CN101573169B - 使用数个异阶段吸附器的纯化或者分离方法 - Google Patents

使用数个异阶段吸附器的纯化或者分离方法 Download PDF

Info

Publication number
CN101573169B
CN101573169B CN2007800491302A CN200780049130A CN101573169B CN 101573169 B CN101573169 B CN 101573169B CN 2007800491302 A CN2007800491302 A CN 2007800491302A CN 200780049130 A CN200780049130 A CN 200780049130A CN 101573169 B CN101573169 B CN 101573169B
Authority
CN
China
Prior art keywords
absorber
gas
regeneration
phase
absorbers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007800491302A
Other languages
English (en)
Other versions
CN101573169A (zh
Inventor
C·莫内罗
I·贝莱克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Publication of CN101573169A publication Critical patent/CN101573169A/zh
Application granted granted Critical
Publication of CN101573169B publication Critical patent/CN101573169B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0431Beds with radial gas flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40066Six
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/404Further details for adsorption processes and devices using four beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/406Further details for adsorption processes and devices using more than four beds
    • B01D2259/4062Further details for adsorption processes and devices using more than four beds using six beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/416Further details for adsorption processes and devices involving cryogenic temperature treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

本发明涉及一种以TSA模式操作的纯化或者分离包含至少两种组分的气体混合物的方法,其中使用n个径向吸附器,n≥4,每个吸附器经受包含生产周期和再生周期的给定周期T的压力循环,其特征在于所有吸附器的压力循环彼此之间阶段转移,阶段转移持续时间为
Figure D2007800491302A00011
,其中1≤x≤(n-1)并且
Figure D2007800491302A00012

Description

使用数个异阶段吸附器的纯化或者分离方法
本发明涉及一种使用多个吸附器在阶段转换循环中纯化或者分离气体的方法,尤其是涉及在通过低温蒸馏而深冷分离大气空气之前对该空气进行纯化的方法。尤其是本发明还涉及用使用径向吸附器的TSA循环纯化空气。
已知大气空气包含所述空气可以进入空气分离单元冷却箱的换热器之前必须除去的组分,这些组分尤其是例如二氧化碳(CO2)、水蒸气(H2O)、氮氧化物和/或烃化合物。
这是必须的,因为如果不以此方式预处理空气以除去其CO2和水杂质,则这些杂质会在将空气冷却至通常-150℃或更低深冷温度的过程中固化为冰,并且这会导致设备尤其是换热器、蒸馏柱等被堵塞的问题。
而且通常至少部分地除去空气中可能存在的烃和氮氧化物杂质以阻止它们在一个或者多个蒸馏柱底部高度集中,从而防范任何设备破坏风险。
目前根据情况使用TSA(变温吸附)方法或者使用PSA(变压吸附)方法进行空气预处理;其中PSA方法指实际的严格意义上的PSA方法、VSA(真空变压吸附)方法、VPSA方法及其类似方法。
本发明适用于使用以TSA模式操作的径向吸附器的多种方法和单元,也就是说在再生过程中温度增加。
按照惯例,空气纯化TSA方法循环涉及下述步骤:
a)通过在超级大气压和环境温度下吸附杂质纯化空气,
b)将吸附器减压至大气压,
c)在大气压下再生吸附剂,尤其是使用残余气体,通常是来自空气分离单元的不纯的氮气,并且用一个或多个换热器通常加热至100-250℃,
d)将吸附剂冷却至环境温度,尤其是通过持续地使来自空气分离单元的所述残余气体进入其中,但此时不加热,
e)用例如来自生产阶段的另一个吸附器的纯化空气再加压该吸附器。
空气预处理设备通常包括两个吸附器来交替操作,也就是说一个吸附器处于生产阶段而另一个处于再生阶段。
生产阶段相当于通过吸附杂质纯化气体混合物。
再生阶段相当于在吸附步骤中解吸保留在吸附剂上的杂质,通过使用加热到100℃-250℃的残余气体加热吸附剂而进行。其涉及减压、加热、冷却和再加压步骤。
通常将具有持续数秒至数分钟的变化持续时间的两个吸附器的平行步骤加到再生阶段的开始或者结束处。
纯化空气的此类TSA方法尤其是描述在文献US-A-3738084和FR-A-7725845中。
一旦待纯化的流量变高,使用文献US-A-4541851或者专利EP-A-1,638,669中教导的径向吸附器是已知措施。
径向吸附器使得大量流体,尤其是大气空气通过吸附可靠地并且重复地纯化,同时保持已处理流体的良好分布和与所用吸附剂颗粒的机械性能相容的流体流速。
图1描述了径向吸附器的操作。
待纯化或者分离的流体1在底部进入径向吸附器10中,根据情况向心或者离心通过吸附剂块20,并且产物离开上部2。在再生过程中,再生流体3以逆流方式通过顶部进入,解吸包含在吸附剂块20中的杂质,残余气体4离开底部。
吸附器10本身由具有垂直轴AA的圆柱筒节和两个端件构成。吸附剂块通过有孔的外部栅11和通过同样有孔的内部栅12保持在适当位置,其固定到上端件和下部的固体片13上。气体1在圆柱筒节和外部栅之间的外部自由区14中在***垂直循环,径向通过吸附剂块20,然后在通过顶部离开吸附器之前在内部自由区15中垂直循环。再生在相反方向发生。
在上述说明中,在吸附阶段待纯化的气体从***向中心循环则吸附称为向心的。然后离心向发生相应的再生,也就是从中心向外部。这是最普遍的结构,但径向吸附器可以用相同方式以相反流动方向使用,也就是例如在吸附过程中待处理气体将从内部向外流动,而在再生过程中再生气体将从外向内流动。另一种可能的安排是增加一个圆形封闭盘以将吸附剂块分离成两部分。然后在同一个径向吸附器中可以在吸附阶段具有例如通过第一吸附剂体积的离心流,接着是在吸附剂上部体积中的向心流。
关于径向吸附器周围的设备,即蒸馏柱、圆柱反应器、标准叠置床吸附器,也就是在垂直轴上为圆柱的那些,以及基本上圆柱形的储存器和体积,成本通常大概随着尺寸(待处理流体的体积或量)增加到功率为0.7-0.9,通常平均至功率为大约0.8而变化,这意味着可以更经济地建造一个比两个一半尺寸的单元更大的单元。
考虑具有垂直轴的圆柱形传统吸附器。如果为相同效率增加装填气体的流量,也就是说基本上为相同的压降,则通道横截面需要增加而同时维持相同的吸附剂高度。然而构建大直径垂直轴圆柱吸附器导致死体积和气体分布问题。
另一方面,水平轴圆柱吸附器可以通过增加筒节部分扩展以适应大流量。然而这种广泛使用的吸附器类型的缺点是如因为沿筒节的更长路径气体在吸附剂决内的分布,或者如由于吸附剂和外部环境之间大面积热交换引起的实质热损失。
会是这样的情况的是径向吸附器的特别特征在于它们的尺寸可以容易地扩展,并且可以用于处理非常高的气体流量。不像许多流体处理设备,流量增加基本上涉及增加设备高度而不是其直径。
所以如果增加待纯化流量,则在现有技术领域通常可以增加径向吸附器的尺寸。
例如径向吸附器直径3米和高7米可以在环境温度下并且在6巴绝对压力下处理200 000Nm3/h空气。为了处理两倍流量即具有相同性能的400 000Nm3/h,可以使用3.75m直径和11-12米高的吸附器。直径仅增加25%,而高度增加超过60%。
对于产生6-7米直径和20-30m高的吸附器没有技术妨碍。通过比较,有该尺寸或者更大尺寸的反应器或者蒸馏柱。
然而,在径向吸附器内部,气体纵向流过内部和外部分布空间,并且径向流过吸附剂块。当增加径向吸附器的尺寸时,这种双路径导致气体分布问题。因为压降基本上随着速率的平方变化,如果保持筒节的直径相同,则吸附器顶部和底部之间的压力差值对于双容积吸附器大约大8倍,效果上对应于双倍流量增加4倍,对应于双倍路径长度增加两倍。为了保持在整个吸附器高度上通过吸附剂床的气体的正确分布,必须用超过2的系数扩大外部通道横截面。
这总的来说意味着相对流量增加分配到气体分布区(内部和外部自由体积)的体积增加了更大比例。结果是吸附器的总体积也就是吸附剂块的体积和分布体积也不仅仅与流量成比例地增加。
因此通过增加吸附器尺寸处理更高流量导致压力损失和气体分布问题,这导致直径增大,结果是体积和重量增加,使操作更复杂。
然而会注意到这不能简单地通过安装多个小尺寸径向吸附器来解决,也就是通过安装例如数个直径为2米的吸附器而不是直径为4米的吸附器,因为直径为4米的吸附器仍然在许多车间易于处理和构建。体积增加就其本身而言不是一个用数个小吸附器取代中等尺寸吸附器的充分理由。这是为什么上述问题迄今未被解决的原因之一。
简而言之,当待纯化流量增加时,增加径向吸附器的尺寸超过4米直径不是要采取的最佳技术和经济方案。
使用到目前为止实践中包含更多数量的吸附器的方法没有解决此处提出的问题。进行包含吸附期和再生期并且使用三个吸附器的TSA类型的纯化循环是已知的操作。
第一组情况涉及在纯化时使用一个吸附器而在再生时使用两个吸附器。该操作模式的一个实例相当于天然气酸性组分(CO2,H2S)的干燥和停止。可以在例如D.M.Ruthven编著的“吸附原理和吸附方法”的第11.2章(第359页)中找到该方法的概要。与仅包括两个吸附器的传统单元相比,以固定的吸附时间,像这样的循环给予再生过程两倍的可以利用时间。这基本上可以最小化再生所需的气体的流量。
可能出现的第二组情况对应于相反情形:在吸附时两个吸附器而在再生时一个吸附器。这是吸附动力学慢并且需要显著体积的吸附剂来停留杂质时的特殊情况。
如果再生在不同于吸附压力的压力下进行和/或在吸附步骤结束时使再生吸附器与吸附器平行,则TSA类型的纯化单元的再生期包括:加热步骤、常常出现的冷却步骤、和可能的减压/再加压步骤。如果仅仅是确保生产连续性的问题,而所述吸附器的供给和生产阀正处于打开/关闭状态下则该平行可以维持数秒,或者如果存在稳定再生瓶的温度或组成的情况,则可持续数分钟至几十分钟。该平行可相当于减半的流量通过两个吸附器中的每一个的循环,或者取决于吸附器的不同百分比的循环。总的来说,平行是给与这样一个步骤的名称,在所述步骤中待纯化气体被投料到循环中不同点上的至少两个吸附器,例如生产阶段结束时的一个吸附器和已经刚好再生并且再加压的一个吸附器。
大体上,对于此类循环,吸附期的持续时间与再生期的持续时间不同。为了提供更精确的吸附循环描述,使用了阶段时间
Figure G2007800491302D00051
和循环时间T概念。
包含N个吸附器的循环包括持续时间等于
Figure G2007800491302D00052
的N个阶段,并且循环时间T相当于吸附器返回压力循环中相同点所需的时间,等于N阶段时间
在该前提的基础上,出现的一个问题是当待处理的体积流量高时,通常至少100000m3/h时,改进涉及径向吸附器的气体处理方法和单元。
本发明方案是一种以TSA模式操作的纯化或者分离包含至少两种组分的气体混合物的方法,其中使用了n个径向吸附器,n≥4,每个吸附器受到包含生产期和再生期的给定持续时间T的压力循环,特征在于所有吸附器的压力循环彼此之间阶段转移,阶段转移的持续时间为
Figure G2007800491302D00054
其中1≤x≤(n-1)以及
Figure G2007800491302D00055
其中
Figure G2007800491302D00056
表示阶段时间。
取决于各种情况,本发明方法可以表现出下述特征之一:
-在压力循环中每一刻,至少两个吸附器在吸附阶段;
-周期性地在给定时刻至少三个吸附器处于吸附阶段;
-纯化方法在涉及n/2个生产阶段和n/2个再生阶段的循环中使用了n个径向吸附器,n=4或n=6;
-纯化方法在涉及三个生产阶段和两个再生阶段或者两个生产阶段和三个再生阶段的循环中使用了五个吸附器;
-在吸附器的再生期使用了连续操作的加热器;
-将阶段加热以再生吸附器的持续时间大概等于阶段时间
Figure G2007800491302D00061
-在再生期的加热步骤中使用了与再生期末尾使用的冷却气体的流量不同的加热气体流量;
-在循环过程中修改通过给定吸附器的加热和冷却气体的流量;
-阶段时间为15-90分钟;
-在吸附单元待处理气体的每小时体积流量超过100 000m3/h;
-待处理气体的压力为2-35巴,优选3-8巴绝对压力;
-循环持续时间为90-600分钟;
-气体混合物是空气,并且在生产期除去了空气中包含的二氧化碳和水;
-气体混合物包含显著量的CO2和至少一种杂质,尤其是水和/或氮氧化物和/或含硫产物;
-每个吸附器以吸附剂方式包含活性铝土和/或沸石和/或硅胶和/或活性炭;
-来自生产期的气体经受低温蒸馏。
本发明也涉及纯化和分离气体混合物的装置,其包括n个径向吸附器,其中n≥4,每个吸附器以TSA模式操作,并且经受包括生产期和再生期的压力循环,特征在于每个吸附器通过一个或者多个连接到待纯化气体源和连接到再生气体源并且配备有各自阀门的管进料,阀门打开和关闭通过控制设备控制,使得所有吸附器的压力循环彼此之间阶段转移,阶段转移持续时间为
Figure G2007800491302D00062
其中1≤x≤(n-1)以及
Figure G2007800491302D00063
每个吸附器筒节的高度优选超过10米,优选为12-25米,和/或每个吸附器的直径为4-6.5米。
从下述观察所得出发,也即是增加径向吸附器尺寸表现出了该技术固有的问题,即其增加了专用于与有用体积相关的气体分布的死体积的百分比,本发明依赖于使用多个较小尺寸的吸附器,并且更特别地,依赖于在压力和温度循环中安排它们从而导致相对于现有技术所提议的方案的改进,这些改进在于节省了与吸附器总体积的减少相关的投资。
在本发明的一个简单且优选的实施方案中,用四阶段循环上的较小总体积的四个吸附器取代两阶段循环上的两个吸附器,使得循环的总持续时间和吸附剂的总体积基本上相同。
更普遍的是,转变是从n-吸附器单元到N=2n-吸附器单元,同时保持总吸附剂体积和性能,包括吸附和再生中的压降。
参考仅用于说明的附图2和3将更详细地描述本发明。
本发明的一个实施方案将通过图2描述,其图示说明具有四个径向吸附器的纯化单元,其因此具有4个阶段组成的循环,它们是2个吸附阶段和2个再生阶段。
为了更好地理解,可假定径向吸附器1开始第一吸附阶段,并且然后径向吸附器2开始第二吸附阶段。
将待纯化的气体10通过阀门11和21平行供给至吸附器1、2。通过阀门12和22收集纯化气体20。在相同时间期间内,通过关闭阀门31和32从主要环路隔离已经完成其生产期的吸附器3,然后在开始其再生期之前将其通过阀门34减压。在该步骤中,在再生加热器6中对其部分40加热再生气体30,然后通过阀门33和34流入吸附器3中。
同时并且在相同时间期间,吸附器4将结束其加热子步骤,然后经过阀门45和44用未加热的再生气体50冷却。
因此,吸附器1以单阶段时间的阶段转移遵循与吸附器2相同的压力循环。相同的是吸附器2相对于吸附器3,并且吸附器3相对于吸附器4也是这样。
因此循环过程中的每个吸附器连续运行两个生产阶段,然后是两个再生阶段。
图3描述了4-吸附器单元的一个实例,每个吸附器的压力循环以时间的函数表示。该循环包括4个阶段,并且所有吸附器的压力循环彼此之间阶段转移,阶段转移持续时间为
Figure G2007800491302D00072
其中1≤x≤3并且
Figure G2007800491302D00073
也就是以T/4、2T/4或3T/4进行阶段转移。
在该实例中,该循环的每个阶段代表每个吸附剂。如上所示,在两个阶段时间均发生生产(吸附)期和再生期。而且,一方面第一再生阶段包括平行a步骤,减压b步骤和加热c步骤,它们在阶段时间期间发生,另一方面,第二再生阶段具有加热d子步骤和冷却e以及再加压f步骤,它们同样在阶段时间
Figure G2007800491302D00082
期间发生。
这种操作模式相对于现有技术的在于仅使用2个吸附器的方法或者相对于由例如酸气体的处理启示的并且包括3个吸附器的方法有很多优点。
根据本发明,在生产期间每个吸附器仅有从其中通过的一半的供给流量。对于固定的吸附持续时间,将因而要求一半的吸附剂,并且因为它是径向吸附器,在尺寸上它将小于相同功能的单个吸附器大小的一半。正如上面解释的,这是因为当气体流过所述吸附器时确保气体良好分布所需要的死体积是纵向(或者轴向)和径向的。
回到分别处理200 000和400 000Nm3/h的单元的实例,可以看出通过使用推荐的方案可以节省25%吸附器总体积。
如果使用包含3个吸附器的循环,则可以实现这样节省吸附器尺寸,两个吸附器用于吸附,一个用于再生。通过与深冷分离之前的空气纯化的标准循环相比,这意味着对于给定的吸附时间,可以比标准实践中实现的再生快两倍进行再生。这将限制高再生流量并且产生压降,从而非常不可能用于日常应用。
除总吸附器体积的节省之外,本发明的应用还有其它优点。已知的是已经再生并且再加压为生产模式的吸附器的转变伴随纯化气体的温度增加(Δt),持续时间为持续数分钟至数十分钟。这一点以及该方法下游的加热后果详述在文献EP-A-1347817中。
通过组合相同但阶段转移的循环自动限定了该效果。这在选定的并且描述于图3中的实例中尤为如此。
特别是,当吸附器1开始其第一生产步骤时,吸附器2本身开始其第二生产步骤,并且其因此已经长久地得到了该加热效果。因为纯化气体是由来自吸附器1和2的等份气体组成的,初始温度增加不超过(Δt’=Δt/2)。因此可以补偿平行时间,例如以因此延长再加压步骤,也就是说对于给定量的再加压气体,可以减少纯化气体流量或需要如此做的待纯化气体的流量。这样可以减少流量波动,因此在更小程度上干扰下游低温单元。
这些再加压明显比标准循环中发生得更频繁,但大部分情况下流量的变化幅度远超过其会产生问题的频率。
相反,正如图3的循环中提议的,可能的是通过增加完成其第二生产阶段的平行(a)吸附器(3)的步骤,以更进一步降低总的热效应(Δt”=Δt/3),从而使得操作可以例如在较高压力下进行,并且因此产生更大的热效应,这是不能用标准循环完成的事情,除非在纯化阶段的出口和冷却箱的入口之间增加冷冻剂。
同样,可以引入相当于例如平行的生产子步骤的阶段称为再生阶段,只要该生产子步骤比阶段时间的一半短。实践中该平行子步骤持续时间通常少于10%阶段时间
Figure G2007800491302D00092
将注意到,因为操作是循环的,所以可以选择循环的任何点作为循环起点,并且描述从该点向前的整个循环,产生4个完全任意的阶段。因此例如仍然使用图3的图,如果在第一生产阶段的中间开始描述循环,则我们得到第一生产阶段,包括生产步骤、平行步骤(a)、减压步骤(b)和加热步骤的第二阶段,具有加热和冷却步骤的第三阶段,和具有冷却步骤末端、再加压步骤和第一生产步骤的第四和最后阶段。
实践中,当提及循环和阶段时,指具有生产阶段和再生阶段的最合乎逻辑的陈述,尤其是与循环中的关键点对应的阶段末端和阀门运动。
借助于此4个吸附器,也可以设计连续操作的再生加热器6,这是通过除去非操作期和热损失期,从而有利于所述交换器随着时间的能量消耗和机械完整性的事物。为了实现这些,对在已经通过实例方式提议的图3循环中所需的全部是用于加热开始的阶段之后的阶段期间要求延长的加热步骤。继续加热的子步骤(d)的持续时间使得持续时间(c+d)相当于阶段时间
Figure G2007800491302D00093
在实施例中可以看出这意味着子步骤(d)需要与对应于平行和减压的子步骤的总和相等。
作为实例给出了图3中四个循环的组合。可以对其修改而不因此背离本发明的范围,这在于用于TSA型纯化,也就是包含其中至少一些杂质通过循环比待纯化气体热的气体而解吸的阶段的纯化,纯化单元包括n个吸附器,n≥4,并且使它们以包含n个阶段的持续时间T的循环进行操作,彼此之间阶段转移的阶段转移持续时间为
Figure G2007800491302D00101
其中≤x≤(n-1)并且
Figure G2007800491302D00102
例如,平行可以以与再加压相同的阶段时间中进行,仅仅是在后者之后。也可以在再加压结束和生产开始之间增加等待时间。
将注意到加热气体(40)的流量可与冷却气体(50)的流量不同。在加热和冷却步骤期间,这些流量可以基本上保持恒定,或者可以在这些具体步骤期间修改。这可例如有利于在跨吸附器间保持压降恒定,其至第一接近量以增加吸附剂的平均温度为最冷时的流量,另一方面降低当平均温度较热时的流量。
但是,如果再生可获得的残余气体的流量非常高,例如如果被回收的产物基本上为氧而不是氮,则本发明的结果是现在就可以在比用于吸附的时间稍短一些的时间内再生,也就是使用多个(N≥4)吸附器的结果。
更特别地,如果吸附器的总吸附持续时间为例如120分钟,则其然后可以在80分钟内减压、再生并且再加压,可以采取40分钟的阶段时间并且用5个吸附器操作该方法:3个用于吸附以及2个用于再生,同时将再生压降保持在仍然可以接受的范围内。因为每个吸附器与将用于处理整个流量的标准吸附器的三分之一体积相等,其总计安装标准情况下通常需要的吸附剂体积的5/6。
实际上,通过与涉及3个吸附器(其中2个用于吸附并且1个用于再生)的所用循环相比,现在使用多个吸附器的事实使得有机会更好使用。用3-吸附器体系,并且仍然使用120分钟(2份60分钟)的总吸附持续时间,再生步骤现在应该在60分钟内发生。
根据本方法,仍然对于相同的总吸附持续时间(三次40分钟),如之前所述现在可获得80分钟(2份40分钟)。给定减压和再加压需要的时间,3-吸附器和5-吸附器循环的各自吸附器尺寸,例如分别为20分钟和10分钟,则加热和冷却可用的持续时间在实践中在3-吸附器设置(在上述实施例中为40分钟)情况下比5-吸附器设置(70分钟)情况下少的多。该最后一个方案因此可以相对使用更小的再生流量,也就是首先在再生时以显著较低的压降操作,即使这些压降会比用4-吸附器或6-吸附器单元获得的压降更大。换句话说,使用多个吸附器的事实在一些情况下会使得可以节省一个吸附器,同时保持在本发明范围外执行所不可能的有利方案,原因在于与更少数量的吸附器相关的较小灵活性。
所述所有循环通常通过仪器和控制***自动化管理。这种控制类型相当精细,例如改变步骤的持续时间和/或再生条件以适合操作条件。
将意识到对于较高流量安装多个小吸附器的选择导致明显的节省。
本发明例如可用于以超过500 000Nm3/h的流量、3-8巴的绝对压力和5-45℃的温度纯化空气。
尤其是,推荐本发明方法用于在低温空气分离单元中蒸馏并且以深冷温度分离大气空气之前纯化大气,以生产液体、气体或一些其它形式的氮气和/或氧气。

Claims (20)

1.一种以TSA模式操作的纯化或者分离包含至少两种组分的气体混合物的方法,其中使用n个径向吸附器,n≥4,每个吸附器经受给定持续时间T的包含生产期和再生期的压力循环,其特征在于所有吸附器的压力循环彼此之间阶段转移,阶段转移持续时间为
Figure FSB00000658761100011
其中1≤x≤(n-1)并且
Figure FSB00000658761100012
2.如权利要求1所述的方法,其特征在于在压力循环中的每一时刻至少两个吸附器处于吸附阶段。
3.如权利要求1所述的方法,其特征在于周期地至少三个吸附器在给定时刻处于吸附阶段。
4.如权利要求1所述的方法,其特征在于纯化方法在涉及n/2生产阶段和n/2再生阶段的循环上使用n个径向吸附器,其中n=4或n=6。
5.如权利要求1所述的方法,其特征在于纯化方法在涉及3个生产阶段和2个再生阶段或者2个生产阶段和3个再生阶段的循环上使用5个吸附器。
6.如权利要求1所述的方法,其特征在于在吸附器的再生期使用连续操作的加热器。
7.如权利要求1所述的方法,其特征在于将阶段加热以再生吸附器的持续时间等于阶段时间
8.如权利要求1所述的方法,其特征在于在再生期的加热步骤中使用不同于再生期结束时使用的冷却气体的流量的加热气体流量。
9.如权利要求8所述的方法,其特征在于在循环过程中修改通过给定吸附器的加热和/或冷却气体流量。
10.如权利要求1所述的方法,其特征在于
Figure FSB00000658761100014
为15-90分钟。
11.如权利要求1所述的方法,其特征在于在吸附单元中待处理气体每小时体积流量超过100000m3/h。
12.如权利要求1所述的方法,其特征在于待处理气体的压力为2-35巴绝对压力。
13.如权利要求12所述的方法,其特征在于待处理气体的压力为3-8巴绝对压力。
14.如权利要求1所述的方法,其特征在于循环的持续时间为90-600分钟。
15.如权利要求1所述的方法,其特征在于气体混合物是空气并且在生产期除去了空气中包含的二氧化碳和水。
16.如权利要求1所述的方法,其特征在于每个吸附器包含活性铝土和/或沸石和/或硅胶和/或活性炭作为吸附剂。
17.如权利要求1所述的方法,其特征在于来自生产阶段的气体经受低温蒸馏。
18.一种用于纯化和分离气体混合物的装置,其包括n个径向吸附器,n≥4,每个吸附器以TSA模式操作并且经受包含生产期和再生期的压力循环,其特征在于每个吸附器通过一个或多个连接到待纯化气体源以及再生气体源上并配备有各自阀门的管进料,通过控制设备控制阀门开放和关闭,这样所有吸附器的压力循环彼此阶段转移,阶段转移持续时间为
Figure FSB00000658761100021
其中1≤x≤(n-1)并且
19.如权利要求18所述的装置,其特征在于每个吸附器的筒节高度超过10米,和/或在于每个吸附器的直径为4-6.5米。
20.如权利要求19所述的装置,其特征在于每个吸附器的筒节高度为12-25米。
CN2007800491302A 2007-01-05 2007-12-27 使用数个异阶段吸附器的纯化或者分离方法 Expired - Fee Related CN101573169B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0752531A FR2911077B1 (fr) 2007-01-05 2007-01-05 Procede de purification ou de separatiion utilisant plusieurs adsorbeurs decales en phase
FR0752531 2007-01-05
PCT/FR2007/052627 WO2008087363A2 (fr) 2007-01-05 2007-12-27 Procédé de purification ou de séparation utilisant plusieurs adsorbeurs décalés en phase

Publications (2)

Publication Number Publication Date
CN101573169A CN101573169A (zh) 2009-11-04
CN101573169B true CN101573169B (zh) 2012-08-29

Family

ID=38324172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800491302A Expired - Fee Related CN101573169B (zh) 2007-01-05 2007-12-27 使用数个异阶段吸附器的纯化或者分离方法

Country Status (5)

Country Link
US (1) US8337592B2 (zh)
EP (1) EP2129449B1 (zh)
CN (1) CN101573169B (zh)
FR (1) FR2911077B1 (zh)
WO (1) WO2008087363A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107485961A (zh) * 2016-06-10 2017-12-19 Se工业株式会社 气体精制处理装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2937257A1 (fr) * 2008-10-21 2010-04-23 Air Liquide Methode de construction applicable aux adsorbeurs radiaux de grosse taille
FR2938451B1 (fr) * 2008-11-18 2019-11-01 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Adsorbeurs radiaux monolits en serie
US8012446B1 (en) * 2010-07-08 2011-09-06 Air Products And Chemicals, Inc. Recycle TSA regen gas to boiler for oxyfuel operations
FR2969009A1 (fr) * 2010-12-20 2012-06-22 Air Liquide Procede de sechage d'un flux gazeux
FR2991192A1 (fr) * 2012-06-04 2013-12-06 Air Liquide Procede de production d'hydrogene a differents niveaux de purete par un psa h2
EP2902087A1 (de) * 2014-02-04 2015-08-05 Linde Aktiengesellschaft Verfahren zur Abscheidung einer Komponente eines Gasgemischs unter Verwendung einer Temperaturwechseladsorption
JP6028758B2 (ja) * 2014-03-24 2016-11-16 株式会社豊田中央研究所 吸着式ヒートポンプシステム及び冷熱生成方法
US9731241B2 (en) 2014-06-12 2017-08-15 Air Products And Chemicals, Inc. Radial flow adsorber ‘U’ configuration
JP6065882B2 (ja) 2014-06-30 2017-01-25 株式会社豊田中央研究所 吸着式ヒートポンプシステム及び冷熱生成方法
EP3482813A1 (en) * 2017-11-13 2019-05-15 Antecy Device for effective capturing and concentration of co2 from gaseous streams in a radial bed adsorber
DE102018006960A1 (de) 2018-09-03 2020-03-05 Linde Aktiengesellschaft Verfahren zum Betreiben einer Temperaturwechseladsorptionsanlage und Temperaturwechseladsorptionsanlage
CN109821355B (zh) * 2019-03-15 2021-11-05 东北大学 一种径向流动变压吸附床及其使用方法
EP3901606A1 (en) * 2020-04-20 2021-10-27 Catalytic Instruments GmbH & Co. KG Thermodenuder and method for removing semi-volatile material and semi-volatile particles from an aerosol

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4541851A (en) * 1983-02-28 1985-09-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Reactor and apparatus for purifying by adsorption
CN1341474A (zh) * 2000-08-28 2002-03-27 波克股份有限公司 变温吸附法
WO2003049839A1 (fr) * 2001-12-12 2003-06-19 L'air Liquide, Societe Anonyme A Directoire Et Co Nseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de traitement par adsorption d'un melange gazeux
CN2604223Y (zh) * 2002-05-15 2004-02-25 楚建堂 活性炭纤维废气吸附回收装置
CN1812827A (zh) * 2003-06-27 2006-08-02 液体空气乔治洛德方法利用和研究的具有监督和管理委员会的有限公司 在加速的tsa循环中预净化空气的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4770676A (en) * 1986-05-16 1988-09-13 Air Products And Chemicals, Inc. Recovery of methane from land fill gas
US5220797A (en) * 1990-09-28 1993-06-22 The Boc Group, Inc. Argon recovery from argon-oxygen-decarburization process waste gases
JP2823835B2 (ja) * 1995-12-06 1998-11-11 有限会社川井技術研究所 ガス状炭化水素を含む廃棄ガスから炭化水素を回収する方法
FR2782020B1 (fr) * 1998-08-04 2000-09-15 Air Liquide Procede de separation par adsorption modulee en pression d'un melange de gaz et installation pour sa mise en oeuvre
FR2786110B1 (fr) * 1998-11-23 2001-01-19 Air Liquide Procede de separation par adsorption modulee en pression d'un melange de gaz et installation pour sa mise en oeuvre
US6086659A (en) * 1999-01-29 2000-07-11 Air Products And Chemicals, Inc. Radial flow adsorption vessel
FR2796307B1 (fr) * 1999-07-16 2001-09-14 Air Liquide Unite d'adsorption a modulation de pression
US6210466B1 (en) * 1999-08-10 2001-04-03 Uop Llc Very large-scale pressure swing adsorption processes
FR2806321B1 (fr) * 2000-03-16 2002-10-11 Air Liquide Procede et reacteur de traitement d'un gaz au moyen d'un garnissage actif regenerable
AU784693B2 (en) * 2000-05-19 2006-06-01 Rancilio Macchine Per Caffe' S.P.A. Device for heating and frothing a liquid, in particular milk
FR2835932B1 (fr) * 2002-02-13 2004-03-19 Air Liquide Procede de commande d'une installation de traitement d'un gaz par adsorption et installation de traitement correspondante
US6770120B2 (en) * 2002-05-01 2004-08-03 Praxair Technology, Inc. Radial adsorption gas separation apparatus and method of use
FR2841152B1 (fr) 2002-06-19 2005-02-11 Air Liquide Procede de traitement d'au moins un gaz de charge par adsorption a modulation de pression
JP2008526506A (ja) * 2005-01-12 2008-07-24 エイチ2ジーイーエヌ・イノベーションズ・インコーポレイテッド Psaフロー変動の改良された制御のための方法と装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4541851A (en) * 1983-02-28 1985-09-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Reactor and apparatus for purifying by adsorption
CN1341474A (zh) * 2000-08-28 2002-03-27 波克股份有限公司 变温吸附法
WO2003049839A1 (fr) * 2001-12-12 2003-06-19 L'air Liquide, Societe Anonyme A Directoire Et Co Nseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de traitement par adsorption d'un melange gazeux
CN1602223A (zh) * 2001-12-12 2005-03-30 液体空气乔治洛德方法利用和研究的具有监督和管理委员会的有限公司 气体混合物的吸附处理方法
CN2604223Y (zh) * 2002-05-15 2004-02-25 楚建堂 活性炭纤维废气吸附回收装置
CN1812827A (zh) * 2003-06-27 2006-08-02 液体空气乔治洛德方法利用和研究的具有监督和管理委员会的有限公司 在加速的tsa循环中预净化空气的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107485961A (zh) * 2016-06-10 2017-12-19 Se工业株式会社 气体精制处理装置

Also Published As

Publication number Publication date
US8337592B2 (en) 2012-12-25
WO2008087363A3 (fr) 2008-11-06
WO2008087363A2 (fr) 2008-07-24
US20100058804A1 (en) 2010-03-11
CN101573169A (zh) 2009-11-04
EP2129449B1 (fr) 2015-04-08
EP2129449A2 (fr) 2009-12-09
FR2911077B1 (fr) 2009-11-27
FR2911077A1 (fr) 2008-07-11

Similar Documents

Publication Publication Date Title
CN101573169B (zh) 使用数个异阶段吸附器的纯化或者分离方法
CA2999758C (en) Adsorbent regeneration method in a combined pressure and temperature swing adsorption process
US7632337B2 (en) Air prepurification for cryogenic air separation
JP2011094145A (ja) モジュール式lngプロセス
US9272963B2 (en) Final biogas purification process
CN102245500A (zh) 由重整气体生产氢并同时捕捉共产生的co2
CN115069057B (zh) 一种低温精馏提纯回收二氧化碳的方法
CN114748979B (zh) 一种全温程模拟旋转移动床变压吸附FTrSRMPSA气体分离与净化方法
EP2501460B1 (en) Multi-stage adsorption system for gas mixture separation
CN107847851B (zh) 使用脱甲烷塔顶部流作为清扫气体的变化吸附方法和***
CN113184850A (zh) 一种高纯度二氧化碳气体提纯方法及其装置
CN105865145B (zh) 一种煤层气液化工艺
CN217661593U (zh) 低温精馏提纯回收二氧化碳装置
CN114588749B (zh) 一种从合成氨驰放气中提取h2与nh3的全温程模拟旋转移动床变压吸附工艺
WO2023049994A1 (en) Method and system for upgrading biogas using psa
CN215161044U (zh) 一种高纯度二氧化碳气体提纯装置
KR100340764B1 (ko) 활성탄과 제올라이트를 함께 사용한 이산화탄소 회수용압력변동흡착장치
EA034078B1 (ru) Устройство и система для осуществления способов короткоцикловой адсорбции
CN107921356B (zh) 变吸附方法相关的装置和***
US20220250001A1 (en) Gas stream purification by adsorption with pre-regeneration in a closed loop
CN101379355A (zh) 用于控制通过低温蒸馏分离空气的设备组的方法和根据所述方法运转的用于分离空气的设备组

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120829

Termination date: 20201227

CF01 Termination of patent right due to non-payment of annual fee