CN101617935B - Oct中基于时空分光的宽光谱高分辨探测方法及*** - Google Patents

Oct中基于时空分光的宽光谱高分辨探测方法及*** Download PDF

Info

Publication number
CN101617935B
CN101617935B CN2009101009727A CN200910100972A CN101617935B CN 101617935 B CN101617935 B CN 101617935B CN 2009101009727 A CN2009101009727 A CN 2009101009727A CN 200910100972 A CN200910100972 A CN 200910100972A CN 101617935 B CN101617935 B CN 101617935B
Authority
CN
China
Prior art keywords
spectral
resolution
spectrum
light
oct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009101009727A
Other languages
English (en)
Other versions
CN101617935A (zh
Inventor
丁志华
王川
王凯
孟婕
陈明惠
吴彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN2009101009727A priority Critical patent/CN101617935B/zh
Publication of CN101617935A publication Critical patent/CN101617935A/zh
Application granted granted Critical
Publication of CN101617935B publication Critical patent/CN101617935B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种OCT中基于时空分光的宽光谱高分辨探测方法及***。从宽带光源发出的低相干光,经光隔离器入射到宽带光纤耦合器,经耦合器分光后分别进入扫面探头和参考臂,返回的光在宽带光纤耦合器中产生干涉,探测臂将干涉信号分解成不同光谱分量后实施探测,然后传入计算机重建样品图像。在探测臂中干涉光谱信号先通过低分辨率、宽自由光谱范围的时间域分光器件,再通过高分辨率、窄自由光谱范围的空间域分光器件,再由光谱成像***探测。本发明能够在满足高光谱分辨率的前提下,减小光谱成像***的视场,避免了大视场光谱成像时存在的场曲以及光谱串扰等问题,从而实现高信噪比、高分辨率的谱域OCT成像。

Description

OCT中基于时空分光的宽光谱高分辨探测方法及***
技术领域
本发明涉及光学相干层析成像(OCT)技术,尤其涉及一种OCT中基于时空分光的宽光谱高分辨探测方法的***。
背景技术
光学相干层析成像(Optical Coherence Tomography,简称OCT)能实施活体内部组织结构与生理功能的非接触、无损伤、高分辨率在体成像,在生物医学成像领域有着广泛的应用。
目前的谱域OCT***通过高速线阵CCD来并行采集干涉信号的光谱分量,无需轴向扫描就可以得到样品的深度信息,具有快速和高灵敏度的特点,其***核心是探测臂中的快速光谱仪。在OCT***中,***的轴向分辨率是与光源带宽成反比,光源带宽越宽,对应的相干长度就越短,轴向分辨率就越高。在眼科、皮肤、肿瘤等学科中,超高分辨率(2-3um)的医学图像对临床疾病诊断有着重要意义。因此,谱域OCT必须采用更宽光谱范围的光源,同时探测臂的光栅光谱仪必须探测更宽的光谱成分,才能提高***的轴向分辨率。国外很多科研机构都开展了这方面的研究,如美国哈佛医学院的N.A.Nassif小组构建了基于890nm中心波长,带宽150nm的SLD(超辐射二极管)光源的超高分辨率谱域OCT***,轴向分辨率为2.9um;美国麻省理工的J.G.Fujimoto小组构建了基于850nm中心波长,带宽144nm的飞秒激光器的超高分辨率超谱域OCT***,轴向分辨率为2.1um。在超高分辨率谱域OCT***的探测臂部分,传统的方法是采用更多像素数的线阵CCD来探测更多的光谱分量,或者基于有限像素数的线阵CCD探测更宽的光谱范围,但牺牲光谱仪的光谱分辨率。由于线阵CCD像素数的增加意味着视场的增大,除非设计更加复杂的光学成像***,否则在像面上(CCD感光面)不可避免的会出现严重的场曲现象,同时由于光谱范围太宽,色散现象严重,导致不同色光的聚焦位置不同,使得光谱仪无法完全分开各种色光而引入串扰(cross-talk),探测信噪比下降继而***轴向分辨率下降,最终降低了成像质量。而降低光谱仪的光谱分辨率意味着谱域OCT成像深度的降低。因此,如何在有限成像视场的情况下使光栅光谱仪高分辨地测量更宽广的光谱范围是超高分辨率谱域OCT***研制的一大技术难点。
发明内容
为了克服上述技术难点的不足,本发明的目的在于提供了一种OCT中基于时空分光的宽光谱高分辨探测方法的***,在超高分辨率的谱域OCT***的探测臂部分,采用时间域和空间域两级分光的结构来实现高光谱分辨率的超宽带光谱探测。
本发明的目的是通过如下技术方案实现的:
一、一种OCT中基于时空分光的宽光谱高分辨探测方法:
在谱域OCT***的探测臂采用时间域和空间域两级分光,实现谱域OCT的宽带光谱高分辨率探测;其具体步骤如下:
1)在谱域OCT***的探测臂中,先通过自由光谱范围大、光谱分辨率低的声光调制器(acousto-optic tunable filter,AOTF)作为一级分光器件进行时间域上的第一级分光,将宽带光谱在时间上分成序列窄带光谱依次输出;
2)在谱域OCT***的探测臂中,在一级分光器件之后,再通过光谱分辨率高、自由光谱范围窄的空间域分光器件进行第二级分光,将来自声光调制器的序列窄带光谱在空间域上实施进一步的分光;空间域分光器件虚像相控阵列(Virtual Imaged PhasedArray,VIPA)的自由光谱范围大于声光调制器的光谱分辨率;
3)在谱域OCT***的探测臂中,利用两级分光器件时空分光后的光谱,通过由聚焦透镜和高速线阵CCD组成的光谱成像***实施光谱成像和并行探测。
二、一种OCT中基于时空分光的宽光谱高分辨探测***:
本发明包括宽带光源、光隔离器、宽带光纤耦合器、四个偏振控制器、参考臂、扫描探头和探测臂;从宽带光源出来的低相干光,经第一偏振控制器、光隔离器入射到宽带光纤耦合器,经分光后一路经第二偏振控制器进入扫描探头,另一路经第三偏振控制器进入参考臂,返回的光在宽带光纤耦合器中干涉后,经第四偏振控制器,进入探测臂把干涉信号分解成光谱信号,最后这些光谱信号传入计算机,在计算机进行处理,通过逆傅立叶变换重建图像。所述探测臂:包括声光调制器、第一准直透镜、柱面聚焦透镜、虚像相控阵列、第一聚焦透镜和高速线阵CCD;干涉光先通过自由光谱范围大、光谱分辨率低的声光调制器后,经第一准直透镜和柱面聚焦透镜,入射到一个光谱分辨率高、自由光谱范围窄的虚像相控阵列,再由第一聚焦透镜成像和高速线阵CCD进行并行探测,实现谱域OCT的宽光谱高分辨测量。
所述扫描探头:包括第三准直透镜、扫描振镜和第二聚焦透镜;经宽带光纤耦合器分光后的光经第二偏振控制器、第三准直透镜、扫描振镜和第二聚焦透镜后照射到样品,由原路返回经第二偏振控制器至宽带光纤耦合器。
所述参考臂:包括第二准直透镜、色散补偿器、中性滤光片和平面反射镜;经宽带光纤耦合器分光后的光经第三偏振控制器、第二准直透镜、色散补偿器、中性滤光片和平面反射镜,由原路返回经第三偏振控制器至宽带光纤耦合器。
所述探测臂:由声光调制器、第一准直透镜、柱面聚焦透镜、虚像相控阵列、第一聚焦透镜和高速线阵CCD组成;先通过自由光谱范围大、光谱分辨率低的声光调制器进行时间域上的第一级分光,将宽带光谱在时间上分成序列窄带光谱依次输出。从声光调制器出射的序列窄带光谱经第一准直透镜和柱面聚焦透镜,入射到一个光谱分辨率高、自由光谱范围窄的虚像相控阵列进行空间域上的第二级分光。虚像相控阵列的自由光谱范围大于声光调制器的光谱分辨率,它将声光调制器输出的序列窄带光谱在空间上进行高分辨分光。经前后两级分光器件时空分光后的光谱,经第一聚焦透镜成像,采用高速线阵CCD进行并行探测,实现谱域OCT的宽光谱高分辨测量。最后这些光谱信号传入计算机,并在计算机中实施逆傅立叶变换等处理重建样品图像。
与背景技术相比,本发明具有的有益效果是:
1、通过声光调制器和虚像相控阵列在时间域和空间域上的两级分光,能够实现高光谱分辨率的宽带光谱探测。相比传统的光栅光谱仪,光谱信号在时间域上得到了预先处理,因此减小了光谱成像***中CCD的视场。由于成像视场变小,可以消除传统谱域OCT***的光谱仪在大光谱范围探测时存在的光谱串扰以及大视场时存在的场曲、畸变以及色散导致的离焦现象,能显著提高光谱探测的信噪比。同时,因为光谱成像视场的减小,整个光谱探测***更容易实现小型化和集成化。
2、由于声光调制器自由光谱范围很宽,虚像相控阵列的光谱分辨率很高,两者级联而成的时空分光组合器件,可以突破传统成像光谱仪中光谱范围与光谱分辨率的制约关系,实现宽带光谱的高分辨探测。
3、本发明提出的宽光谱高分辨探测方法和***除了可以应用于超高分辨率谱域OCT***中,也可以应用于其它光谱探测应用领域,如天文学,元素分析,以及其它光谱成像***中。
附图说明
图1是本发明的***结构原理示意图。
图2是本发明探测臂的放大示意图。
图3是本发明的时序图。
图中:1、宽带光源,2、光隔离器,3、宽带光纤耦合器,4、偏振控制器,5、准直透镜,6、扫描振镜,7、聚焦透镜,8、样品,9、准直透镜,10、色散补偿器,11、中性滤光片,12、平面反射镜,13、声光调制器,14、准直透镜,15、柱面透镜,16、虚像相控阵列,17、聚焦透镜,18、高速线阵CCD,19、参考臂,20、扫描探头,21、探测臂。
具体实施方式
下面结合附图和实施示例对本发明作进一步的说明:
如图1、图2所示,本发明包括宽带光源1、光隔离器2、宽带光纤耦合器3、四个偏振控制器4、参考臂19、扫描探头20和探测臂21。从宽带光源1出来的低相干光,经第一偏振控制器4、光隔离器2入射到宽带光纤耦合器3,经分光后,一路经第二偏振控制器4进入扫描探头20,经准直透镜5、扫描振镜6和聚焦透镜7后照射到样品8,由原路返回经第二偏振控制器4至宽带光纤耦合器3;另一路经第三偏振控制器4进入参考臂19,经准直透镜9、色散补偿器10、中性滤光片11和平面反射镜12,由原路返回经第三偏振控制器4至宽带光纤耦合器3。从扫描探头20和参考臂19返回的光在宽带光纤耦合器3中干涉后,经第四偏振控制器4,进入探测臂21。
在探测臂21中,干涉光首先进入声光调制器13,通过控制声光调制器的输出频段,将整个宽带光谱范围内的光信号在时间上分成序列窄带光谱依次输出,实现时间域上的第一次分光。声光调制器输出的窄带光谱,经准直透镜14,入射柱面透镜15,被汇聚成一条直线,汇聚在虚像相控阵列16的下表面上,虚像相控阵列16的自由光谱范围大于声光调制器13的光谱分辨率。除了入射窗口之外,虚像相控阵列16的上表面镀有反射率100%的反射膜,将下表面反射的能量全部反射回下表面,下表面则镀有高反射膜,上下表面的多次反射形成了一系列由柱面透镜15所聚焦的平行光汇聚而成的直线的虚像,即虚像阵列。这些虚像之间互相干涉产生了空间分光的作用。利用前后两级分光器件经时空分光后的光谱,经聚焦透镜17成像,采用高速线阵CCD 18进行光谱的并行探测,从而实现超宽带光谱的高分辨测量。最后这些光谱信号的测量结果传入计算机,在计算机中进行逆傅立叶变换等处理来重建样品图像。
如图3所示,在所述探测臂中,通过控制加载在声光调制器13上的射频频率,改变声光调制器13的输出频段,将整个宽带光谱范围内的光信号在时间上分成序列窄带光谱依次输出,实现时间域上的第一次分光。虚像相控阵列16对每一个声光调制器13的窄带输出信号做进一步的空间分光,实现宽光谱的高分辨时空域探测。
***中偏振控制器4的作用是便于调整各个通道的偏振模式,以将偏振模色散的影响降到最低,提高成像质量。
本发明公开的一种谱域OCT的宽光谱高分辨探测方法及***,可以在有限视场的情况下,对超宽光谱进行高分辨测量,从而能实现谱域OCT的超高轴向分辨率,同时能改善传统谱域OCT***光谱探测中由场曲引入的信噪比和轴向分辨率下降等问题,在超高分辨率谱域OCT的光谱探测中有重要意义,也可以用于其它领域的宽光谱高分辨探测***。

Claims (4)

1.一种OCT中基于时空分光的宽光谱高分辨探测方法,其特征在于:在谱域OCT***的探测臂采用时间域和空间域两级分光,实现谱域OCT的宽带光谱高分辨率探测;其具体步骤如下:
1)在谱域OCT***的探测臂中,先通过自由光谱范围大、光谱分辨率低的声光调制器作为一级分光器件进行时间域上的第一级分光,将宽带光谱在时间上分成序列窄带光谱依次输出;
2)在谱域OCT***的探测臂中,在一级分光器件之后,再通过光谱分辨率高、自由光谱范围窄的空间域分光器件进行第二级分光,将来自声光调制器的序列窄带光谱在空间域上实施进一步的分光;空间域分光器件虚像相控阵列的自由光谱范围大于声光调制器的光谱分辨率;
3)在谱域OCT***的探测臂中,利用两级分光器件时空分光后的光谱,通过由聚焦透镜和高速线阵CCD组成的光谱成像***实施光谱成像和并行探测。
2.一种实施权利要求1所述的一种OCT中基于时空分光的宽光谱高分辨探测方法的***,包括宽带光源(1)、光隔离器(2)、宽带光纤耦合器(3)、四个偏振控制器(4)、参考臂(19)、扫描探头(20)和探测臂(21);从宽带光源(1)出来的低相干光,经第一偏振控制器(4)、光隔离器(2)入射到宽带光纤耦合器(3),经分光后一路经第二偏振控制器(4)进入扫描探头(20),另一路经第三偏振控制器(4)进入参考臂(19),返回的光在宽带光纤耦合器(3)中干涉后,经第四偏振控制器(4),进入探测臂(21)把干涉信号分解成光谱信号,最后这些光谱信号传入计算机,在计算机进行处理,通过逆傅立叶变换重建图像;其特征在于,所述探测臂(21):包括声光调制器(13)、第一准直透镜(14)、柱面聚焦透镜(15)、虚像相控阵列(16)、第一聚焦透镜(17)和高速线阵CCD(18);干涉光先通过自由光谱范围大、光谱分辨率低的声光调制器(13)后,经第一准直透镜(14)和柱面聚焦透镜(15),入射到一个光谱分辨率高、自由光谱范围窄的虚像相控阵列(16),再由第一聚焦透镜(17)成像和高速线阵CCD(18)进行并行探测,实现谱域OCT的宽光谱高分辨测量。
3.根据权利要求2所述的一种实施OCT中基于时空分光的宽光谱高分辨探测方法的***,其特征在于:所述参考臂(19)包括第二准直透镜(9)、色散补偿器(10)、中性滤光片(11)和平面反射镜(12);经分光后的光从第三偏振控制器(4)、经第二准直透镜(9)、色散补偿器(10)、中性滤光片(11)和平面反射镜(12),由原路返回经第三偏振控制器(4)至宽带光纤耦合器(3)。
4.根据权利要求2所述的一种实施OCT中基于时空分光的宽光谱高分辨探测方法的***,其特征在于:所述扫描探头(20)包括第三准直透镜(5)、扫描振镜(6)和第二聚焦透镜(7);经分光后的光从第二偏振控制器(4)经第三准直透镜(5)、扫描振镜(6)和第二聚焦透镜(7)后照射到样品(8),由原路返回经第二偏振控制器(4)至宽带光纤耦合器(3)。
CN2009101009727A 2009-08-06 2009-08-06 Oct中基于时空分光的宽光谱高分辨探测方法及*** Expired - Fee Related CN101617935B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009101009727A CN101617935B (zh) 2009-08-06 2009-08-06 Oct中基于时空分光的宽光谱高分辨探测方法及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009101009727A CN101617935B (zh) 2009-08-06 2009-08-06 Oct中基于时空分光的宽光谱高分辨探测方法及***

Publications (2)

Publication Number Publication Date
CN101617935A CN101617935A (zh) 2010-01-06
CN101617935B true CN101617935B (zh) 2011-05-04

Family

ID=41511478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101009727A Expired - Fee Related CN101617935B (zh) 2009-08-06 2009-08-06 Oct中基于时空分光的宽光谱高分辨探测方法及***

Country Status (1)

Country Link
CN (1) CN101617935B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101803908A (zh) * 2010-03-01 2010-08-18 浙江大学 基于色散调制的无镜像光学频域成像***及方法
CN102540474B (zh) * 2012-01-11 2014-08-13 哈尔滨工业大学 一种实现边缘陡峭且光强波动低的平顶光束整形装置的整形控制方法
CN102657519B (zh) * 2012-05-11 2013-11-20 浙江大学 基于oct的大动态范围流速的高灵敏度测量***及方法
US9163929B2 (en) * 2012-08-23 2015-10-20 Samsung Electronics Co., Ltd. Tomographic image generation apparatus having modulation and correction device and method of operating the same
CN102934986B (zh) * 2012-12-04 2014-08-27 天津迈达医学科技股份有限公司 基于gpu平台的眼科频域oct***和处理方法
WO2014118674A2 (en) * 2013-01-30 2014-08-07 Koninklijke Philips N.V. Imaging system with hyperspectral camera guided probe
CN103271721B (zh) * 2013-05-17 2014-11-05 浙江大学 基于光谱编码与正交分光的并行oct探测方法及***
CN104655032B (zh) * 2015-02-06 2017-05-17 浙江大学 基于正交色散谱域干涉仪的高精度间距测量***和方法
CN105147241B (zh) * 2015-07-03 2017-06-16 南京航空航天大学 基于双空间载频技术拓展oct成像深度的方法与***
US20190021601A1 (en) * 2017-07-19 2019-01-24 Colgate-Palmolive Company Compact Imaging System and Method Therefor
CN108514404B (zh) * 2018-03-28 2021-08-10 深圳市太赫兹科技创新研究院 光学相干断层成像***
CN108535217A (zh) * 2018-04-08 2018-09-14 雄安华讯方舟科技有限公司 光学相干层析成像***
CN109330558A (zh) * 2018-09-29 2019-02-15 执鼎医疗科技(杭州)有限公司 用于增大眼底成像范围的oct***
CN110146467B (zh) * 2019-05-10 2020-06-02 清华大学 高光谱干涉非标记成像方法及活细胞定量断层成像***
CN111795753B (zh) * 2020-06-25 2021-08-06 华南理工大学 基于时空频压缩的超快时空频信息实时测量方法和***
CN112595679A (zh) * 2021-03-04 2021-04-02 季华实验室 一种谱域光学相干层析测量***及测量方法
CN115077698A (zh) * 2022-06-13 2022-09-20 西安应用光学研究所 共靶面多通道aotf高光谱实时成像***

Also Published As

Publication number Publication date
CN101617935A (zh) 2010-01-06

Similar Documents

Publication Publication Date Title
CN101617935B (zh) Oct中基于时空分光的宽光谱高分辨探测方法及***
CN101427911B (zh) 超高分辨率谱域oct的超宽带光谱探测方法及***
WO2019183838A1 (zh) 光学相干断层成像***
EP1887926B1 (en) System and method which use spectral encoding heterodyne interferometry techniques for imaging
CN103271721B (zh) 基于光谱编码与正交分光的并行oct探测方法及***
JP5680826B2 (ja) 1以上のスペクトルを符号化する内視鏡技術によるデータ生成システム
US7659991B2 (en) Colorimetric three-dimensional microscopy
CN106361279B (zh) 光学相干层析成像***全探测深度色散补偿方法
US9243888B2 (en) Image mapped optical coherence tomography
CN108514404A (zh) 光学相干断层成像***
CN108572161B (zh) 基于分波阵面干涉仪的光学相干层析成像装置
CN101884524B (zh) 基于自适应光学技术的宽视场光学相干层析仪
CN201328803Y (zh) 超高分辨率谱域oct的超宽带光谱探测***
CN104224117B (zh) 一种光谱编码共焦与光学相干层析协同成像方法与***
CN101032390A (zh) 用于在体光学活检的谱域oct内窥成像***
CN203576470U (zh) 基于分段光谱光程编码的谱域oct探测***
CN101732035B (zh) 基于光程编码与相干合成的光学超分辨方法
EP1870030A1 (en) Apparatus and method for frequency domain optical coherence tomography
CN110160440A (zh) 一种基于频域oct技术的三维彩色动态成像装置及方法
Wang et al. Increasing the imaging depth of spectral-domain OCT by using interpixel shift technique
CN105761218A (zh) 光学相干层析成像的图像伪彩色处理方法
CN112945130B (zh) 同时获得深度和表面信息的超快显微成像***
CN201481402U (zh) 一种oct中基于时空分光的宽光谱高分辨探测***
CN203280368U (zh) 基于光谱编码与正交分光的并行oct探测***
Feng et al. Lensless fiber imaging with long working distance based on active depth measurement

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110504

Termination date: 20140806

EXPY Termination of patent right or utility model