> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>&RightArrow;</mo> </mover> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>=</mo> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>s</mi> <mo>&RightArrow;</mo> </mover> <mn>1</mn> </msub> </mrow> </math>
<math> <mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>G</mi> <mrow> <mi>m</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>x</mi> <mo>&RightArrow;</mo> </mover> <mrow> <mi>m</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow> </math>
Theorem 1: when l ≠ m, <math> <mrow> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>G</mi> <msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>p</mi> </mrow> <mi>i</mi> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> <mo>=</mo> <msub> <mn>0</mn> <mi>N</mi> </msub> <mo>.</mo> </mrow> </math>
and (3) proving that: suppose an order p discrete fractional order Fourier transform matrix FpCan be written as shown in formula (20)
Fp=Λp,up,t (20)
Wherein, Λp,u,W,Λp,t∈□NL×NLAnd satisfy the formulas (21), (22) and (23)
<math> <mrow> <msub> <mrow> <mo>[</mo> <mi>w</mi> <mo>]</mo> </mrow> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>j</mi> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> <mi>NL</mi> </mfrac> <mi>mn</mi> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mrow> <mo>[</mo> <msub> <mi>&Lambda;</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>]</mo> </mrow> <mrow> <mi>n</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>cot</mi> <mrow> <mo>(</mo> <mfrac> <mi>p&pi;</mi> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msup> <mi>n</mi> <mn>2</mn> </msup> <msup> <mi>&Delta;t</mi> <mn>2</mn> </msup> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>[</mo> <msub> <mrow> <msub> <mi>&Lambda;</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>u</mi> </mrow> </msub> <mo>]</mo> </mrow> <mrow> <mi>n</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>cot</mi> <mrow> <mo>(</mo> <mfrac> <mi>p&pi;</mi> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msup> <mi>n</mi> <mn>2</mn> </msup> <msubsup> <mi>&Delta;u</mi> <mi>p</mi> <mn>2</mn> </msubsup> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow> </math>
Correspondingly, -p discrete fractional Fourier transform matrix F-pCan be written as shown in formula (24)
F-p=Λ-p,tWHΛ-p,u (24)
Therefore, desire to prove <math> <mrow> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>G</mi> <msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>p</mi> </mrow> <mi>j</mi> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <msub> <mi>p</mi> <mi>j</mi> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> <mo>=</mo> <msub> <mn>0</mn> <mi>N</mi> </msub> </mrow> </math> If it is true, only the relation shown in the formula (25) is verified
<math> <mrow> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>&Lambda;</mi> <mrow> <msub> <mrow> <mo>-</mo> <mi>p</mi> </mrow> <mi>i</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msup> <mi>W</mi> <mi>H</mi> </msup> <mo>&CenterDot;</mo> <msub> <mi>&Lambda;</mi> <mrow> <msub> <mrow> <mo>-</mo> <mi>p</mi> </mrow> <mi>i</mi> </msub> <mo>,</mo> <mi>u</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <msub> <mrow> <mi>l</mi> <mo>,</mo> <mi>p</mi> </mrow> <mi>i</mi> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mi>G</mi> <msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>p</mi> </mrow> <mi>j</mi> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mi>&Lambda;</mi> <mrow> <msub> <mi>p</mi> <mi>j</mi> </msub> <mo>,</mo> <mi>u</mi> </mrow> </msub> <mo>&CenterDot;</mo> <mi>W</mi> <mo>&CenterDot;</mo> <msub> <mi>&Lambda;</mi> <mrow> <msub> <mi>p</mi> <mi>j</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> <mo>=</mo> <msub> <mn>0</mn> <mi>N</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>25</mn> <mo>)</mo> </mrow> </mrow> </math>
According to formula (1), formula (2), formula (6) and formula (13), i.e. the formula
<math> <mrow> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>&Lambda;</mi> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msup> <mi>W</mi> <mi>H</mi> </msup> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mi>l</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>G</mi> <mi>m</mi> </msub> <mo>&CenterDot;</mo> <mi>W</mi> <mo>&CenterDot;</mo> <msub> <mi>&Lambda;</mi> <mrow> <msub> <mi>p</mi> <mi>j</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> <mo>=</mo> <msub> <mn>0</mn> <mi>N</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>26</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein, diagonal matrix Hl,Gm∈□NL×NLAnd is and
[Gm]k,k=Gm(k) (27)
[Hl]k,k=Hl(k) (28)
due to matrix product
Figure GDA0000114928210000082
And
Figure GDA0000114928210000083
can also be written in the form shown in formula (29) and formula (30)
<math> <mrow> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>&Lambda;</mi> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>=</mo> <msub> <msup> <mi>&Lambda;</mi> <mo>&prime;</mo> </msup> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>29</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>&Lambda;</mi> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> <mo>=</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> <mo>&CenterDot;</mo> <msub> <msup> <mi>&Lambda;</mi> <mo>&prime;</mo> </msup> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>30</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein, the diagonal matrix
Figure GDA0000114928210000086
And satisfies the formula (31)
<math> <mrow> <msub> <mrow> <mo>[</mo> <msub> <msup> <mi>&Lambda;</mi> <mo>&prime;</mo> </msup> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>]</mo> </mrow> <mrow> <mi>n</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>j</mi> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>cot</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mi>&pi;</mi> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>&CenterDot;</mo> <mi>N</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msup> <mi>&Delta;t</mi> <mn>2</mn> </msup> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>31</mn> <mo>)</mo> </mrow> </mrow> </math>
Accurate reconstruction of the properties of the multiplexer from the fourier domain yields the relationship shown in equation (32)
<math> <mrow> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>&Lambda;</mi> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msup> <mi>W</mi> <mi>H</mi> </msup> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mi>l</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>G</mi> <mi>m</mi> </msub> <mo>&CenterDot;</mo> <mi>W</mi> <mo>&CenterDot;</mo> <msub> <mi>&Lambda;</mi> <mrow> <msub> <mi>p</mi> <mi>j</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> </mrow> </math>
<math> <mrow> <mo>=</mo> <msub> <msup> <mi>&Lambda;</mi> <mo>&prime;</mo> </msup> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msup> <mi>W</mi> <mi>H</mi> </msup> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>G</mi> <mrow> <mi>m</mi> <mo>,</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <mi>W</mi> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> <mo>&CenterDot;</mo> <msub> <msup> <mi>&Lambda;</mi> <mo>&prime;</mo> </msup> <mrow> <msub> <mi>p</mi> <mi>j</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>32</mn> <mo>)</mo> </mrow> </mrow> </math>
= 0 N
Therefore, theorem 1 is used for the syndrome.
According to theorem 1, formula (19) can be further written as shown in formula (33)
<math> <mrow> <msub> <mover> <mi>x</mi> <mo>&RightArrow;</mo> </mover> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>&NotEqual;</mo> <mi>j</mi> </mrow> <mi>M</mi> </munderover> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>G</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>x</mi> <mo>&RightArrow;</mo> </mover> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>=</mo> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>s</mi> <mo>&RightArrow;</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>33</mn> <mo>)</mo> </mrow> </mrow> </math>
According to pjThe linear equation set formed by the M vector linear equations shown in the formula (33) can be obtained through different values of the M vector linear equations.
Theorem 2: linear equation of equations
<math> <mrow> <msub> <mover> <mi>x</mi> <mo>&RightArrow;</mo> </mover> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>&NotEqual;</mo> <mi>j</mi> </mrow> <mi>M</mi> </munderover> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>G</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>x</mi> <mo>&RightArrow;</mo> </mover> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>=</mo> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <msub> <mrow> <mi>l</mi> <mo>,</mo> <mi>p</mi> </mrow> <mi>j</mi> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>s</mi> <mo>&RightArrow;</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>34</mn> <mo>)</mo> </mrow> </mrow> </math>
And
<math> <mrow> <msub> <mover> <mi>x</mi> <mo>&RightArrow;</mo> </mover> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>&NotEqual;</mo> <mi>k</mi> </mrow> <mi>M</mi> </munderover> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>G</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>x</mi> <mo>&RightArrow;</mo> </mover> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>=</mo> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>s</mi> <mo>&RightArrow;</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>35</mn> <mo>)</mo> </mrow> </mrow> </math>
the correlation is linear.
And (3) proving that: according to the exact reconstruction characteristics of the Fourier domain multiplexer, the matrix product, and the equations (1), (2), (6), (13), (20), (24)
Figure GDA0000114928210000092
Can be written as shown in formula (36)
<math> <mrow> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>G</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> </mrow> </math>
<math> <mrow> <mo>=</mo> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>&Lambda;</mi> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msup> <mi>W</mi> <mi>H</mi> </msup> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mi>l</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>G</mi> <mi>l</mi> </msub> <mo>&CenterDot;</mo> <mi>W</mi> <mo>&CenterDot;</mo> <msub> <mi>&Lambda;</mi> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> </mrow> </math> (36)
<math> <mrow> <mo>=</mo> <msub> <msup> <mi>&Lambda;</mi> <mo>&prime;</mo> </msup> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msup> <mi>W</mi> <mi>H</mi> </msup> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mi>l</mi> </msub> <mo>,</mo> <msub> <mi>G</mi> <mi>l</mi> </msub> <mo>&CenterDot;</mo> <mi>W</mi> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> <mo>&CenterDot;</mo> <msub> <msup> <mi>&Lambda;</mi> <mo>&prime;</mo> </msup> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> </mrow> </math>
<math> <mrow> <mo>=</mo> <msub> <msup> <mi>&Lambda;</mi> <mo>&prime;</mo> </msup> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <msup> <mi>&Lambda;</mi> <mo>&prime;</mo> </msup> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> </mrow> </math>
Multiplication of equation (34) by both ends by equation (13), equation (24) and equation (36)
Figure GDA0000114928210000097
At the left end of equal sign has
<math> <mrow> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>G</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <msub> <mi>p</mi> <mi>j</mi> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>x</mi> <mo>&RightArrow;</mo> </mover> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>&NotEqual;</mo> <mi>j</mi> </mrow> <mi>M</mi> </munderover> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>G</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>x</mi> <mo>&RightArrow;</mo> </mover> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>=</mo> <msub> <msup> <mi>&Lambda;</mi> <mo>&prime;</mo> </msup> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <msup> <mi>&Lambda;</mi> <mo>&prime;</mo> </msup> <mrow> <msub> <mi>p</mi> <mi>j</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>x</mi> <mo>&RightArrow;</mo> </mover> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>&NotEqual;</mo> <mi>j</mi> </mrow> <mi>M</mi> </munderover> <msub> <msup> <mi>&Lambda;</mi> <mo>&prime;</mo> </msup> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <msup> <mi>&Lambda;</mi> <mo>&prime;</mo> </msup> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>x</mi> <mo>&RightArrow;</mo> </mover> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>37</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>=</mo> <msub> <mover> <mi>x</mi> <mo>&RightArrow;</mo> </mover> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>&NotEqual;</mo> <mi>k</mi> </mrow> <mi>M</mi> </munderover> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>G</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>x</mi> <mo>&RightArrow;</mo> </mover> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </msub> </mrow> </math>
At the right end of equal sign have
<math> <mrow> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>G</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <msub> <mi>p</mi> <mi>j</mi> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>s</mi> <mo>&RightArrow;</mo> </mover> <mn>1</mn> </msub> </mrow> </math>
<math> <mrow> <mo>=</mo> <msub> <msup> <mi>&Lambda;</mi> <mo>&prime;</mo> </msup> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <msup> <mi>&Lambda;</mi> <mo>&prime;</mo> </msup> <mrow> <msub> <mi>p</mi> <mi>j</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>&Lambda;</mi> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msup> <mi>W</mi> <mi>H</mi> </msup> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mi>l</mi> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>s</mi> <mo>&RightArrow;</mo> </mover> <mn>1</mn> </msub> </mrow> </math> (38)
<math> <mrow> <mo>=</mo> <msub> <msup> <mi>&Lambda;</mi> <mo>&prime;</mo> </msup> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msup> <mi>W</mi> <mi>H</mi> </msup> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mi>l</mi> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>s</mi> <mo>&RightArrow;</mo> </mover> <mn>1</mn> </msub> </mrow> </math>
<math> <mrow> <mo>=</mo> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>s</mi> <mo>&RightArrow;</mo> </mover> <mn>1</mn> </msub> </mrow> </math>
From the formulas (37) and (38), it can be found that the formulas (34) and (35) are linearly related, and theorem 2 proves.
From theorem 2, it can be found that fractional order Fourier transform order multiplexing cannot be realized by one-time transmission, and in order to solve the problem of linear correlation between linear equations shown in theorem 2, original information is transmitted for M-1 times, so that a linear equation set shown in formula (39) can be obtained according to theorem 1
Figure GDA0000114928210000101
Wherein
<math> <mrow> <msub> <mover> <mi>s</mi> <mo>&RightArrow;</mo> </mover> <mi>m</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>G</mi> <msub> <mrow> <mi>l</mi> <mo>,</mo> <mi>p</mi> </mrow> <mrow> <mrow> <mo>(</mo> <mi>m</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>M</mi> <mo>+</mo> <mi>i</mi> </mrow> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <msub> <mi>p</mi> <mrow> <mrow> <mo>(</mo> <mi>m</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>M</mi> <mo>+</mo> <mi>i</mi> </mrow> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>x</mi> <mo>&RightArrow;</mo> </mover> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>40</mn> <mo>)</mo> </mrow> </mrow> </math>
Then, the total vector can be obtained by the equation (36) and the linear equation set (39)
Figure GDA0000114928210000103
The k-th element in the equation (41)
<math> <mrow> <mi>C</mi> <mo>&CenterDot;</mo> <msub> <mover> <mi>x</mi> <mo>&RightArrow;</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msub> <mover> <mi>r</mi> <mo>&RightArrow;</mo> </mover> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>41</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein,C∈□M×Mand satisfy the formulas (42), (43) and (44)
<math> <mrow> <msub> <mrow> <mo>[</mo> <msub> <mover> <mi>x</mi> <mo>&RightArrow;</mo> </mover> <mi>k</mi> </msub> <mo>]</mo> </mrow> <mi>m</mi> </msub> <mo>=</mo> <msub> <mrow> <mo>[</mo> <msub> <mover> <mi>x</mi> <mo>&RightArrow;</mo> </mover> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>m</mi> </msub> </mrow> </msub> <mo>]</mo> </mrow> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>42</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mrow> <mo>[</mo> <msub> <mover> <mi>r</mi> <mo>&RightArrow;</mo> </mover> <mi>k</mi> </msub> <mo>]</mo> </mrow> <mi>m</mi> </msub> <mo>=</mo> <msub> <mrow> <mo>[</mo> <msub> <mi>&theta;</mi> <mi>dec</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mrow> <mo>-</mo> <msub> <mi>p</mi> <mrow> <mrow> <mo>(</mo> <mi>m</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>H</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mrow> <mrow> <mo>(</mo> <mi>m</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>s</mi> <mo>&RightArrow;</mo> </mover> <mi>m</mi> </msub> <mo>]</mo> </mrow> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>43</mn> <mo>)</mo> </mrow> </mrow> </math>
Figure GDA0000114928210000108
Then, if the system can realize demodulation, it needs to reasonably select the fractional Fourier transform multiplexing order piSo that the determinant | C | is not zero. When | C | is not zero, the solution of equation (41) is as shown in equation (45)
<math> <mrow> <msub> <mover> <mi>x</mi> <mo>&RightArrow;</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msup> <mi>C</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>&CenterDot;</mo> <msub> <mover> <mi>r</mi> <mo>&RightArrow;</mo> </mover> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>45</mn> <mo>)</mo> </mrow> </mrow> </math>
The invention is described in detail below with reference to the following figures and examples:
in the simulation experiment, two user fractional Fourier domain order multiplexing secure communication systems composed of fractional Fourier domain two-channel multiplexer shown in FIG. 2 are adopted, and the corresponding fractional Fourier transform multiplexing order is p1=0.12、p2=0.62、p30.18 and p40.68. The first path of signal of the user 1 is a QPSK modulation signal, the second path of signal is an 8PSK modulation signal, the first path of signal of the user 2 is an 8QAM signal, and the second path of signal is a 16QAM signal. The constellation diagram of the two output signals output by the encryption end of the system is shown in fig. 3.
At the system decryption end, if the fractional Fourier transform order adopted by decryption is not equal to the fractional Fourier transform order multiplexed by the encryption end, an error occurs in decryption. FIG. 4 gives p'1=0.1、p’2=0.6、p’30.2 and p'40.7 is the constellation of the decrypted signal obtained by the decryption key. FIGS. 5(a) and (b) show respectively the mean square error of the decrypted signal as a function of p'1、p’2And p'3、p’4Graphs of the curves, FIGS. 6(a) and (b) show the decrypted signal bit error rate as a function of p'1P '2 and p'3、p’4A varying surface plot.
From the simulation results, it can be found that when the key for signal decryption and the encrypted key have large errors, the information decryption has large errors, and therefore, the secret communication method provided by the invention has high security. In addition, the secret communication method provided by the invention can realize secret communication in a multi-carrier transmission mode and also provides a new way for the design of a multi-user communication system.
The above detailed description is intended to illustrate the objects, aspects and advantages of the present invention, and it should be understood that the above detailed description is only exemplary of the present invention and is not intended to limit the scope of the present invention, and any modifications, equivalents, improvements and the like made within the spirit and principle of the present invention should be included in the scope of the present invention.

Claims (1)

1. A secure communication method based on fractional Fourier transform order multiplexing is characterized in that: the method is divided into information encryption and decryption,
the steps for realizing information encryption are as follows:
step one, constructing a fractional Fourier domain to accurately reconstruct an N-channel multiplexer;
according to the length L of the information to be transmitted, an N-channel multiplexer with the Fourier domain length of NxL and the time domain sampling interval of delta t is selected, and a comprehensive filter bank of the N-channel multiplexer is composed of { G }l(k)}l=0,1,...,N-1Denoted by, analysis filterbank is represented by { H }l(k)}l=0,1,...,N-1Represents; p is designed by the following equations (1) and (2) according to the number M of users in the systemiOrder (i ═ 1, 2, …, M2) Fractional order Fourier domain multiplexer
G l , p i ( k ) = G l ( k ) - - - ( 1 )
<math> <mrow> <msub> <mi>H</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mo>&CenterDot;</mo> <mi>cot</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mi>&pi;</mi> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msup> <mi>k</mi> <mn>2</mn> </msup> <msubsup> <mi>&Delta;u</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> <mn>2</mn> </msubsup> </mrow> </msup> <msub> <mi>H</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein,
Figure FDA0000114928200000013
is piA first-path synthesis filter in the fractional-order Fourier domain N-channel multiplexer,
Figure FDA0000114928200000014
is piThe first path analysis filter in the fractional order fourier domain N-channel multiplexer,
Figure FDA0000114928200000015
is a fractional Fourier domain sampling interval, and fractional Fourier domain order piSatisfies the relationship shown in the formula (3)
Figure FDA0000114928200000016
Step two, modulating the information to be transmitted by adopting the fractional order Fourier domain multiplexer comprehensive filter group obtained in the information encryption step one to obtain M fractional order Fourier transform order multiplexing signals
Figure FDA0000114928200000017
M is 1, 2,.. times.m, and its mathematical expression is shown in formula (4)
<math> <mrow> <msub> <mover> <mi>s</mi> <mo>&RightArrow;</mo> </mover> <mi>m</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>G</mi> <msub> <mrow> <mi>l</mi> <mo>,</mo> <mi>p</mi> </mrow> <mrow> <mrow> <mo>(</mo> <mi>m</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>M</mi> <mo>+</mo> <mi>i</mi> </mrow> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <msub> <mi>p</mi> <mrow> <mrow> <mo>(</mo> <mi>m</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>M</mi> <mo>+</mo> <mi>i</mi> </mrow> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mi>&theta;</mi> <mi>int</mi> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>x</mi> <mo>&RightArrow;</mo> </mover> <mrow> <mi>l</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein,
Figure FDA0000114928200000021
the ith channel transmission information representing the ith user, and a matrix thetaint∈□NL×LRepresents an interpolation operation, which is defined as shown in equation (5)
Figure FDA0000114928200000022
Matrix array
Figure FDA0000114928200000023
Represents piAn order fractional Fourier domain synthesis filtering operation defined as shown in equation (6)
<math> <mrow> <msub> <mrow> <mo>[</mo> <msub> <mi>G</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>]</mo> </mrow> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>j</mi> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>&CenterDot;</mo> <mi>cot</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mi>&pi;</mi> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msup> <mi>k</mi> <mn>2</mn> </msup> <msubsup> <mi>&Delta;u</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> <mn>2</mn> </msubsup> </mrow> </msup> <msub> <mi>G</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
Matrix arrayRepresents piDiscrete fractional order Fourier transform of order defined as shown in equation (7)
<math> <mrow> <msub> <mrow> <mo>[</mo> <msub> <mi>F</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> </msub> <mo>]</mo> </mrow> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mfrac> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mi>&pi;</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>-</mo> <mi>j</mi> <mo>&CenterDot;</mo> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mi>&pi;</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> <mi>N</mi> </mfrac> </msqrt> <mo>&CenterDot;</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>&CenterDot;</mo> <mi>cot</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mi>&pi;</mi> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <msubsup> <mi>&Delta;u</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> <mn>2</mn> </msubsup> <mo>-</mo> <mi>j</mi> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> <mi>N</mi> </mfrac> <mi>mn</mi> <mo>+</mo> <mi>j</mi> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>&CenterDot;</mo> <mi>cot</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mi>&pi;</mi> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msup> <mi>n</mi> <mn>2</mn> </msup> <msup> <mi>&Delta;t</mi> <mn>2</mn> </msup> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
Step three, M fractional Fourier transform order multiplexing signals obtained in the information encryption step two
Figure FDA0000114928200000027
Sequentially sending out;
the steps for realizing information decryption are as follows:
step one, received M fractional Fourier transform order multiplexing signals
Figure FDA0000114928200000028
Sequentially by a selected p by an information encryption step(m-1)M+1M is 1, 2,.. M, an analysis filter bank of an order fractional order fourier domain multiplexer to obtain M output signal vectors;
step two,The k (k is 0, 1,.., L-1) th element of the M output signal vectors obtained in the first extraction information decryption step forms a vector
Figure FDA0000114928200000029
By matrix multiplication
Figure FDA00001149282000000210
Demodulating the vector formed by the k-th element in all the transmitted signal vectors
Figure FDA00001149282000000211
The mth element in the user is the kth element of the input signal vector of the mth channel of the mth user;
step three, using all input signal vectors obtained in the information decryption step two
Figure FDA00001149282000000212
Resuming sending informationThe decryption process is completed.
CN2009100937244A 2009-09-25 2009-09-25 Secret communication method based on fraction order Fourier transform order-multiplexing Expired - Fee Related CN101667911B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100937244A CN101667911B (en) 2009-09-25 2009-09-25 Secret communication method based on fraction order Fourier transform order-multiplexing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100937244A CN101667911B (en) 2009-09-25 2009-09-25 Secret communication method based on fraction order Fourier transform order-multiplexing

Publications (2)

Publication Number Publication Date
CN101667911A CN101667911A (en) 2010-03-10
CN101667911B true CN101667911B (en) 2012-05-23

Family

ID=41804366

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100937244A Expired - Fee Related CN101667911B (en) 2009-09-25 2009-09-25 Secret communication method based on fraction order Fourier transform order-multiplexing

Country Status (1)

Country Link
CN (1) CN101667911B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103546261B (en) * 2012-07-10 2016-10-05 中国矿业大学(北京) Micro-seismic wireless high-speed transmission system applied to security field
CN106102045A (en) * 2016-05-25 2016-11-09 赵京磊 A kind of secret communication method using Fourier Transform of Fractional Order
CN113992384B (en) * 2021-10-22 2023-10-20 延安大学 Secret communication method based on fractional Fourier transform order multiplexing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431496A (en) * 2008-12-08 2009-05-13 哈尔滨工业大学 Modulation-demodulation method for fraction Fourier transform domain with unequal power spectral density

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431496A (en) * 2008-12-08 2009-05-13 哈尔滨工业大学 Modulation-demodulation method for fraction Fourier transform domain with unequal power spectral density

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Soo-Chang Pei, Fellow, IEEE, and Wen-Liang Hsue.The Multiple-Parameter Discrete Fractional FourierTransform.《IEEE SIGNAL PROCESSING LETTERS》.2006,第13卷(第6期),第329至332页. *
孟祥意 等.分数阶傅里叶域两通道滤波器组.《电子学报》.2008,第36卷(第5期),第919至926页. *

Also Published As

Publication number Publication date
CN101667911A (en) 2010-03-10

Similar Documents

Publication Publication Date Title
CN100566231C (en) The compensation of nonlinear distortion in the modem receiver
Zepernick et al. Pseudo random signal processing: theory and application
CN101986632B (en) Correlation delay-differential chaos shift keying-based modulation communication method
US6317409B1 (en) Residue division multiplexing system and apparatus for discrete-time signals
JP5456169B2 (en) Method for transmitting pre-equalized digital data and transmitter station implementing such a method
JP5200139B2 (en) Carrier interference processing method, carrier interference receiver system and program
Perrins et al. PAM decomposition of M-ary multi-h CPM
CN104254984B (en) Wireless communications method and corresponding emitter, receiver and communication system
US20140153675A1 (en) Estimation of a Time, Phase and Frequency Shift of an OQAM Multicarrier Signal
Tao et al. Transform order division multiplexing
JP2001503591A (en) Construction of prototype signal for multicarrier transmission
Bodhe et al. Design of Simulink Model for OFDM and Comparison of FFT-OFDM and DWT-OFDM
CN101667911B (en) Secret communication method based on fraction order Fourier transform order-multiplexing
CN102857284A (en) Data transmitting method, data receiving method, data transmitting device, data receiving device and system
CN103117859B (en) A kind of asymmetrical optical image encryption method based on elliptic curve
CN202906963U (en) A frequency deviation estimating system of a coherent demodulation frequency shift keying modulating signal
Beygi et al. Bilinear matrix factorization methods for time-varying narrowband channel estimation: Exploiting sparsity and rank
CN108199988A (en) Frequency domain GFDM low complex degree least mean-square error method of reseptances and receiver
CN112583574A (en) WFRFT transmission method and system based on two-dimensional chaotic mapping amplitude phase encryption
US20040170280A1 (en) Systems, methods and computer program products for encryption and decryption using wavelet transforms
CN101739660B (en) Method for encrypting and decrypting image based on multi-order fractional Fourier transform
Saideh et al. Efficient equalization for FBMC-OQAM under doubly selective channel estimation errors
CN108574574A (en) Physical layer encryption method based on multi-dimensional constellation rotation
CN101222326B (en) Communications security and decipherment method based on four-weighted score Fourier transform
WO2004095723A2 (en) Secure nonlinear keting modulation and demodulation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120523

Termination date: 20130925