CN1015663B - 检测流体组分的仪器和方法 - Google Patents

检测流体组分的仪器和方法

Info

Publication number
CN1015663B
CN1015663B CN88100460A CN88100460A CN1015663B CN 1015663 B CN1015663 B CN 1015663B CN 88100460 A CN88100460 A CN 88100460A CN 88100460 A CN88100460 A CN 88100460A CN 1015663 B CN1015663 B CN 1015663B
Authority
CN
China
Prior art keywords
sensor
compartment
boxlike
signal
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CN88100460A
Other languages
English (en)
Other versions
CN1031425A (zh
Inventor
维诺迪尼·古鲁斯旺米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtest Systems Inc
Original Assignee
Medtest Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtest Systems Inc filed Critical Medtest Systems Inc
Publication of CN1031425A publication Critical patent/CN1031425A/zh
Publication of CN1015663B publication Critical patent/CN1015663B/zh
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4163Systems checking the operation of, or calibrating, the measuring apparatus
    • G01N27/4165Systems checking the operation of, or calibrating, the measuring apparatus for pH meters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

一种精确可重现的分析溶液的方法,通过采用对某些成分的专门的传感器和复合传感器,并结合能斯特方程来确定所造成分的活度,以消除对参比传感器的需求。还提供了可消除对信号的边缘效应以获得精确可重现测量的传感器构造,及适宜装纳新传感器阵列以供新方法使用的盒式传感器构造,该盒式传感器特别适于小型化,保持固定溶液容量,以供分析并提供绝氧测试环境。最后,提供了一种特别适于野外使用和供盒式传感器使用的小型仪器。

Description

本发明涉及溶液的分析测量,并具体地涉及一种采用单点校准的无参比传感器测量的方法、一种促进均匀通量分布的新电极、一种新的盒式固定容量绝氧传感器及一种新的用于分析化学测量的小型仪器。
在化学分析及其更复杂的成果即临床化学中传统的“湿”化学技术,在近数十年来已被电子仪器所取代。随着电子仪器的出现,在试验测量的重现性中精确度已被提高。这种精确度在临床化学技术中特别重要且对生物医学测量极为重要,在该领域中通常微量(百万分之几)测量是经常遇到的。将这种电子仪器和自动处理与用微处理器和有力的计算机技术相结合,则已使分析化学和临床化学技术的进展方面进入到另一个阶段。
在电化学测量的分支中,这种电子仪器已经取得了很大的成就。通常在传统的电化学测量中需要测量包含一种物质的两个已知不同浓度的两个试样溶液,在随着测量包含一未知量成分的溶液后用作校准的目的。电化学方法通常需要使用一参比电极,一物质专用电极及溶液间的一电桥,以便实现用于电位分析测定的电池。从该电池中获得的电信号(通常在数毫伏特)与离子的活度成正比,并因此与在溶液中该物质的浓度成正比。该信号/浓度关系可通过能斯特方程式用数学方式加以表示:
V=Mf〔C〕+I+J (1)
其中:V为(信号)电压;
Mf为斜率(对一特定电极和物质为一常数);
I为对一特定物质为一常数;
J为电池的接界电位;
〔C〕为离子活度(该物质的浓度)。
为了确定解出该方程式所必需的各值,首先需确定电极的斜率Mf。为这一步,须对包含已知浓度的两种溶液进行测量,将所得的值代入到上述方程式中,并由联立解出的方程式中获取斜率的值。接着,必须确定在溶液中特定物质相对于特定电极的常数I。接界电位也用传统的方法确定。上述技术通常被称为双重或两点校准。电极技术的最新进展通过提供预先设定的、其斜率对一特定物质和电极结构为已知的单次有效电极而免除了对确定斜率的需求。然而,这些器件通常限于一次使用,这是由于将电极暴露于溶液中一段时间之后会发生斜率偏移。诸多原因之中,斜率偏移可归因于原先未形成水化层的电极形成了水化层之故。考虑到这种装置,这种一次有效电极限于供专用***和特定的电极设计使用。
在应用于电化学分析的传感器的灵敏度方面也已取得重大的改进。许多比较新的传感器类型在实验室中获得了应用。最值得注意的有离子选择性电极(ISE)的变型、酶基选择性电极(EBSE),抗体基选择性电极(ABSE),化学场效应换能器(CHEMFET)和离子选择性场效应换能器(ISFET)。这些传感器类型的每一种可结合着一些包括涂丝电极,薄膜电极等的物理变型。这些不仅可使用于临床化学应用中,也可使用于广泛的一般用途中,例如使用于工业化学、药物、生物化学、环境控制等领域之中。此外,这些器件,目前向技术人员提供了大量的器件和技术的选择,该器件和技术的功能是产生正比于一特定物质或一些特定物质的离子活度的电信号,该传感器就是为了这些器件和技术而特别设计的,并因此而不断提高了测量的精度。
简短地提及主要是依赖于比色法的光学检测器和分析方法,这些光 学检测器和分析方法也经历过一相应的快速的发展。其重大的进展在生物化学领域内,例如在酶和抗体-抗原反应方面非常显著。
然而,技术人员目前正面临着与新的科技相关的增加着的一系列问题。例如,由于上述传感器的灵敏度,这些传感器可能会有极为复杂的设计。值得注意,电化学传感器***通常需要一参比电极及成分敏化电极,这两种电极须加以细心地校准或预先处理。此外,特别是对于参比电极,被推测为相同的电极由于制造公差而会存在稍许差异,这将导致错误的测量、“漂移”问题和接界电位误差等的结果。
应用这类电极会由于信号漂移和在正被研究中的介质里的参比电极和相关电极之间接界电位的变化而发生测量变异。接界电位对信号所产生的影响不仅仅是由电极的结构而引起的,也会随着从使用这部仪器而转用那部仪器、甚至在这次测量转到下一次测量而使接界电位对信号所产生的影响发生变化。对于灵敏的测量,这类变异是完全不可接受的。通过提高电极的灵敏度、特别是在精确测量成为关键性的生物医学的应用中提高电极的灵敏度会使其它问题加剧出现。诸如参比电极的寿命、稳定性和污染等因素,特别是当将之使用于诸如外科手术过程中的侵犯性监控的对立环境中,必须加以考虑,而至今则未得到解决。最后,在需要体积较大的参比电极的器件中,电化学***则对其主要部分未能实现小型化。
在复合溶液(多组分)的电化学测量中出现另一问题,即来自参比电极接界电位的信号的分离。与一单一成分溶液的基本鉴定相反,对包含多种电位相互作用的电活化成分的复合溶液的测量,由于电化学协合作用,活度系数(由独立组分所产生的影响)会使精确测定受到损害。因此,复合有机溶液的电化学测量,如血液的电化学测量,由于在鉴别特定目标物质所产生的影响方面缺乏精确性,在测量过程中必须对信号进行解释。在需要精确测量的场合,从这类解释引起的含糊性,在最好 的情况下,是造成危险事故,但在最坏的情况下,则会致病人死亡。此外,由于参比电极和样品电极一起所产生的漂移影响与接界电位鉴别问题结合在一起,可导致反常的测量结果。
现转移到与先有技术***相关的实际问题,即成分专用电极和参比电极两者的制造和供应问题。通常,由于需使参比电极可以多次重复使用,故其构造甚为复杂。不用多说,显然应用这类电极进行的测量,由于制造公差,每一次所获得的结果将会不同。因此,不仅仅漂移和校准问题存在,而且在对校准溶液和未知溶液进行评价而需要对不同溶液进行数次测量时,标准化也是困难的。
大多数分析***是暴露于周围环境中的,它们不是绝氧的。首先,一种绝氧环境是期望的,以便更紧密地配合体内条件。此外,例如在血内气体分析中为避免试样受到空气的污染而在绝氧条件下进行,以避免测量结果的失真也是重要的。最后,从一试样中获取一系列物质测量值,需要相当长的时间和多次独立测量。不仅时间因素上是不利的,而且也可能会发生样品污染和样品中化学成分的变化。因此,保持一种绝氧测量环境以获取某些物质的精确测量值是理想的。更值得注意的是,在对血内气体浓度进行精确测量时,这种绝氧环境更是重要。最后,大多数已有***没有考虑固定或提供固定容量的投放,而是采用了繁重的搅拌或混合设备来保证至传感器的均匀输送。以固定容量进行溶液的测量是理想的,而提供只需要少量容量的溶液均匀地输送到传感器附近来进行测量的分析方法是特别理想的。
对于临床医生使用的化验室产生了其它实用的考虑。在一种***是期望可供重复使用的情况下,对于操作或技术人员来说,在准备一个测试的过程中,确证该电极设备是否被污染的确是一种义不容辞的事。每次使用时彻底清洁和重新校准是必须的。这种工作需要大量的劳动并要付出相当代价,这使这种重复使用***的使用,特别是在医院化验室等 场合使用效率降低。当使用用后废弃的***时,则产生与技术人员的技术相关的问题。
有关电化学设备的其他未获得发展的方面是一种小型的、使用简单的、供野外或实验室应用的、可由只具有最低限度技能训练的人员进行操作的仪器。用于提供如上所述的分析电化学测量的小型化和标准化的设备尚未面市。
因此,本发明的一个目的在于克服应用先有技术的技术和方法中所遇到的问题。
本发明的另一目的在于提供可用后废弃的或能重复使用的盒式传感器。
本发明的又一目的在于提供按标准型式设计的盒式传感器***,用于不同测量的不同盒式传感器可依次引进信号处理设备中。
本发明的再一目的在于提供通用的盒式传感器,该盒式传感器能结合大量的不同传感器用于范围广泛的不同的分析技术。
本发明的另一目的在于提供一种用于产生精确的并有可重现性的物质浓度测量的方法。
本发明的又一目的在于提供用于电位分析法、静电位分析法和比阻分析法中所用的单点校准的电化学测量的方法和设备。
本发明的再一目的在于提供通过消除对参比电极的需求而廉价和删繁易行的用于电化学的物质浓度的确定方法和设备。
本发明的另一目的在于在没有来自由于参比电极所造成的接界电位误差的干扰下,测量生物溶液中目标成分的真正活度。
本发明另一目的在于提供用于快速测量以避免依赖于时间的内部变化、并最大程度的提高稳定性和减少传感器的电位污染到最低程度的技术和设备。
本发明的另一目的在于提供将潜在的技术人员的误差减小到最低程 度和避免需要技术人员的判断的技术和设备。
本发明另一目的在于提供用于溶液分析的设备,该设备将该溶液保持于一绝氧环境中。
本发明的另一目的在于提供用于测量的一固定容量的溶液的投放。
本发明另一目的在于提供可同样地应用于诸如电化学和光学测量等的各种各样的分析目的的测量方法和设备。
本发明的另一目的在于提供可小型化的技术和设备,该设备可采用用于实时的和多种成分溶液分析的传感器阵列。
按照本发明,提出了一种采用至少一个第一、第二和第三传感器对溶液中的至少一种第一和第二种成分进行单点校准测量的方法,其中第一传感器对第一和第二两种成分都敏感,第二传感器只对第一种成分敏感,而第三传感器只对第二种成分敏感,该方法包括如下步骤:
a.使这些传感器与包含第一和第二种成分的第一种溶液接触;
b.获取第一和第二信号,所述第一信号为来自所述第一和第二传感器的信号之间的差信号,而所述第二信号为来自所述第一和第三传感器的信号之间的差信号;
c.将所述第一和第二信号输送到一信号处理器中;
d.使这些传感器与包含已知量的第一和第二种成分的校准溶液接触,并从所述第一和第二传感器及所述第一和第三传感器分别获取第三及第四信号;
e.将所述第三及第四信号输送到一信号处理器中;
f.从所述第三及第四信号确定代数常数;
g.对所述常数和第一及第二信号进行处理以确定所述第一溶液中的所述第一和第二种成分的浓度。
该项技术可通过首先使传感器与未知浓度的溶液接触,然后与校准溶液接触来完成,或者通过首先引入已知溶液,然后引入未知溶液来完 成。总之,在电化学过程中用这种技术的好处是不再需要参比电极和相应的斜率,避免了偏差。该技术在小型化产品中很容易被采用。只须要在已确定的成分间进行比较测量,并且测量N种成分只需用N+1个传感器。此外,节省了劳力和减小了判读误差,特别是采用本发明的装置来实施该方法时更是如此。
本发明还提供了一种可重复使用的用于实现上述方法的盒式传感器,它包括:
a.一外壳;
b.位于所述外壳中的用于装纳一预先限定容量的溶液的测试隔室;
c.与所述隔室流体连通的第一个入口,该入口设置在邻近所述隔室的一端;
d.与所述隔室流体连通的预先选择容量的废液容器,该废液容器设置在邻近所述隔室的另一相对端;
e.用于将流体直接引入所述隔室的另一个入口;
f.用于引导流体通过所述第一个入口从而正向驱使已在所述隔室中的流体流出隔室而流入所述废液容器的装置;
g.用于实际上阻止流体从所述废液容器中倒流到所述隔室内的装置;
h.设置于所述外壳内的传感器元件,这些传感器元件在所述第一个入口端与所述阻止倒流装置之间的预先选择的位置上与所述隔室中的流体相接触;
i.用以将所述传感器元件产生的信号从所述外壳中传递出以进行处理的装置,在该装置中,为了测定溶液中至少两种成分的浓度,至少装有三个传感器元件,其中两个各自对所述一种成分敏感,而第三个元件对两种成分都敏感。
这种盒式传感器最好设计成为一种小型仪器,保持溶液在绝氧环境 中,测试过程中仅须引入少量溶液,可用于与多个不同的传感器和传感器型式结合使用,甚至设想成可用后废弃的。
对于本领域内的普通技术人员来说显而易见浓度的确定是等效于在溶液中特定物质的活度测定。
本发明还有的其它目的是通过提供一用于鉴定在溶液中的成分的传感器来达到的。该传感器具体为一种能传导信号的传导元件,该元件具有一特定横载面尺寸的第一表面与用于在溶液中与选择的活性成分反应的成分专用反应装置耦合。该反应装置与该传导元件紧密接触,并能产生对应于溶液中的活性成分的信号。该反应装置的尺寸大小可以覆盖该第一表面并伸展超出该第一表面的周界一显著的距离以便减少边缘效应到最小程度。
确定地说,该传感器装置通过保证成分专用接受器和信号传导器间在该接受器和传导器的界面的均匀相互作用而便于均匀并可重现地进行对溶液的测量。这是通过消除或将在该传导器周界的边缘效应减少到最低程度而完成的。该传感器被设想成结合在此处叙述的设备中,并易于适合于无参此技术的应用。关于该传感器构造的关键性教导与公认看法相反,即,不在于提供一种特别用于单点校准过程的均匀测量的精确的传感器几何形状,而在于保证一个显著的重叠以便将边缘效应所产生的影响减少到最低程度,并在与该传感器的几何形状无关的情况下提高测量的更高精确度。
以上所述这些目的的实现最终是通过一种用于溶液分析的小型仪器来达到的。该仪器包括一外壳;一信息显示装置,它装纳在该外壳的表面上以供显示信息之用;选择装置,用于选择待被显示的信息;一预先确定尺寸的位于外壳上的接受器;和用于处理电信号并传送已处理的信号到信息显示器的装置。该仪器还包括装纳传感器的盒式传感器,用以检测溶液的性质并产生对应于被检测的性质的信号。该盒式传感器制成 能配合所述接受器的尺寸。
所述仪器提供了一种更简便、小型、易于处理的分析仪器,特别适于野外应用。该仪器试图将操作该仪器并获取精确溶液分析所需的临床技能、知识和劳力减少到最低程度。当所述的方法和设备相结合时,该仪器特别适合于采用一大批不同的传感器和不同传感器类型以达到快速试样鉴定的广泛类型的分析测定。
总之,本发明提供了一种新的无参比的分析方法;一种消除了由边缘效应所产生的影响的新的传感器构造;一种盒式传感器,该盒式传感器在其他各方面适合用于小型化并保持该测试溶液在一中性环境中,以及一种小型的、自持的、易于应用的分析测量处理单元。
现通过实例并参照附图对本发明的装置进行叙述,其中:
图1为本发明的传感器装置的示意图;
图2为跨越传感器的通量密度分布的图解;
图3为本发明的盒式传感器的透视图;
图4为一传感器阵列的顶视图;
图5为本发明的小型仪器的透视图;
图6为该仪器处于折叠形式的透视图;
图7为用后可废弃的盒式传感器的透视图;
图8为传感器构造以及因边缘效应而引起的通量密度变化的图解。
现回到方法方面的叙述。参照图1,该图描绘出多通道传感器***10。传感器10以包含传感器阵列12为特点,在本例中是由四个独立电极传感器16、18、20和22组成。为说明简便起见,电活化传感器16被认为对一种成分A敏感,传感器18对一种成分B敏感,传感器20对成分A和B都敏感,而传感器22对成分A和C都敏感。(这些成分可由多种成分中选择,诸如从钾、钠、氯、氢等离子或选择的生物的和有机的分子中选择。)所有成分A、B和C都是包含在一种流体中的物质,该流体将 用下述的两种不同方法之一进行电化学鉴定。更具体地说,可以设想这是一种复杂的生物流体,如血液须先经受这种鉴定。
以下将更详细地叙述,分别对应于传感器16、18、20和22的各种成分的专门覆盖膜17、19、21和23要用离子选择材料浸渍,在该处,电极分别对A、B以及A和B的组合及A和C的组合敏感。该膜和传感器如此安排,以使由溶液中的目标成分和膜中电活化物间相互作用而提供基本上均匀的电信号。在膜和传感器间形成相应的电荷,从而产生正比于该成分的离子活度的电荷分布及电位。
现将参照电位分析电极传感器16、18和20叙述本发明技术的主要变型。本技术领域的普通技术人员须理解到传感器16、18和20表示半电池,而两个半电池的组合提供一电动势(EMF),表示各相应的传感器之间的电位差。首先叙述传感器20,该传感器为成分A和B的组合电极,其电位的最简单形式由下列方程表示:
E20半=MAlog〔CA〕+MBlog〔CB〕+IAB(2)
其中MA和MB分别为成分A和B的常数,该常数对特定成分和电极来说可预先确定并在一计算器件内进行偏程。〔CA〕和〔CB〕分别为成分A和成分B的浓度。方程式(2)可进一步简化成下列表达式:
E20半=MAB(log〔CA〕+log〔CB〕)+IAB(3)
其中浸渍到膜21内的电活化成分的量是谨慎地配合的。对每个这样的混合,在制造之前,需先估计建立最有效组合的量,以获得较简单的方程式。
现转到其它电极的叙述,对成分B敏感的传感器18的电位可用下列方程式表示:
E18半=MBlog〔CB〕+IB(4)
同理,对成分A敏感的传感器16的半电池电位可用下列方程式表示
E16半=MAlog〔CA〕+IA(5)
对本技术领域内的普通技术人员来说,上述方程式表示经典的能斯特型方程式,由离子选择性电极相对标准电极进行测量而获得的。然而,本发明消除了对于参比电极的需求和该参比电极对信号所产生的影响。参比电极的消除是通过在传感器16和20以及传感器18和20之间建立电池、在导线24上输送信号到多路转换器26来实现的,而该多路转换器26是通过导线36由微计算机32指令工作的。该信号被输送到运算放大器28;在本例中,该运算放大器为一差动放大器,来自传感器16和18的信号经过差动放大器转送到模/数变换器30,而最后输送到微计算机32及显示器34。于是获得对应于E20-E18和E20-E16的差动电位。该差动信号由下列方程式表示:
E20-18=(MAlog〔CA〕+MBlog〔CB〕+IAB)-(MBlog〔CB〕+IB) (6)
可化简为
E20-18=MAlog〔CA〕+IAB-IB(7)
相应地
E20-16=MBlog〔CB〕+IAB-IA(8)
斜率值MA、MB、MAB及任何其他斜率常数从先有的对特定电极结构用标准溶液的测试中得知。这些值或者被输入或者存贮到微计算机32中,以便用于代入到方程式中。因此,由于该斜率值和该信号值已知,当给定一参比溶液的测量以确定该常数时,该常数和该浓度值是可测定的。为了解出该方程式,对一具有已知成分A和B浓度的参比溶液进行测量。由于对两种溶液来说常数IA、IB和IAB是相同的,它们对于方程式所产生的影响被减去:
E20-18(标准)-E20-18(测定)=MAlog〔CA(标准)-MAlog〔CA(测定)(9)
在已知该信号电位和该斜率(M)值后,便能直接计算〔CA〕和〔CB〕的值。通过以上所述,为获得两个不同成分的差动测量只需要三个电极;一个电极被选择用于被测试的两种成分的组合,而两个独立电极每个被 选择用于各自被测试的选择的成分。简单看来,该组合电极提供了对应于A+B的活度的信号,其中如果从该信号中减去成分A所产生的影响,则B的浓度即可确定。相应地,将成分B所产生的影响从该组合电极值中减去后,则成分A的浓度亦即可测定。
用于分析大量成分的第二个方法可用本发明的技术来实施。运用上述原理,第三种成分C的浓度可在最低限度内通过采用对成分A和C敏感的第四复合电极22加以测定。C的浓度可通过从来自电极22的信号减去电极16所产生的信号而测定。在这种情况下,校准溶液亦必须包括成分C。
现应立即理解到,本发明的方法只须要电极的数目比待鉴定的成分的数目多一个即可。以数学形式表达,如果N为用于分析的目标成分的数目,则只需要N+1个电极就可实施本发明的技术。此外,本发明的技术只需要测量两种包含成分的溶液,即校准溶液和未知溶液。
如在以上第二个实施例中所述,一种多重组合***可因附加的成分(B)出现在溶液中而显示出某种干扰现象。因此,可以证实,具有只对成分C和/或A、B及C的组合敏感的附加电极是有益的。在这种情况下,采用该计算设备以提供在成分的专用电极16、18和22或组合电极20与一个对成分A、B和C敏感的电极之间的对比数据。由于多重组合电极(对多于两种成分敏感)会受到电化学地协同相互作用,因而可产生反常信号。因此,建议每个电极的敏感性限制于只对两种成分有效。
总之,本发明可以对(N)种独立成分的一种溶液进行鉴定而只需要利用(N+1)个电极进行两次测量,即未知溶液的测量和校准溶液的测量即可。
现必须对以上所述技术的某些方面加以强调。首先,在电化学分析的前后关系方面,该方法免除了对参比电极的需求,因此消除了对接界电位的考虑。此外,参比电极的取消通过减少发生在两个相同地构 造的电极上的漂移而将“漂移”问题降低到最低程度。与其显示出各参比电极和成分的专用电极的相对组合漂移,由于其不同的几何形状、成分等,它们各自产生自己特殊的漂移,不如采用相同构造的和合成的电极以提供比较均匀的漂移。因此,漂移分量往往可忽略不计或是成线性的,并且是可估计的。该漂移并不是指数形式和难以估计的。(由于参比电极和成分电极所产生的独立影响,漂移是取平方形式的。)其次,该方法有助于应用到小型器件中。
本技术领域中的普通技术人员应该明了,本发明的方法不仅提供节省劳力的用于多组分电化学分析的技术,而且也在需要时对表现出实时结果是极其便利的。这些优点对在临床化学环境中诸如对病人进行外科手术的敏感性过程中是特别重要的。
可在上述技术和以下叙述的设备中使用传统电极。例如,可以使用金属丝电极、涂丝电极和薄膜电极、氧化还原剂、半导体或包括了固定浸渍在聚合物基质中的电化学活化接受体的聚合物基质类型的厚的或薄的薄膜电极。更具体地说,叙述于美国专利4,214,968中的这种薄膜电极的变型、叙述于美国专利4,431,508中的石墨电极和叙述于美国专利4,549,951中的凸半圆顶电极都可用于此处叙述的装置和方法中,并为此而将这些专利文件作为参考资料而结合到本发明中。
上述电极的改进包括离子选择性电极部分或具有基本上大于其下面的导体的截面面积薄膜的选择,以便在溶液和导体之间造成均匀电荷密度。
过去曾经提出过(参见美国专利4,549,951),膜的凸的几何构形所产生的影响改善了从离子选择性膜的电活化成分传送到导体的界面截面的信号的均匀性,因此,对测量的精确度和重现性有一定作用。该半圆顶形膜电极是为此目的而设计的。然而,尚未清楚的问题是边缘效应(沿传导体的周界产生的来自表面张力的附着力、较多的电子迁移等) 对空间电荷分布及传送过程所产生的影响,也就是对信号所产生的影响。基本上,边缘效应是由在溶液、该膜和该电极的导电部件的界面之间的电荷分布的非均匀层而产生的。由于表面现象及暴露于具有相应的较高通量密度的较大容量的溶液中,因此沿该导体和膜的周界的非均匀性特别显著。这个因素导致即使对相同成分也会产生从这个电极到那个电极的斜率的变化。
现已发现,消除边缘效应可促进信号的均匀性而不需限制该膜的形状为某一特定几何形状。因此,现已深信该膜不需再有任何特定几何形状(半圆顶状等)而只需提供比该导体的截面的尺寸足够大的尺寸面积,以便减低边缘效应到最低程度即可。的确,最好提供一具有表面面积至少约为该导体的截面面积的尺寸的两倍的膜。然而更精确地说,膜重叠的程度,可以膜/电极几何形状和经典电子迁移方程式进行数学估计。
简单地参照图2,该图描绘从溶液S、矩形截面膜37和半圆顶膜38至其底下的导体之间电子的路径。虽然某种信号影响从外部膜部分发生,但占主导的均匀的通量分布是从覆盖该电极的部分及从导体的边缘向外扩张成30°至45°间的喇叭形倾斜部分发生的。因此为改善边缘效应的均匀性并避免非均匀的测量,该膜面积被增大以便充分地伸展而超过该导体的周界。
简单地叙述图8,该图表示边缘效应对不同电极构造所产生的影响。电极110、112和114分别具有凹面、凸面及平坦的膜,各个电极都显示出在整个导体表面上有均匀的通量密度。凸面的半圆顶电极116具有一个稍许伸展而超出该导体的周界的膜,显示出在通量密度方面的小偏差。电极118则没有伸展超出导体的周界,显示出跨越导体表面上的通量密度的相当大的变化。如上所述,图8强调了这样的优点,即通过提供具有远比被覆盖导体表面更大范围的膜来缩小沿该电极的边缘的非均匀的通量密度。因此,发明人设想该电极会包含具有重叠部分的成分反 应部分或膜,以便可占有远比该导体的(约两倍)截面面积更大的溶液界面面积。
总之,该设想的供用于本发明中的电极为已知电极,该电极被改进以提供远比电极的被覆盖的导电部分面积更大的增大了的电化学活化表面,以便基本上消除边缘效应和相应的不规则的通量密度。
现参阅图3,该图描绘盒式传感器40,它包括两个主要部分,隔室外壳42和下部***部分44。装纳在隔室外壳42中的是有固定容量的隔室46,隔室46典型地被设计成用以盛装少于1毫升容量的溶液,最好能盛装10-50微升容量的溶液。隔室46通常取矩形构形,并被密封在隔室外壳42内。在隔室外壳42内埋置着传感器16、18、20和22,并在隔室46的下部表面上配置成一阵列。这些传感器彼此电绝缘,并以当流体注入到隔室46中时该流体完全覆盖膜17、19等方式被定位在隔室46中。
沿隔室46的一个边横向配置排放废液容器50,该容器的容量为隔室46容量的4-6倍,单向流通排放口52被设置于经选择的位置上,以便用于空气或气体的逸出,并允许流体从隔室46有规则地流进并填充容器50。在容器50和传感器之间有一沟槽48和一溢流堰43。沟槽48和溢流堰43被设计成为防止流体从废液容器50倒流到隔室46中之用,而隔室下部表面放置着传感器阵列。特别是当该盒式传感器是意图供野外应用时,溢流堰43须具有超过膜17、19等的厚度的高度,以便在该膜上面保持测试溶液。沟槽48和溢流堰43起着防止流体从废液容器50倒流到隔室46,并防止造成质量传递及废弃流体和分析流体间的污染。应注意到,在该盒式传感器是设计成利用表面张力以在该传感器之上一方面平衡该试样流体而另一方面又平衡校准流体时,该溢流堰可能是不需要的。
在隔室外壳42的与容器50相对的一端是校准流体输入口56,校准流体注液器54和样品入口62,入口62带有从该入口伸展的样品输入元件60。样品输入元件60在其上部表面上配备一橡胶隔膜,用以从传统注液 器或毛细管注射样品进入输入元件60并通过62而进入隔室46中。虽然注入相等于隔室46容量的样品流体量是理想的,但任何多余的流体会流进沟槽48中,并继而流进废液容器50中。
校准流体注液器54装纳一预先确定容量的适宜的校准流体,该流体包含隔室46中的传感器阵列敏感的物质。最好通过按压柱塞58而使一受控容量的校准溶液注射到隔室46中,在那里流体流过入口56进入隔室中。
现转而叙述下部***部分44的构造。与隔室外壳42一样,该部分最好由刚性、强度适宜的透明聚合物制成,并具有从传感器16、18等伸展通过其整个长度的传导元件(石墨、金属丝等)。
通过使传感器有效增长,特别是在进行电化学测量时,这种增长可将来自邻近传感器的信号干扰减少到最低程度。实用上,在制造用膜覆盖的电极时,该膜是以部分胶凝状态而沉积在导体上的。将通常为有机的剩余溶剂蒸发掉。然而,某些溶剂会迁移到盒式传感器主体的孔隙中,该迁移的溶剂能携带电活化成分,因此,该盒式传感器主体本身会被敏化或甚至交叉敏化。在电极彼此定位非常接近时,会发生交叉污染。因此,一成分的专用电极会产生对应于相邻电极敏感的其它成分的一小的信号。当该盒式传感器的主体非常短时这种可能性增大,即迁移程度相应地减少,而互相混杂则发生于接近传感器接受器的表面。通过延长传感器和盒式传感器,重力使该溶液顺着邻近该电极的下向的路径运动而成为剩余的电活化成分,从而不出现从接受器膜的横向短距离混杂。因此,该盒式传感器最好足够长,以将这类效应减少到最低限度。
现回到盒式传感器40的构选。废液容器50朝下部***部分44的底部伸展。电气触点47从隔室44的底部突出,该触点提供传感器16、18和一适宜的信号探测器之间的电气联系。由于可能的内部信号干扰或来自外部的电气噪音干扰,将每个传感器16、18等绝缘是须要的。因此,所示 的传感器16带有安置在其周围的绝缘套。如果每个传感器都是这样绝缘的,电信号干扰的机会会减少到最低程度。
简而言之,盒式传感器40是通过注射一足够容量的样品流体到隔室46内来使用的。注射过程为经过入口62而灌入隔室46中。电化学活度的测量是通过传感器阵列进行的。一旦进行测量,经由注液器54注入一固定容量的校准流体通过入口56,用校准流体冲洗样品流体,使之从隔室46流进沟槽48并流过溢流堰43而后进入废液溶液50中。再加入第二部分校准溶液,以冲洗第一部分溶液,使之流出隔室46并流过溢流堰43而进入容器50中。最后,加入第三部分以代替第二部分。通过这种措施,剩余的样品流体基本上完全从隔室46和电化学活化膜17、19等中去除干净。此外,如果该样品比校准流体包含更高浓度的特定离子时,则通过多次冲洗使冲洗之后建立平衡状态,以将由于在膜17、19等上的样品的剩余离子活度而造成的对在校准溶液中一特定离子浓度的测量的不精确度减小到最低程度。
在图4中展示出盒式传感器的另一可供选择的实施例的隔室外壳42和隔室46。在此实施例中展示出有14个传感器的阵列,该传感器阵列具有用于分析多至13个电化学活化成分的能力。如在图3中的实施例,在隔室46的一端设有废液容器50,具有用以装纳被分析过的样品溶液和一定容量的用于从隔室46冲洗样品流体所用的校准流体。在容器50和传感器阵列之间设置沟槽48和溢流堰43。在本例中溢流堰43被置于该沟槽和传感器之间,并用于协助限定一待装纳在隔室46中的特定流体容量。流体的注入可遵循以上所述的步骤或可选择另一方法,可首先将校准流体注入到隔室46中并进行测量,随后,跟着注入样品溶液到该隔室中,随着对样品溶液进行测量。在首先注入标准溶液的情况下,则有可能通过提供相对的样品流体的实际容量以取代该校准溶液,形成平衡状态并进行测量来取消特定的冲洗步骤。任何过量的样品流体将会流进废液容器 50中。
以上所述盒式传感器实施例是设想成用后废弃的类型的盒式传感器,因为这些盒式传感器可用相对较廉价的聚合物材料制成。然而也可制成可重复使用的盒式传感器,只要在该盒式传感器中包含可重复使用的传感器,只要通过适当地清洁或者使盒式传感器40免受污染即可。正如在这样一个实施例中所期望的那样,在下部***部分44的邻近或在容器50的底部,给容器50设置一适宜的流体出口,以便允许一系列适宜的冲洗操作可顺利地进行。另一可供选择的构造是提供一顶部开口的流体装纳隔室46。在某些情况下,这可能不是理想的,因为这样做会由于将成分和校准剂暴露于周围大气环境下而失去了绝氧环境。(如以上提到的,特别是在生物医学测量的前后关系中,最好是保持一个绝氧环境。)为此原因,已提出使隔室46和废液容器50在构成之后和使用之前,用中性气体如氮气进行冲洗,以便将测试过程中大气性氧气和二氧化碳的存在减少到最低程度。
另一种构造变型包括将元件60改型成一分流阀或配量器以适合直接从该供应源中抽取试样。例如,元件60可与导管配合以从病人的身体直接抽取血液。触点47可在构造和位置方面都加以改进。这些触点可从下部40的侧边突出,而具有可与一适宜的配套接受器建立滑动电接触的构造。
最后,亦可将该盒式传感器改型成用于不同于电化学分析器的仪器。例如,可与光纤结合,用于流体光学特性的测量。这这种情况下,建议须具有设置成一阵列的光源光纤和接受器光纤,以便最大程度地进行光的传输和接收。最好使用传统的可买到的同轴光纤。此外,隔室46的上部表面可用能反射光的材料涂敷。另一种变型为用一种成分专用的相互作用的物质浸渍的覆盖膜的光学比色分析,该物质在反应时发生颜色变化。颜色变化可用同轴光学传感器检测。作为另一种变型,光学和 电化学传感器可在同一盒式传感器中结合起来。
总之,盒式传感器40起着在位置上稳定并维持装纳在其中的传感器的特定几何形状的功能、限定用于分析的流体的精确容量、提供一绝氧的测试环境、基本上避免了传感器被污染、提供了废液流体的储存从而避免流体的混杂及提供了用于将传感器与适宜的检测设备精确地匹配的装置的作用。此外,该盒式传感器适合于供一大批传统的传感器使用,例如,电位分析、静电位分析、比阻分析、比色分析等。
在图5和6中,描绘了一小型仪器,供内含传感器的盒式传感器之用,如以上所述的那样,该盒式传感器包含电极,如以上所述的那样,并设想以上面陈述的分析技术进行测量。小型的仪器80供生物医学应用,该仪器包括折叠式箱82,其特征是上部81有可折叠部分83,彼此用绞链连接起来(未示出)。箱内使用的电子元件是市场上可买到的。这些电子元件为微处理机,随机存取存贮器(RAM),只读存贮器(ROM),放大器,开关,模数转换器,电源电容器,变压器等。
上部81的主要特征为有液晶显示器面板84,它由微处理机(未示于图中)控制,以及一排起动按钮86,用以起动所需的特定功能。上部81也设置有一尺寸适宜的盒式传感器接受器(未示于图中),以允许将盒式传感器***到该接受器中。如上所述,一旦将盒式传感器***接受器中,来自盒式传感器94中所装纳的电极的信号立即被处理并被显示在液晶显示屏上。按钮86便于将所需要的数据选择,例如特定血内气体浓度或甚至血压显示在显示器84上。该接受器可改型成包括一光学字符识别器件或磁传感器件,用于读出置于盒式传感器94侧的信息。例如,可将条形码或一段磁性编码带放在盒式传感器上,该盒式传感器能自动地输入诸如斜率值(参看以上的方法)数据,识别专用的传感器和复合传感器等。这种改进将使操作员不需要例如通过编程键盘(未示于图中)来输入这些数值和信息。此外,该代码可以对按钮86进行再编程,用于通 过特定盒式传感器执行特定的测试。
下部板83,其特征是有一太阳能电源板89,RS232端口90和***适配器91和92,用以连接***设备,诸如心音图和血压监控器。来自心音图或血压监测器的信号,通过微处理机进行适当的信号处理及通过适宜的按钮起动后,可将该信号显示在液晶显示屏上。如果需要将由盒式传感器94或从辅助设备诸如以上所述的心音图或血压监测器处理的数据输送到计算机等时,RS232端口90能容许该单元和一远程数字化病人信息存贮区域之间进行数字通信。除了由以上定义的构造和技术实现小型化外,由于微处理机和电子科技的发展,有可能提供适宜于装入口袋中的仪器80的实际的实施例。如此,该仪器的尺寸必须不超过3.25英寸(8.3厘米)宽,9英寸(23厘米)长,及1.25英寸(3.2厘米)厚。此外,整个单元的重量可限制在约半磅(0.23公斤)重。因此,该单元是易于携带和存放的。的确,一个医生能在对病人进行检查完毕并把该单元如图6所描绘的那样折叠后,把该单元塞入其外衣的口袋之内。此外,由于提供了太阳能板89以产生所需要的电能,因此内科医生、医务技术人员或临床医生就不需带有现场要用的电源输出线。另一可供选择的方法是可在其内结合化学电池等作为适宜的电源。因此,该单元可容易地适用于野外作业,例如在意外事故现场等。被装在仪器80中的该随机存取存贮器,容许医务技术人员或医生对一系列病人进行采样,该采样在以后还可加以检索,并输入到病人的原始数据库中。
现叙述图7。图中示出上面已叙述并设想供单元80所使用的一种可携带式,用后废弃的盒式传感器40的变型。首先,盒式传感器94包括上部95和下部97,其中下部97适于***设置在单元80中的互补孔缝中,并在它们之间建立电气接触。设想将图1所叙述的那种适宜的电子线路和控制器结合到仪器80中,以通过所述方法对流体进行分析。例如,在这类单元中采用的只读存贮器可保持特定物质相对于特定电极构件的斜率 信息。
现转到上部95的特定构形。该部分包括装纳校准溶液的隔室和按钮校准注液器98,用以注满该样品隔室(未示出)。另外示出的有样品端口96,用以注入血液或其它适宜的流体到该样品隔室中。在这实施例中,设想废液容器完全装纳在上部95内。这种盒式传感器的操作与在此申请中早先叙述的操作过程是相同的。

Claims (25)

1、一种用于检测流体组分的盒式传感器,其特征在于,它包括:
a.一外壳;
b.位于所述外壳中的用于装纳一预先限定容量的溶液的测试隔室;
c.与所述隔室流体连通的第一个入口,该入口设置在邻近所述隔室的一端;
d.与所述隔室流体连通的预先选择容量的废液容器,该废液容器设置在邻近所述隔室的另一相对端;
e.用于将流体直接引入所述隔室的另一个入口;
f.用于引导流体通过所述第一个入口从而正向驱使已在所述隔室中的流体流出隔室而流入所述废液容器的装置;
g.用于实际上阻止流体从所述废液容器中倒流到所述隔室内的装置;
h.设置于所述外壳内的传感器元件,这些传感器元件在所述第一个入口端与所述阻止倒流装置之间的预先选择的位置上与所述隔室中的流体相接触;
i.用以将所述传感器元件产生的信号从所述外壳中传递出以进行处理的装置,在该装置中,为了测定溶液中至少两种成分的浓度,至少装有三个传感器元件,其中第一个元件对两种成分都敏感,而另两个元件各自对所述一种成分敏感。
2、按照权利要求1所述的盒式传感器,其特征在于,其中所述传感器元件为离子选择性电极,具有一敏感薄膜覆盖的与所述隔室中流体相接触的电极部分,该覆盖层伸出电极的边缘,以提供两倍于电极的截面的面积。
3、按照权利要求1所述的盒式传感器,其特征在于,所述传感器元件在与所述隔室中的流体相接触处有均匀的几何构形。
4、按照权利要求1至3之一所述的盒式传感器,其特征在于,所述外壳具有一个含测试隔室的上部和位于该测试隔室下面的下部,所述传感器元件为长形导电体电极,这些导电体由所述隔室底部向下延伸到所述外壳的底部。
5、按照权利要求4所述的盒式传感器,其特征在于,其中每个所述长形导电体都有一绝缘套。
6、按照权利要求1至3之一所述的盒式传感器,其特征在于,所述废液容器具有数倍于所述隔室容量的容量。
7、按照权利要求1至3之一所述的盒式传感器,其特征在于,所述阻止倒流的装置包括一配置在所述传感器元件和所述容器之间的溢流堰,并伸展跨越隔室的整个宽度。
8、按照权利要求7所述的盒式传感器,其特征在于,所述阻止倒流的装置还包括平行于所述溢流堰并位于所述传感器元件与所述容器间的贯通所述隔室的一个沟槽。
9、按照权利要求1至3之一所述的盒式传感器,其特征在于,所述用于引导流体通过所述第一个入口的装置包括将一次装量的校准溶液加压注入所述测试隔室中的装置。
10、按照权利要求1所述的盒式传感器,其特征在于,所述传感器元件为光学传感器,这些光学传感器通过光纤而连接到所述外壳的外面。
11、按照权利要求1至3之一所述的盒式传感器,其特征在于,该盒式传感器包括N个用以测定溶液中N-1种成分的传感器,N为大于2的数。
12、按照权利要求1至3之一所述的盒式传感器,其特征在于,该盒式传感器可以与以分离件而包含在其中的信号处理装置组合成组合件,将盒式传感器外壳的一部分做成一个插头,使插头***分离的信号处理装置的插座上,从而可使来自盒式传感器的传感器元件的信号输入到该信号处理装置中。
13、按照权利要求12所述的盒式传感器,其特征在于,在所述装有信号处理装置的组合件中,还设有一个观察显示屏,以及一个人工输入键盘。
14、按照权利要求12所述的盒式传感器,其特征在于,在所述装有信号处理装置的组合件中,还装有供电用的太阳能电池组。
15、一种利用权利要求1所述盒式传感器对溶液中的至少第一和第二种成分进行单点校准测量的方法,其特征在于,该方法包括如下步骤:
a.使所述传感器元件与包含第一和第二种成分的第一种溶液接触;
b.获取第一和第二信号,所述第一信号为来自所述第一个和第二个传感器元件的信号之间的差信号,而所述第二信号为来自所述第一个和第三个传感器元件的信号之间的差信号;
c.将所述第一和第二信号输送到一信号处理器中;
d.使这些传感器元件与包含已知量的第一和第二种成分的校准溶液接触,并从所述第一个和第二个传感器元件及所述第一个和第三个传感器元件分别获取第三及第四信号;
e.将所述第三及第四信号输送到一信号处理器中;
f.从所述第三及第四信号确定代数常数;和
g.对所述常数和第一及第二信号进行处理以确定所述第一种溶液中的所述第一和第二种成分的浓度。
16、按照权利要求15所述的方法,其特征在于,所述传感器元件为离子选择性电极,而所述信号代表电极的电压。
17、按照权利要求15所述的方法,其特征在于,所述第一种成分的浓度是通过利用由第一个传感器元件所产生的半电池电压和由第三个传感器元件所产生的半电池电压的计算而确定的。
18、按照权利要求17所述的方法,其特征在于,来自所述传感器元件的电压被多路转换并被传送到一差动放大器中。
19、按照权利要求15至17之一所述的方法,其特征在于,所述传感器元件在与溶液的交界面处具有基本上均匀的几何形状,以减少通量密度的变化。
20、按照权利要求15至17之一所述的方法,其特征在于,所述的每个传感器元件都具有一个敏感的薄膜,其湿表面积至少应为所连接的用以传送信号的信号导体的截面面积的两倍,以减少由边缘效应所导致的通量密度的变化。
21、按照权利要求15至17之一所述的方法,其特征在于,所述传感器元件是沿与周围环境隔离的所述溶液的隔室的表面进行排列,并向该隔室注入一精确容量的每种溶液。
22、按照权利要求15至17之一所述的方法,其特征在于,所述传感器元件是在所述盒式传感器中列阵,而该盒式传感器可***一信号处理器的插座中而与该信号处理器电连接。
23、按照权利要求15至17之一所述的方法,其特征在于,其中待测定的成分的数目为N,传感器元件的数目为N+1,N等于或大于2。
24、按照权利要求15至17之一所述的方法,其特征在于,所述传感器是被体内的第一种溶液接触的。
25、按照权利要求21所述的方法,其特征在于,在所述溶液的隔室中用第一种溶液所进行的测量要在用校准溶液所进行的测量之前先完成,在两次测量之间,要用校准溶液反复清洗所述隔室。
CN88100460A 1987-01-29 1988-01-29 检测流体组分的仪器和方法 Expired CN1015663B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US008,554 1987-01-29
US07/008,554 US4762594A (en) 1987-01-29 1987-01-29 Apparatus and methods for sensing fluid components

Publications (2)

Publication Number Publication Date
CN1031425A CN1031425A (zh) 1989-03-01
CN1015663B true CN1015663B (zh) 1992-02-26

Family

ID=21732264

Family Applications (1)

Application Number Title Priority Date Filing Date
CN88100460A Expired CN1015663B (zh) 1987-01-29 1988-01-29 检测流体组分的仪器和方法

Country Status (13)

Country Link
US (1) US4762594A (zh)
EP (2) EP0300027B1 (zh)
JP (1) JP2758183B2 (zh)
KR (1) KR950011404B1 (zh)
CN (1) CN1015663B (zh)
AT (1) ATE126279T1 (zh)
AU (1) AU621818B2 (zh)
BR (1) BR8805405A (zh)
CA (1) CA1276229C (zh)
DE (1) DE3854286T2 (zh)
IN (1) IN171168B (zh)
MX (1) MX172462B (zh)
WO (1) WO1988005833A1 (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004583A (en) * 1987-01-29 1991-04-02 Medtest Systems, Inc. Universal sensor cartridge for use with a universal analyzer for sensing components in a multicomponent fluid
US4946562A (en) * 1987-01-29 1990-08-07 Medtest Systems, Inc. Apparatus and methods for sensing fluid components
GB8702390D0 (en) * 1987-02-03 1987-03-11 Warwick University Of Identifying/measuring odorants
WO1990013035A1 (en) * 1989-04-25 1990-11-01 Biotrack, Inc. System for modifying output of an analytical instrument
US5145565A (en) * 1989-05-01 1992-09-08 Spacelabs, Inc. Contamination-free method and apparatus for measuring body fluid chemical parameters
EP0397424A3 (en) * 1989-05-08 1991-08-21 Biotrack, Inc. Multiple analysis system
JP2616117B2 (ja) * 1990-03-23 1997-06-04 日本電気株式会社 修飾電極用平板金属電極
US5235526A (en) * 1990-11-27 1993-08-10 Solomat Limited Multi-probed sonde including microprocessor
FR2677454B1 (fr) * 1991-06-10 1994-08-05 Electronique Appliquee Ste Lyo Procede et appareil pour la mesure potentiometrique de la concentration d'une espece chimique chargee ou d'un gaz dissous.
US5232667A (en) * 1992-05-21 1993-08-03 Diametrics Medical, Inc. Temperature control for portable diagnostic system using a non-contact temperature probe
GB9507991D0 (en) * 1995-04-19 1995-06-07 Univ Manchester Metropolitan Sensor
GB2312750A (en) * 1996-05-02 1997-11-05 Univ Degli Studi Milano Differential pH measurement apparatus
US6066243A (en) 1997-07-22 2000-05-23 Diametrics Medical, Inc. Portable immediate response medical analyzer having multiple testing modules
DE60023005T2 (de) * 1999-06-17 2006-07-20 Smiths Detection Inc., Pasadena Vielfach-sensor-system und -gerät
KR100355459B1 (ko) * 2000-05-29 2002-10-11 (주)화백엔지니어링 금속화합물을 포함한 부식용액의 재생장치 및 방법
EP2410449A3 (en) * 2001-06-22 2013-07-17 Arkray, Inc. Information communication system
US6936156B2 (en) * 2001-08-30 2005-08-30 The United States Of America As Represented By The Secretary Of The Department Of The Interior Automated self-calibrating water quality monitoring sensor housing assembly
US6890757B2 (en) * 2002-05-24 2005-05-10 International Technidyne Corporation Portable diagnostic system
GB0227810D0 (en) * 2002-11-28 2003-01-08 Drew Scient Ltd Ion sensitive measurement
US8021529B2 (en) 2005-04-20 2011-09-20 Thermo Orion, Inc. Ion measurement/calibration cell
EP1715334A1 (fr) * 2005-04-22 2006-10-25 Adamant Technologies SA Procédé utilisant un capteur électrochimique et électrodes formant ce capteur
US7531611B2 (en) * 2005-07-05 2009-05-12 Gore Enterprise Holdings, Inc. Copolymers of tetrafluoroethylene
CN102216762B (zh) * 2008-09-02 2016-02-10 多伦多大学董事局 纳米结构的微电极以及集成所述微电极的生物传感器件
AU2009314696B2 (en) * 2008-11-12 2015-03-19 Kerr Scientific Instruments Limited Apparatus for testing electrical activity from a biological tissue sample
US20120175254A1 (en) * 2009-09-18 2012-07-12 Teruyuki Kobayashi Ion selective electrode cartridge
US9075042B2 (en) 2012-05-15 2015-07-07 Wellstat Diagnostics, Llc Diagnostic systems and cartridges
US9625465B2 (en) 2012-05-15 2017-04-18 Defined Diagnostics, Llc Clinical diagnostic systems
US9213043B2 (en) 2012-05-15 2015-12-15 Wellstat Diagnostics, Llc Clinical diagnostic system including instrument and cartridge
AU2014367337B2 (en) * 2013-12-20 2018-06-14 Orbital Systems Ab A water hybrid device
EP3171164A1 (en) * 2015-11-20 2017-05-24 General Electric Technology GmbH A tool and a method to measure a contamination in a slot of a conductor bar
CN114058677A (zh) * 2015-12-18 2022-02-18 雷迪奥米特医学公司 用于改进血液中的尿素检测的混合离子载体离子选择性电极
CN107271495A (zh) * 2017-07-03 2017-10-20 广东欧珀移动通信有限公司 酒精含量检测方法、装置、终端设备及存储介质
CN111474155B (zh) * 2020-04-28 2023-05-12 广东博创佳禾科技有限公司 一种青枯病菌溶液导流装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3413199A (en) * 1965-09-29 1968-11-26 Fischer & Porter Co Method for measurement of residual chlorine or the like
US3572400A (en) * 1967-08-31 1971-03-23 Western Electric Co Dispensing of fluids to small areas
US3629089A (en) * 1970-01-22 1971-12-21 Honeywell Inc Free and combined cyanide measuring apparatus
US4233031A (en) * 1978-12-11 1980-11-11 Environmental Sciences Associates, Inc. Electrochemical testing system and method
US4214968A (en) * 1978-04-05 1980-07-29 Eastman Kodak Company Ion-selective electrode
US4272245A (en) * 1978-12-04 1981-06-09 Transidyne General Corporation Method and apparatus for electro-chemical measurement
US4225410A (en) * 1978-12-04 1980-09-30 Technicon Instruments Corporation Integrated array of electrochemical sensors
US4340457A (en) * 1980-01-28 1982-07-20 Kater John A R Ion selective electrodes
US4452682A (en) * 1980-10-24 1984-06-05 Hitachi, Ltd. Apparatus for measuring clinical emergency check items of blood
US4397725A (en) * 1980-12-15 1983-08-09 Transidyne General Corp. Apparatus for measuring electrochemical activity
US4336121A (en) * 1980-12-15 1982-06-22 Transidyne General Corporation Apparatus for measuring electrochemical activity
JPS5899745A (ja) * 1981-12-09 1983-06-14 Horiba Ltd イオン濃度測定装置
US4431508A (en) * 1982-12-10 1984-02-14 Brown Jr Harold M Solid state graphite electrode
JPS6029656A (ja) * 1983-07-29 1985-02-15 Hitachi Ltd 血中の元素イオンの分析方法
DE3510868A1 (de) * 1984-03-30 1985-10-10 Conducta Gesellschaft für Meß- und Regeltechnik mbH & Co, 7016 Gerlingen Verfahren zum schutz und/oder zur ueberwachung eines referenzsystems fuer die analysen-messtechnik auf veraenderung und referenzsystem mit bezugselektrode
US4654127A (en) * 1984-04-11 1987-03-31 Sentech Medical Corporation Self-calibrating single-use sensing device for clinical chemistry and method of use
US4549951A (en) * 1984-09-11 1985-10-29 Sentech Medical Corporation Ion selective electrode
US4568445A (en) * 1984-12-21 1986-02-04 Honeywell Inc. Electrode system for an electro-chemical sensor for measuring vapor concentrations
US4783251A (en) * 1985-12-28 1988-11-08 Fuji Photo Film Co., Ltd. Ionic activity measuring device

Also Published As

Publication number Publication date
WO1988005833A1 (en) 1988-08-11
CA1276229C (en) 1990-11-13
JP2758183B2 (ja) 1998-05-28
DE3854286T2 (de) 1996-04-18
ATE126279T1 (de) 1995-08-15
AU1361488A (en) 1988-08-24
EP0651246A3 (en) 1995-08-09
EP0300027B1 (en) 1995-08-09
KR890700697A (ko) 1989-04-26
JPH01502360A (ja) 1989-08-17
IN171168B (zh) 1992-08-08
AU621818B2 (en) 1992-03-26
BR8805405A (pt) 1989-08-15
MX172462B (es) 1993-12-17
CN1031425A (zh) 1989-03-01
EP0300027A4 (en) 1991-07-17
US4762594A (en) 1988-08-09
DE3854286D1 (de) 1995-09-14
EP0651246A2 (en) 1995-05-03
KR950011404B1 (en) 1995-10-02
EP0300027A1 (en) 1989-01-25

Similar Documents

Publication Publication Date Title
CN1015663B (zh) 检测流体组分的仪器和方法
US4946562A (en) Apparatus and methods for sensing fluid components
US5004583A (en) Universal sensor cartridge for use with a universal analyzer for sensing components in a multicomponent fluid
US5747666A (en) Point-of-care analyzer module
EP1751545B1 (en) Measuring device and methods for use therewith
DE69021638T2 (de) Sensoranordnung zur Messung von Substanzen in Flüssigkeiten.
CN1412548A (zh) 生物传感器装置中取样体积适当的测定
WO1985002257A1 (en) Clinical chemistry analyzer
CN107091870A (zh) 确定分析物浓度的测量装置、生物传感器***和方法
CA2879887A1 (en) System and methods to account for interferents in a glucose biosensor
WO1994019683A1 (en) Disposable electrochemical measurement cartridge
Yarnitzky et al. Hand-held lead analyzer
JP6718528B2 (ja) 再使用可能なバイオセンサカートリッジを備える携帯型ハンドヘルドデバイス
EP0800079A1 (en) Method of using a computer to collect chemical signals directly
CN1508538A (zh) 可携式多功能电化学式生物检测仪
US6950762B2 (en) Device for examining liquids
JPH0213959Y2 (zh)
EP3001193A1 (en) System for characterisation of pure and ultrapure water
KR101326399B1 (ko) 생체 물질 측정용 스틱 및 생체 물질 측정 시스템
KR100211749B1 (ko) 화학 신호를 직접 수집하기 위해 컴퓨터를 활용하는 방법
US5921922A (en) Measuring of bloodgases
Ross et al. Instrument with integrated sensors for a rapod determination of inorganic ions
Giagkoulovits A fully integrated CMOS microelectrode system for electrochemistry
RU39204U1 (ru) Электрохимическая ячейка
WO1997036542A1 (en) Improved point-of-care analyzer module

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee