CN101562747B - Method for resolving and rebuilding video coding predictive residue block - Google Patents

Method for resolving and rebuilding video coding predictive residue block Download PDF

Info

Publication number
CN101562747B
CN101562747B CN 200910062165 CN200910062165A CN101562747B CN 101562747 B CN101562747 B CN 101562747B CN 200910062165 CN200910062165 CN 200910062165 CN 200910062165 A CN200910062165 A CN 200910062165A CN 101562747 B CN101562747 B CN 101562747B
Authority
CN
China
Prior art keywords
mtd
decomposition
transverse
coefficient matrix
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 200910062165
Other languages
Chinese (zh)
Other versions
CN101562747A (en
Inventor
陈加忠
周敬利
黎单
孙自龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN 200910062165 priority Critical patent/CN101562747B/en
Publication of CN101562747A publication Critical patent/CN101562747A/en
Application granted granted Critical
Publication of CN101562747B publication Critical patent/CN101562747B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

The invention provides a method for dividing and rebuilding a video coding predictive residue block, and belongs to the technical field of video coding in signal treatment. The invention aims to reduce the blocking effect due to the prior DCT transformation matrix and solve the problem that the value of the matrix cannot be adjusted. The division method comprises a predictive residue block classification step, a transverse division step of first, third and second multi-channel filter groups, a classification step of transverse division coefficient matrixes and a longitudinal division step of the first, the third and the second multi-channel filter groups; and the rebuilding method comprises a classification step of the division coefficient matrixes of the predictive residue block, a longitudinal rebuilding step of the first, the third and the second multi-channel filter groups; a classification step of the transverse division coefficient matrixes and a transverse rebuilding step of thefirst, the third and the second multi-channel filter groups. The method has the advantages of effectively removing correlation, reducing the blocking effect due to the size mismatching of the DCT tra nsformation matrix and the predictive residue block, and improving subjective and objective qualities of coding.

Description

Decomposition and reconstruction method of video coding prediction residual block
Technical Field
The invention belongs to the technical field of video coding in signal processing, and particularly relates to a decomposition and reconstruction method of a video coding prediction residual block.
Background
H.264/AVC is the latest video coding standard proposed jointly by the video coding experts group of ITU-T (International telecommunication Union, telecommunication standardization sector) and the moving Picture experts group of ISO/IEC (International organization for standardization/International electrotechnical Commission). Compared with the MPEG-4 coding standard, the code rate of H.264/AVC can be saved by about 50 percent under the condition of obtaining the same video quality. h.264/AVC to achieve high compression ratio, some new coding methods are proposed, such as intra prediction, motion compensation, loop filtering, context-based entropy coding, etc.
As shown in fig. 1, in a video encoding process, intra-frame or inter-frame prediction is performed on a video image, an optimal prediction mode is selected by calculating a cost function in the prediction process, a residual between an original image and a predicted image is decomposed to obtain a decomposition coefficient matrix, the decomposition coefficient matrix is quantized and entropy-encoded to obtain an output code stream, and meanwhile, quantization coefficients are inversely quantized, and a prediction residual block is reconstructed and reconstructed to obtain a reconstructed image used for a reference image in the next frame encoding.
The intra prediction method of h.264/AVC is based on the spatial domain, i.e., the current macroblock is predicted from the reconstructed values of the pixels of the neighboring macroblocks. h.264/AVC defines two luma prediction residual block sizes (16 × 16 and 4 × 4) and one chroma size (8 × 8), respectively. Among them, 9 prediction modes are defined for a 4 × 4 prediction residual block, and only 5 prediction modes are defined for a 16 × 16 luminance block and an 8 × 8 chrominance block. A prediction residual block size of 16 x 16 is suitable for smooth regions, while a prediction residual block size of 4 x 4 is suitable for regions with rich texture features.
The inter-frame prediction method of h.264/AVC mainly removes temporal redundancy of video images by a motion compensation prediction coding method using correlation between consecutive image sequences. H.264/AVC defines seven luma inter prediction residual block sizes (16 × 16, 16 × 8, 8 × 16, 8 × 8, 8 × 4, 4 × 8, 4 × 4), respectively. The motion compensation of different block sizes can more accurately represent the motion characteristics of the macro block and reduce the prediction residual error. Motion estimation with larger block sizes is suitable for video objects with simple texture and insignificant motion in macroblocks, while motion estimation with smaller block sizes is suitable for video objects with significant motion in macroblocks.
h.264/AVC uses a 4 × 4 Discrete Cosine Transform (DCT) to decompose the prediction residual blocks of the luminance and chrominance blocks to further remove spatial redundancy. The 4 x 4 discrete cosine transform used in h.264/AVC has low computational complexity and is effective in reducing ringing noise, but for low rate coded pictures, blocking artifacts will exist within blocks and at block boundaries. Since the size of the discrete cosine transform matrix is smaller than the prediction residual block (16 × 16, 16 × 8, 8 × 16), blocking artifacts inevitably occur on the transform boundary of the block; meanwhile, the value of the DCT transform matrix is fixed, and it cannot be adjusted according to the energy distribution of the prediction residual block signal.
Disclosure of Invention
The invention provides a decomposition method of a video coding prediction residual block, and simultaneously provides a reconstruction method of the video coding prediction residual block, which reduces the block effect caused by the size mismatching of the existing DCT matrix and the prediction residual block, and solves the problem that the value of the DCT matrix can not be adjusted according to the energy distribution of the prediction residual block signal, thereby effectively removing the correlation of the prediction residual block and improving the video coding quality.
The invention discloses a decomposition method of a video coding prediction residual block, which comprises the following steps:
(1) classifying the prediction residual blocks: classifying the input intra-frame or inter-frame prediction residual block, and performing the step (2) when the long edge size of the residual block is 4; when the size of the long edge of the residual block is 8, performing the step (3); when the size of the long side of the residual block is 16, performing the step (4);
(2) a first multi-channel filter bank transverse decomposition step: using a first multi-channel filter bank F 1 = U 0 U 1 W 0 W 1 And carrying out transverse decomposition on the residual block X to obtain a transverse decomposition coefficient matrix Y, wherein the decomposition expression is as follows:
<math><mrow><mi>Y</mi><mo>=</mo><mi>X</mi><mfenced open='[' close=']'><mtable><mtr><mtd><msup><msub><mi>U</mi><mn>0</mn></msub><mi>T</mi></msup></mtd><mtd><msup><msub><mi>W</mi><mn>0</mn></msub><mi>T</mi></msup></mtd></mtr><mtr><mtd><msup><msub><mi>U</mi><mn>1</mn></msub><mi>T</mi></msup></mtd><mtd><msup><msub><mi>W</mi><mn>1</mn></msub><mi>T</mi></msup></mtd></mtr></mtable></mfenced><mo>=</mo><mi>X</mi><mfenced open='[' close=']'><mtable><mtr><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><msqrt><mn>2</mn></msqrt><mi>cos</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><msqrt><mn>2</mn></msqrt><mi>sin</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><msqrt><mn>2</mn></msqrt><mi>sin</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><msqrt><mn>2</mn></msqrt><mi>cos</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><msqrt><mn>2</mn></msqrt><mi>sin</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><msqrt><mn>2</mn></msqrt><mi>cos</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><msqrt><mn>2</mn></msqrt><mi>cos</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><msqrt><mn>2</mn></msqrt><mi>sin</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd></mtr></mtable></mfenced></mrow></math>
wherein, <math><mrow><msub><mi>U</mi><mn>0</mn></msub><mo>=</mo><mfenced open='[' close=']'><mtable><mtr><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><msqrt><mn>2</mn></msqrt><mi>cos</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><msqrt><mn>2</mn></msqrt><mi>sin</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math> <math><mrow><msub><mi>U</mi><mn>1</mn></msub><mo>=</mo><mfenced open='[' close=']'><mtable><mtr><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><msqrt><mn>2</mn></msqrt><mi>sin</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><msqrt><mn>2</mn></msqrt><mi>cos</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math>
<math><mrow><msub><mi>W</mi><mn>0</mn></msub><mo>=</mo><mfenced open='[' close=']'><mtable><mtr><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><msqrt><mn>2</mn></msqrt><mi>sin</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><msqrt><mn>2</mn></msqrt><mi>cos</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math> <math><mrow><msub><mi>W</mi><mn>1</mn></msub><mo>=</mo><mfenced open='[' close=']'><mtable><mtr><mtd><mo>-</mo><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><msqrt><mn>2</mn></msqrt><mi>cos</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><msqrt><mn>2</mn></msqrt><mi>sin</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math> α=0.1225π;
after the decomposition is finished, performing the step (5);
(3) a third multi-channel filter bank transverse decomposition step: using a third multi-channel filter bank F 3 = R 0 R 1 T 0 T 1 And carrying out transverse decomposition on the residual block X to obtain a transverse decomposition coefficient matrix Y, wherein the decomposition expression is as follows:
Y = X R 0 T T 0 T R 1 T T 1 T
wherein,
<math><mrow><msub><mi>R</mi><mn>0</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open='[' close=']'><mtable><mtr><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac></mtd><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac></mtd><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac></mtd><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mi>sin</mi><mi>&alpha;</mi></mtd><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mrow><mo>(</mo><mi>sin</mi><mi>&alpha;</mi><mo>+</mo><mi>cos</mi><mi>&alpha;</mi><mo>)</mo></mrow></mtd><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mrow><mo>(</mo><mi>sin</mi><mi>&alpha;</mi><mo>-</mo><mi>cos</mi><mi>&alpha;</mi><mo>)</mo></mrow></mtd><mtd><mi>cos</mi><mi>&alpha;</mi></mtd></mtr><mtr><mtd><mi>sin</mi><mi>&beta;</mi></mtd><mtd><mi>cos</mi><mi>&beta;</mi></mtd><mtd><mo>-</mo><mi>cos</mi><mi>&beta;</mi></mtd><mtd><mo>-</mo><mi>sin</mi><mi>&beta;</mi></mtd></mtr><mtr><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mrow><mo>(</mo><mi>sin</mi><mi>&alpha;</mi><mo>+</mo><mi>cos</mi><mi>&alpha;</mi><mo>)</mo></mrow></mtd><mtd><mo>-</mo><mi>cos</mi><mi>&alpha;</mi></mtd><mtd><mo>-</mo><mi>sin</mi><mi>&alpha;</mi></mtd><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mrow><mo>(</mo><mi>cos</mi><mi>&alpha;</mi><mo>-</mo><mi>sin</mi><mi>&alpha;</mi><mo>)</mo></mrow></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math> R1=SR0PSP,
<math><mrow><msub><mi>T</mi><mn>0</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open='[' close=']'><mtable><mtr><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac></mtd><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac></mtd><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac></mtd><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mrow><mo>(</mo><mi>sin</mi><mi>&alpha;</mi><mo>-</mo><mi>cos</mi><mi>&alpha;</mi><mo>)</mo></mrow></mtd><mtd><mo>-</mo><mi>sin</mi><mi>&alpha;</mi></mtd><mtd><mi>cos</mi><mi>&alpha;</mi></mtd><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mrow><mo>(</mo><mi>sin</mi><mi>&alpha;</mi><mo>+</mo><mi>cos</mi><mi>&alpha;</mi><mo>)</mo></mrow></mtd></mtr><mtr><mtd><mi>cos</mi><mi>&beta;</mi></mtd><mtd><mo>-</mo><mi>sin</mi><mi>&beta;</mi></mtd><mtd><mi>sin</mi><mi>&beta;</mi></mtd><mtd><mo>-</mo><mi>cos</mi><mi>&beta;</mi></mtd></mtr><mtr><mtd><mi>cos</mi><mi>&alpha;</mi></mtd><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mrow><mo>(</mo><mi>cos</mi><mi>&alpha;</mi><mo>-</mo><mi>sin</mi><mi>&alpha;</mi><mo>)</mo></mrow></mtd><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mrow><mo>(</mo><mi>sin</mi><mi>&alpha;</mi><mo>+</mo><mi>cos</mi><mi>&alpha;</mi><mo>)</mo></mrow></mtd><mtd><mo>-</mo><mi>sin</mi><mi>&alpha;</mi></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math> T1=ST0PSP,
P = 1 2 1 1 1 1 1 - 1 1 - 1 1 1 - 1 - 1 1 - 1 - 1 1 , S = 1 2 1 - 1 1 - 1 , α=0.4362π,β=0.38π;
after the decomposition is finished, performing the step (5);
(4) transverse decomposition step of second multi-channel filter bankThe method comprises the following steps: using a second multi-channel filter bank F 2 = H 0 H 1 H 2 H 3 G 0 G 1 G 2 G 3 Carrying out transverse decomposition on the residual block X to obtain a transverse decomposition coefficient matrix Y, wherein the process is as follows:
(4.1) performing horizontal symmetric expansion and decomposition on each row vector of the residual block X:
for the ith row vector Ni=[xi,0xi,1xi,2xi,3xi,4xi,5xi,6xi,7xi,8xi,9xi,10xi,11xi,12xi,13xi,14xi,15]Transversely symmetrically expanding to obtain an expanded row vector Zi,Zi=[xi,1xi,0xi,0xi,1xi,2xi,3xi,4xi,5xi,6xi,7xi,8xi,9xi,10xi,11xi,12xi,13xi,14xi,15xi,15xi,14]To Z is paired withiPerforming transverse decomposition to obtain the ith row vector NiTransverse decomposition vector M ofi
Mi=[yi,0yi,1yi,2yi,3yi,4yi,5yi,6yi,7yi,8yi,9yi,10yi,11yi,12yi,13yi,14yi,15],
Wherein:
[yi,0yi,1yi,2yi,3]=[xi,1xi,0xi,0xi,1xi,2xi,3xi,4xi,5]F2 T
[yi,4yi,5yi,6yi,7]=[xi,2xi,3xi,4xi,5xi,6xi,7xi,8xi,9]F2 T
[yi,8yi,9yi,10yi,11]=[xi,6xi,7xi,8xi,9xi,10xi,11xi,12xi,13]F2 T
[yi,12yi,13yi,14yi,15]=[xi,10xi,11xi,12xi,13xi,14xi,15xi,15xi,14]F2 T
F 2 = H 0 H 1 H 2 H 3 G 0 G 1 G 2 G 3 ,
<math><mrow><msub><mi>H</mi><mn>0</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mfenced open='[' close=']'><mtable><mtr><mtd><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi><mo>+</mo><mi>cos</mi><mi>&alpha;</mi></mtd><mtd><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi><mo>-</mo><mi>cos</mi><mi>&alpha;</mi></mtd></mtr><mtr><mtd><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi><mo>-</mo><mi>cos</mi><mi>&alpha;</mi></mtd><mtd><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi><mo>+</mo><mi>cos</mi><mi>&alpha;</mi></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math>
<math><mrow><msub><mi>H</mi><mn>1</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mfenced open='[' close=']'><mtable><mtr><mtd><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi><mo>+</mo><mi>cos</mi><mi>&alpha;</mi></mtd><mtd><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi><mo>-</mo><mi>cos</mi><mi>&alpha;</mi></mtd></mtr><mtr><mtd><mi>sin</mi><mi>&alpha;</mi><mo>-</mo><mn>1</mn><mo>+</mo><mi>cos</mi><mi>&alpha;</mi></mtd><mtd><mi>sin</mi><mi>&alpha;</mi><mo>-</mo><mn>1</mn><mo>-</mo><mi>cos</mi><mi>&alpha;</mi></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math>
<math><mrow><msub><mi>H</mi><mn>2</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mfenced open='[' close=']'><mtable><mtr><mtd><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi><mo>-</mo><mi>cos</mi><mi>&alpha;</mi></mtd><mtd><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi><mo>+</mo><mi>cos</mi><mi>&alpha;</mi></mtd></mtr><mtr><mtd><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi><mo>+</mo><mi>cos</mi><mi>&alpha;</mi></mtd><mtd><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi><mo>-</mo><mi>cos</mi><mi>&alpha;</mi></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math>
<math><mrow><msub><mi>H</mi><mn>3</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mfenced open='[' close=']'><mtable><mtr><mtd><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi><mo>-</mo><mi>cos</mi><mi>&alpha;</mi></mtd><mtd><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi><mo>+</mo><mi>cos</mi><mi>&alpha;</mi></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi><mo>-</mo><mi>cos</mi><mi>&alpha;</mi></mtd><mtd><mo>-</mo><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi><mo>+</mo><mi>cos</mi><mi>&alpha;</mi></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math>
<math><mrow><msub><mi>G</mi><mn>0</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mfenced open='[' close=']'><mtable><mtr><mtd><mi>cos</mi><mi>&alpha;</mi><mo>-</mo><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi></mtd><mtd><mi>cos</mi><mi>&alpha;</mi><mo>+</mo><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi></mtd></mtr><mtr><mtd><mi>cos</mi><mi>&alpha;</mi><mo>+</mo><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi></mtd><mtd><mi>cos</mi><mi>&alpha;</mi><mo>-</mo><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math>
<math><mrow><msub><mi>G</mi><mn>1</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mfenced open='[' close=']'><mtable><mtr><mtd><mo>-</mo><mi>cos</mi><mi>&alpha;</mi><mo>+</mo><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi></mtd><mtd><mo>-</mo><mi>cos</mi><mi>&alpha;</mi><mo>-</mo><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi></mtd></mtr><mtr><mtd><mi>cos</mi><mi>&alpha;</mi><mo>+</mo><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi></mtd><mtd><mi>cos</mi><mi>&alpha;</mi><mo>-</mo><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math>
<math><mrow><msub><mi>G</mi><mn>2</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mfenced open='[' close=']'><mtable><mtr><mtd><mo>-</mo><mi>cos</mi><mi>&alpha;</mi><mo>-</mo><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi></mtd><mtd><mo>-</mo><mi>cos</mi><mi>&alpha;</mi><mo>+</mo><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi>cos</mi><mi>&alpha;</mi><mo>+</mo><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi></mtd><mtd><mo>-</mo><mi>cos</mi><mi>&alpha;</mi><mo>-</mo><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math>
<math><mrow><msub><mi>G</mi><mn>3</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mfenced open='[' close=']'><mtable><mtr><mtd><mi>cos</mi><mi>&alpha;</mi><mo>+</mo><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi></mtd><mtd><mi>cos</mi><mi>&alpha;</mi><mo>-</mo><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi>cos</mi><mi>&alpha;</mi><mo>+</mo><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi></mtd><mtd><mo>-</mo><mi>cos</mi><mi>&alpha;</mi><mo>-</mo><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math>
alpha is-0.595 pi, i is 0-k-1, k is less than or equal to 16, k is the wide side of the residual block XDetermining the size; (4.2) transverse decomposition vector M of each row vectoriA matrix Y of transverse decomposition coefficients is constructed,
Y = M 0 M 1 . . . M k - 1 , wherein k is determined by the broadside size of the residual block X;
after the decomposition is finished, performing the step (5);
(5) and transverse decomposition coefficient matrix classification: classifying the transverse decomposition coefficient matrix Y, and performing the step (6) when the width side size of Y is 4; when the width side size of Y is 8, performing the step (7); when the width side size of Y is 16, performing the step (8);
(6) a first multi-channel filter bank longitudinal decomposition step: using a first multi-channel filter bank F 1 = U 0 U 1 W 0 W 1 And longitudinally decomposing the transverse decomposition coefficient matrix Y to obtain a decomposition coefficient matrix D of the residual block, wherein the decomposition expression is as follows:
<math><mrow><mi>D</mi><mo>=</mo><mfenced open='[' close=']'><mtable><mtr><mtd><msub><mi>U</mi><mn>0</mn></msub></mtd><mtd><msub><mi>U</mi><mn>1</mn></msub></mtd></mtr><mtr><mtd><msub><mi>W</mi><mn>0</mn></msub></mtd><mtd><msub><mi>W</mi><mn>1</mn></msub></mtd></mtr></mtable></mfenced><mi>Y</mi><mo>=</mo><mfenced open='[' close=']'><mtable><mtr><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><msqrt><mn>2</mn></msqrt><mi>cos</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><msqrt><mn>2</mn></msqrt><mi>sin</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><msqrt><mn>2</mn></msqrt><mi>sin</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><msqrt><mn>2</mn></msqrt><mi>cos</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><msqrt><mn>2</mn></msqrt><mi>sin</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><msqrt><mn>2</mn></msqrt><mi>cos</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><msqrt><mn>2</mn></msqrt><mi>cos</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><msqrt><mn>2</mn></msqrt><mi>sin</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mi>Y</mi></mrow></math>
wherein, U0、U1、W0、W1And the value of α is the same as shown in step (2);
finishing the decomposition;
(7) a third multi-channel filter bank longitudinal decomposition step: using a third multi-channel filter bank F 3 = R 0 R 1 T 0 T 1 And longitudinally decomposing the transverse decomposition coefficient matrix Y to obtain a decomposition coefficient matrix D of the residual block, wherein the decomposition expression is as follows:
D = R 0 R 1 T 0 T 1 Y
wherein R is0、R1、T0、T1The values of (a) are the same as shown in step (3);
finishing the decomposition;
(8) a second multi-channel filter bank longitudinal decomposition step: using a second multi-channel filter bank F 2 = H 0 H 1 H 2 H 3 G 0 G 1 G 2 G 3 And longitudinally decomposing the transverse decomposition coefficient matrix Y to obtain a decomposition coefficient matrix D of the residual block, wherein the process is as follows:
(8.1) longitudinally symmetrically expanding and decomposing each column vector of the transverse decomposition coefficient matrix Y:
for the ith column vector Li=[y0,iy1,iy2,iy3,iy4,iy5,iy6,iy7,iy8,iy9,iy10,iy11,iy12,iy13,iy14,iy15,i]TLongitudinally symmetric expansion to obtain an expanded column vector Zi,Zi=[y1,iy0,iy0,iy1,iy2,iy3,iy4,iy5,iy6,iy7,iy8,iy9,iy10,iy11,iy12,iy13,iy14,iy15,iy15,iy14,i]TTo Z is paired withiPerforming longitudinal decomposition to obtain the ith column vector LiLongitudinal decomposition vector J ofi
Ji=[d0,id1,id2,id3,id4,id5,id6,id7,id8,id9,id10,id11,id12,id13,id14,id15,i]T
Wherein:
[d0,id1,id2,id3,i]T=F2[y1,iy0,iy0,iy1,iy2,iy3,iy4,iy5,i]T
[d4,id5,id6,id7,i]T=F2[y2,iy3,iy4,iy5,iy6,iy7,iy8,iy9,i ]T
[d8,id9,id10,id11,i]T=F2[y6,iy7,iy8,iy9,iy10,i y11,iy12,iy13,i]T
[d12,id13,id14,id15,i]T=F2[y10,iy11,iy12,iy13,iy14,iy15,iy15,iy14,i]T
F 2 = H 0 H 1 H 2 H 3 G 0 G 1 G 2 G 3 ,
H0、H1、H2、H3、G0、G1、G2、G3the value of (c) is the same as that shown in step (4.1), i is 0-k-1, k is less than or equal to 16, and k is determined by the size of the long side of the residual block X;
(8.2) vertical decomposition vector J of each column vectoriA matrix D of decomposition coefficients constituting the residual block,
D=[J0J1…Jk-1]where k is determined by the size of the long side of the residual block X;
and finishing the decomposition.
The invention discloses a reconstruction method of a video coding prediction residual block, which reconstructs the prediction residual block by utilizing a decomposition coefficient matrix and comprises the following steps:
(1) and classifying a decomposition coefficient matrix of the prediction residual block: classifying the input decomposition coefficient matrix D, and performing the step (2) when the broadside size of the decomposition coefficient matrix is 4; when the size of the wide side of the decomposition coefficient matrix is 8, performing the step (3); when the size of the wide side of the decomposition coefficient matrix is 16, performing the step (4);
(2) a first multi-channel filter bank longitudinal reconstruction step: using a first multi-channel filter bank F 1 = U 0 U 1 W 0 W 1 Longitudinally reconstructing the decomposition coefficient matrix D to obtain a transverse decomposition coefficient matrix Y, wherein the reconstruction expression is as follows:
<math><mrow><mi>Y</mi><mo>=</mo><mfenced open='[' close=']'><mtable><mtr><mtd><msup><msub><mi>U</mi><mn>0</mn></msub><mi>T</mi></msup></mtd><mtd><msup><msub><mi>W</mi><mn>0</mn></msub><mi>T</mi></msup></mtd></mtr><mtr><mtd><msup><msub><mi>U</mi><mn>1</mn></msub><mi>T</mi></msup></mtd><mtd><msup><msub><mi>W</mi><mn>1</mn></msub><mi>T</mi></msup></mtd></mtr></mtable></mfenced><mi>D</mi><mo>=</mo><mfenced open='[' close=']'><mtable><mtr><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><msqrt><mn>2</mn></msqrt><mi>cos</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><msqrt><mn>2</mn></msqrt><mi>sin</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><msqrt><mn>2</mn></msqrt><mi>sin</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><msqrt><mn>2</mn></msqrt><mi>cos</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><msqrt><mn>2</mn></msqrt><mi>sin</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><msqrt><mn>2</mn></msqrt><mi>cos</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><msqrt><mn>2</mn></msqrt><mi>cos</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><msqrt><mn>2</mn></msqrt><mi>sin</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mi>D</mi></mrow></math>
wherein, <math><mrow><msub><mi>U</mi><mn>0</mn></msub><mo>=</mo><mfenced open='[' close=']'><mtable><mtr><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><msqrt><mn>2</mn></msqrt><mi>cos</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><msqrt><mn>2</mn></msqrt><mi>sin</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math> <math><mrow><msub><mi>U</mi><mn>1</mn></msub><mo>=</mo><mfenced open='[' close=']'><mtable><mtr><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><msqrt><mn>2</mn></msqrt><mi>sin</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><msqrt><mn>2</mn></msqrt><mi>cos</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math>
<math><mrow><msub><mi>W</mi><mn>0</mn></msub><mo>=</mo><mfenced open='[' close=']'><mtable><mtr><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><msqrt><mn>2</mn></msqrt><mi>sin</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><msqrt><mn>2</mn></msqrt><mi>cos</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math> <math><mrow><msub><mi>W</mi><mn>1</mn></msub><mo>=</mo><mfenced open='[' close=']'><mtable><mtr><mtd><mo>-</mo><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><msqrt><mn>2</mn></msqrt><mi>cos</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><msqrt><mn>2</mn></msqrt><mi>sin</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math> α=0.1225π;
after reconstruction is completed, performing the step (5);
(3) a third multi-channel filter bank longitudinal reconstruction step: using a third multi-channel filter bank F 3 = R 0 R 1 T 0 T 1 Longitudinally reconstructing the decomposition coefficient matrix D to obtain a transverse decomposition coefficient matrix Y, wherein the reconstruction expression is as follows:
Y = R 0 T T 0 T R 1 T T 1 T D
wherein,
<math><mrow><msub><mi>R</mi><mn>0</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open='[' close=']'><mtable><mtr><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac></mtd><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac></mtd><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac></mtd><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mi>sin</mi><mi>&alpha;</mi></mtd><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mrow><mo>(</mo><mi>sin</mi><mi>&alpha;</mi><mo>+</mo><mi>cos</mi><mi>&alpha;</mi><mo>)</mo></mrow></mtd><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mrow><mo>(</mo><mi>sin</mi><mi>&alpha;</mi><mo>-</mo><mi>cos</mi><mi>&alpha;</mi><mo>)</mo></mrow></mtd><mtd><mi>cos</mi><mi>&alpha;</mi></mtd></mtr><mtr><mtd><mi>sin</mi><mi>&beta;</mi></mtd><mtd><mi>cos</mi><mi>&beta;</mi></mtd><mtd><mo>-</mo><mi>cos</mi><mi>&beta;</mi></mtd><mtd><mo>-</mo><mi>sin</mi><mi>&beta;</mi></mtd></mtr><mtr><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mrow><mo>(</mo><mi>sin</mi><mi>&alpha;</mi><mo>+</mo><mi>cos</mi><mi>&alpha;</mi><mo>)</mo></mrow></mtd><mtd><mo>-</mo><mi>cos</mi><mi>&alpha;</mi></mtd><mtd><mo>-</mo><mi>sin</mi><mi>&alpha;</mi></mtd><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mrow><mo>(</mo><mi>cos</mi><mi>&alpha;</mi><mo>-</mo><mi>sin</mi><mi>&alpha;</mi><mo>)</mo></mrow></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math> R1=SR0PSP,
<math><mrow><msub><mi>T</mi><mn>0</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open='[' close=']'><mtable><mtr><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac></mtd><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac></mtd><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac></mtd><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mrow><mo>(</mo><mi>sin</mi><mi>&alpha;</mi><mo>-</mo><mi>cos</mi><mi>&alpha;</mi><mo>)</mo></mrow></mtd><mtd><mo>-</mo><mi>sin</mi><mi>&alpha;</mi></mtd><mtd><mi>cos</mi><mi>&alpha;</mi></mtd><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mrow><mo>(</mo><mi>sin</mi><mi>&alpha;</mi><mo>+</mo><mi>cos</mi><mi>&alpha;</mi><mo>)</mo></mrow></mtd></mtr><mtr><mtd><mi>cos</mi><mi>&beta;</mi></mtd><mtd><mo>-</mo><mi>sin</mi><mi>&beta;</mi></mtd><mtd><mi>sin</mi><mi>&beta;</mi></mtd><mtd><mo>-</mo><mi>cos</mi><mi>&beta;</mi></mtd></mtr><mtr><mtd><mi>cos</mi><mi>&alpha;</mi></mtd><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mrow><mo>(</mo><mi>cos</mi><mi>&alpha;</mi><mo>-</mo><mi>sin</mi><mi>&alpha;</mi><mo>)</mo></mrow></mtd><mtd><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mrow><mo>(</mo><mi>sin</mi><mi>&alpha;</mi><mo>+</mo><mi>cos</mi><mi>&alpha;</mi><mo>)</mo></mrow></mtd><mtd><mo>-</mo><mi>sin</mi><mi>&alpha;</mi></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math> T1=ST0PSP,
P = 1 2 1 1 1 1 1 - 1 1 - 1 1 1 - 1 - 1 1 - 1 - 1 1 , S = 1 2 1 - 1 1 - 1 , α=0.4362π,β=0.38π;
after reconstruction is completed, performing the step (5);
(4) a second multi-channel filter bank longitudinal reconstruction step: using a second multi-channel filter bank
F 2 = H 0 H 1 H 2 H 3 G 0 G 1 G 2 G 3 = h 00 h 01 h 02 h 03 h 04 h 05 h 06 h 07 h 10 h 11 h 12 h 13 h 14 h 15 h 16 h 17 g 00 g 01 g 02 g 03 g 04 g 05 g 06 g 07 g 10 g 11 g 12 g 13 g 14 g 15 g 16 g 17 Carrying out longitudinal and longitudinal reconstruction on the decomposition coefficient matrix D to obtain a transverse and longitudinal decomposition coefficient matrix Y, wherein the process is as follows:
(4.1) reconstructing each column vector of the decomposition coefficient matrix D:
for ith row vector J of decomposition coefficient matrix Di=[d0,id1,id2,id3,id4,id5,id6,i d7,id8,i d9,i d10,i d11,i d12,i d13,i d14,i d15,i]TReconstructing to obtain the ith column vector L of the transverse decomposition coefficient matrix Yi=[y0,iy1,iy2,iy3,iy4,iy5,iy6,iy7,iy8,iy9,iy10,iy11,iy12,iy13,iy14,iy15,i]TThe calculation expression is as follows:
y0,i=d0,i×h02+d0,i×h06+d1,i×h12-d1,i×h16+d2,i×g02+d2,i×g06+d3,i×g12-d3,i×g16
y1,i=d0,i×h03+d0,i×h07+d1,i×h13-d1,i×h17+d2,i×g03+d2,i×g07+d3,i×g13-d3,i×g17
y2,i=d0,i×h04+d4,i×h00+d1,i×h14+d5,i×h10+d2,i×g04+d6,i×g00+d3,i×g14+d7,i×g10
y3,i=d0,i×h05+d4,i×h01+d1,i×h15+d5,i×h11+d2,i×g05+d6,i×g01+d3,i×g15+d7,i×g11
y4,i=d0,i×h06+d4,i×h02+d1,i×h16+d5,i×h12+d2,i×g06+d6,i×g02+d3,i×g16+d7,i×g12
y5,i=d0,i×h07+d4,i×h03+d1,i×h17+d5,i×h13+d2,i×g07+d6,i×g03+d3,i×g17+d7,i×g13
y6,i=d4,i×h04+d8,i×h00+d5,i×h14+d9,i×h10+d6,i×g04+d10,i×g00+d7,i×g14+d11,i×g10
y7,i=d4,i×h05+d8,i×h01+d5,i×h15+d9,i×h11+d6,i×g05+d10,i×g01+d7,i×g15+d11,i×g11
y8,i=d4,i×h06+d8,i×h02+d5,i×h16+d9,i×h12+d6,i×g06+d10,i×g02+d7,i×g16+d11,i×g12
y9,i=d4,i×h07+d8,i×h03+d5,i×h17+d9,i×h13+d6,i×g07+d10,i×g03+d7,i×g17+d11,i×g13
y10,i=d8,i×h04+d12,i×h00+d9,i×h14+d13,i×h10+d10,i×g04+d14,i×g00+d11,i×g14+d15,i×g10
y11,i=d8,i×h05+d12,i×h01+d9,i×h15+d13,i×h11+d10,i×g05+d14,i×g01+d11,i×g15+d15,i×g11
y12,i=d8,i×h06+d12,i×h02+d9,i×h16+d13,i×h12+d10,i×g06+d14,i×g02+d11,i×g16+d15,i×g12
y13,i=d8,i×h07+d12,i×h03+d9,i×h17+d13,i×h13+d10,i×g07+d14,i×g03+d11,i×g17+d15,i×g13
y14,i=d12,i×h04+d12,i×h00+d13,i×h14-d13,i×h10+d14,i×g04+d14,i×g00+d15,i×g14-d15,i×g10
y15,i=d12,i×h05+d12,i×h01+d13,i×h15-d13,i×h11+d14,i×g05+d14,i×g01+d15,i×g15-d15,i×g11
wherein:
<math><mrow><msub><mi>H</mi><mn>0</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mfenced open='[' close=']'><mtable><mtr><mtd><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi><mo>+</mo><mi>cos</mi><mi>&alpha;</mi></mtd><mtd><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi><mo>-</mo><mi>cos</mi><mi>&alpha;</mi></mtd></mtr><mtr><mtd><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi><mo>-</mo><mi>cos</mi><mi>&alpha;</mi></mtd><mtd><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi><mo>+</mo><mi>cos</mi><mi>&alpha;</mi></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math>
<math><mrow><msub><mi>H</mi><mn>1</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mfenced open='[' close=']'><mtable><mtr><mtd><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi><mo>+</mo><mi>cos</mi><mi>&alpha;</mi></mtd><mtd><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi><mo>-</mo><mi>cos</mi><mi>&alpha;</mi></mtd></mtr><mtr><mtd><mi>sin</mi><mi>&alpha;</mi><mo>-</mo><mn>1</mn><mo>+</mo><mi>cos</mi><mi>&alpha;</mi></mtd><mtd><mi>sin</mi><mi>&alpha;</mi><mo>-</mo><mn>1</mn><mo>-</mo><mi>cos</mi><mi>&alpha;</mi></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math>
<math><mrow><msub><mi>H</mi><mn>2</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mfenced open='[' close=']'><mtable><mtr><mtd><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi><mo>-</mo><mi>cos</mi><mi>&alpha;</mi></mtd><mtd><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi><mo>+</mo><mi>cos</mi><mi>&alpha;</mi></mtd></mtr><mtr><mtd><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi><mo>+</mo><mi>cos</mi><mi>&alpha;</mi></mtd><mtd><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi><mo>-</mo><mi>cos</mi><mi>&alpha;</mi></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math>
<math><mrow><msub><mi>H</mi><mn>3</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mfenced open='[' close=']'><mtable><mtr><mtd><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi><mo>-</mo><mi>cos</mi><mi>&alpha;</mi></mtd><mtd><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi><mo>+</mo><mi>cos</mi><mi>&alpha;</mi></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi><mo>-</mo><mi>cos</mi><mi>&alpha;</mi></mtd><mtd><mo>-</mo><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi><mo>+</mo><mi>cos</mi><mi>&alpha;</mi></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math>
<math><mrow><msub><mi>G</mi><mn>0</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mfenced open='[' close=']'><mtable><mtr><mtd><mi>cos</mi><mi>&alpha;</mi><mo>-</mo><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi></mtd><mtd><mi>cos</mi><mi>&alpha;</mi><mo>+</mo><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi></mtd></mtr><mtr><mtd><mi>cos</mi><mi>&alpha;</mi><mo>+</mo><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi></mtd><mtd><mi>cos</mi><mi>&alpha;</mi><mo>-</mo><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math>
<math><mrow><msub><mi>G</mi><mn>1</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mfenced open='[' close=']'><mtable><mtr><mtd><mo>-</mo><mi>cos</mi><mi>&alpha;</mi><mo>+</mo><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi></mtd><mtd><mo>-</mo><mi>cos</mi><mi>&alpha;</mi><mo>-</mo><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi></mtd></mtr><mtr><mtd><mi>cos</mi><mi>&alpha;</mi><mo>+</mo><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi></mtd><mtd><mi>cos</mi><mi>&alpha;</mi><mo>-</mo><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math>
<math><mrow><msub><mi>G</mi><mn>2</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mfenced open='[' close=']'><mtable><mtr><mtd><mo>-</mo><mi>cos</mi><mi>&alpha;</mi><mo>-</mo><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi></mtd><mtd><mo>-</mo><mi>cos</mi><mi>&alpha;</mi><mo>+</mo><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi>cos</mi><mi>&alpha;</mi><mo>+</mo><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi></mtd><mtd><mo>-</mo><mi>cos</mi><mi>&alpha;</mi><mo>-</mo><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math>
<math><mrow><msub><mi>G</mi><mn>3</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mfenced open='[' close=']'><mtable><mtr><mtd><mi>cos</mi><mi>&alpha;</mi><mo>+</mo><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi></mtd><mtd><mi>cos</mi><mi>&alpha;</mi><mo>-</mo><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi>cos</mi><mi>&alpha;</mi><mo>+</mo><mn>1</mn><mo>+</mo><mi>sin</mi><mi>&alpha;</mi></mtd><mtd><mo>-</mo><mi>cos</mi><mi>&alpha;</mi><mo>-</mo><mn>1</mn><mo>-</mo><mi>sin</mi><mi>&alpha;</mi></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math>
alpha is-0.595 pi, i is 0-k-1, k is less than or equal to 16, and k is determined by the long side size of the decomposition coefficient matrix D;
(4.2) longitudinal reconstructed vector L of each column vectoriA matrix Y of transverse decomposition coefficients is constructed,
Y=[L0L1…Lk-1]wherein k is determined by the dimension of the long side of the decomposition coefficient matrix D;
after reconstruction is completed, performing the step (5);
(5) and transverse decomposition coefficient matrix classification: classifying the transverse decomposition coefficient matrix Y, and performing the step (6) when the long side size of Y is 4; when the long side size of Y is 8, performing the step (7); when the long side size of Y is 16, performing the step (8);
(6) a first multi-channel filter bank transverse reconstruction step: using a first multi-channel filter bank F 1 = U 0 U 1 W 0 W 1 And transversely reconstructing the transverse decomposition coefficient matrix Y to obtain a residual block X, wherein the reconstruction expression is as follows:
<math><mrow><mi>X</mi><mo>=</mo><mi>Y</mi><mfenced open='[' close=']'><mtable><mtr><mtd><msub><mi>U</mi><mn>0</mn></msub></mtd><mtd><msub><mi>U</mi><mn>1</mn></msub></mtd></mtr><mtr><mtd><msub><mi>W</mi><mn>0</mn></msub></mtd><mtd><msub><mi>W</mi><mn>1</mn></msub></mtd></mtr></mtable></mfenced><mo>=</mo><mi>Y</mi><mfenced open='[' close=']'><mtable><mtr><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><msqrt><mn>2</mn></msqrt><mi>cos</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><msqrt><mn>2</mn></msqrt><mi>sin</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><msqrt><mn>2</mn></msqrt><mi>sin</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><msqrt><mn>2</mn></msqrt><mi>cos</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn><mo>/</mo><mn>2</mn></mtd><mtd><mn>1</mn><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><msqrt><mn>2</mn></msqrt><mi>sin</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><msqrt><mn>2</mn></msqrt><mi>cos</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><msqrt><mn>2</mn></msqrt><mi>cos</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd><mtd><mo>-</mo><msqrt><mn>2</mn></msqrt><mi>sin</mi><mi>&alpha;</mi><mo>/</mo><mn>2</mn></mtd></mtr></mtable></mfenced></mrow></math>
wherein, U0、U1、W0、W1And the value of α is the same as shown in step (2); finishing reconstruction;
(7) a third multi-channel filter bank transverse reconstruction step: using a third multi-channel filter bank F 3 = R 0 R 1 T 0 T 1 And transversely reconstructing the transverse decomposition coefficient matrix Y to obtain a residual block X, wherein the reconstruction expression is as follows:
X = Y R 0 R 1 T 0 T 1
wherein R is0、R1、T0、T1The values of (a) are the same as shown in step (3);
finishing reconstruction;
(8) a second multi-channel filter bank transverse reconstruction step: using a second multi-channel filter bank F 2 = H 0 H 1 H 2 H 3 G 0 G 1 G 2 G 3 = h 00 h 01 h 02 h 03 h 04 h 05 h 06 h 07 h 10 h 11 h 12 h 13 h 14 h 15 h 16 h 17 g 00 g 01 g 02 g 03 g 04 g 05 g 06 g 07 g 10 g 11 g 12 g 13 g 14 g 15 g 16 g 17 To transverse decomposition system
And performing transverse reconstruction on the number matrix Y to obtain a residual block X, wherein the process is as follows:
(8.1) reconstructing each row vector of the transverse decomposition coefficient matrix Y:
for the ith row vector M of the transverse decomposition coefficient matrix Yi=[yi,0yi,1yi,2yi,3yi,4yi,5yi,6yi,7yi,8yi,9yi,10yi,11yi,12yi,13yi,14yi,15]Rebuilding to obtain ith row vector N of residual block Xi=[xi,0xi,1xi,2xi,3xi,4xi,5xi,6xi,7xi,8xi,9xi,10xi,11xi,12xi,13xi,14xi,15]The calculation expression is as follows:
xi,0=yi,0×h02+yi,0×h06+yi,1×h12-yi,1×h16+yi,2×g02+yi,2×g06+yi,3×g12-yi,3×g16
xi,1=yi,0×h03+yi,0×h07+yi,1×h13-yi,1×h17+yi,2×g03+yi,2×g07+yi,3×g13-yi,3×g17
xi,2=yi,0×h04+yi,4×h00+yi,1×h14+yi,5×h10+yi,2×g04+yi,6×g00+yi,3×g14+yi,7×g10
xi,3=yi,0×h05+yi,4×h01+yi,1×h15+yi,5×h11+yi,2×g05+yi,6×g01+yi,3×g15+yi,7×g11
xi,4=yi,0×h06+yi,4×h02+yi,1×h16+yi,5×h12+yi,2×g06+yi,6×g02+yi,3×g16+yi,7×g12
xi,5=yi,0×h07+yi,4×h03+yi,1×h17+yi,5×h13+yi,2×g07+yi,6×g03+yi,3×g17+yi,7×g13
xi,6=yi,4×h04+yi,8×h00+yi,5×h14+yi,9×h10+yi,6×g04+yi,10×g00+yi,7×g14+yi,11×g10
xi,7=yi,4×h05+yi,8×h01+yi,5×h15+yi,9×h11+yi,6×g05+yi,10×g01+yi,7×g15+yi,11×g11
xi,8=yi,4×h06+yi,8×h02+yi,5×h16+yi,9×h12+yi,6×g06+yi,10×g02+yi,7×g16+yi,11×g12
xi,9=yi,4×h07+yi,8×h03+yi,5×h17+yi,9×h13+yi,6×g07+yi,10×g03+yi,7×g17+yi,11×g13
xi,10=yi,8×h04+yi,12×h00+yi,9×h14+yi,13×h10+yi,10×g04+yi,14×g00+yi,11×g14+yi,15×g10
xi,11=yi,8×h05+yi,12×h01+yi,9×h15+yi,13×h11+yi,10×g05+yi,14×g01+yi,11×g15+yi,15×g11
xi,12=yi,8×h06+yi,12×h02+yi,9×h16+yi,13×h12+yi,10×g06+yi,14×g02+yi,11×g16+yi,15×g12
xi,13=yi,8×h07+yi,12×h03+yi,9×h17+yi,13×h13+yi,10×g07+yi,14×g03+yi,11×g17+yi,15×g13
xi,14=yi,12×h04+yi,12×h00+yi,13×h14-yi,13×h10+yi,14×g04+yi,14×g00+yi,15×g14-yi,15×g10
xi,15=yi,12×h05+yi,12×h01+yi,13×h15-yi,13×h11+yi,14×g05+yi,14×g01+yi,15×g15-yi,15×g11
wherein H0、H1、H2、H3、G0、G1、G2、G3The value of (c) is the same as that shown in step (4.1), i is 0-k-1, k is less than or equal to 16, and k is determined by the broadside size of the transverse decomposition coefficient matrix Y;
(8.2) transverse reconstructed vector N of each row vectoriA residual block X is formed,
X = N 0 N 1 . . . N k - 1 , wherein k is determined by the broadside size of the transverse decomposition coefficient matrix Y; and finishing the reconstruction.
The invention uses three multi-channel filter banks to carry out decomposition (transformation) processing on video data, the three multi-channel filter banks provided by the invention not only have orthogonal characteristic, but also have linear phase, in addition, the distribution of the spectral coefficients in a decomposition coefficient matrix obtained by the decomposition of the multi-channel filter banks is the same as that of 4 multiplied by 4 or 8 multiplied by 8 discrete cosine transform, and the spectral coefficients from the upper left corner to the lower right corner are changed from low to high; meanwhile, the invention can effectively perform decorrelation, reduce the blocking effect caused by the mismatching of the sizes of the DCT transformation matrix and the prediction residual block, and improve the subjective and objective quality of coding.
Experimental results show that the video coding quality of the decomposition processing by using the multi-channel filter bank is superior to the video coding quality of the decomposition processing by using DCT.
Drawings
FIG. 1 is a schematic flow chart of video encoding;
FIG. 2 is a schematic flow diagram of the decomposition process of the present invention;
FIG. 3 is a schematic flow chart of a reconstruction method according to the present invention.
Detailed Description
As shown in fig. 1, in a video encoding process, intra-frame or inter-frame prediction is performed on a video image, an optimal prediction mode is selected by calculating a cost function in the prediction process, a residual between an original image and a predicted image is decomposed to obtain a decomposition coefficient matrix, the decomposition coefficient matrix is quantized and entropy-encoded to obtain an output code stream, and meanwhile, quantization coefficients are inversely quantized, and a prediction residual block is reconstructed and reconstructed to obtain a reconstructed image used for a reference image in the next frame encoding.
The decomposition method of the present invention is used for decomposing the prediction disparity block to obtain a decomposition coefficient matrix, and the flow of the decomposition coefficient matrix is shown in fig. 2.
The reconstruction method of the present invention reconstructs the prediction parameter block by using the decomposition coefficient matrix, and the flow is shown in fig. 3.
The encoding process will be implemented using 4 × 4, 8 × 8, 16 × 16 intra prediction modes in h.264 and inter prediction modes for 7 different sized blocks, with the filter banks being stored in table form in both the encoder and decoder. After the prediction residual block decomposition method based on the multi-channel filter bank is adopted, the decomposition coefficients are directly quantized and dequantized according to the quantization step size corresponding to the quantization parameter. The test platform is JM10.1, and a representative CIF (352X 288) with different colors and different texture characteristics of international standard sequences Bus, Mobile, Foreman and Coastguard is selected as a test sequence. The parameter settings of this embodiment are as follows:
1. and (3) coding structure: i frame 1 frame, P frame 29 frame
2. Entropy coding mode: CAVLC;
3. using a rate-distortion optimization model;
4. reference frame number: 1;
5. the search range is as follows: plus or minus 16 pixel points;
this embodiment shows that, compared with Discrete Cosine Transform (DCT), after the decomposition method of the present invention is adopted, the average peak signal-to-noise ratio is improved by more than 0.2dB under the same code rate. In particular, blocking artifacts will be generated near moving objects when using a DCT-based h.264/AVC encoder, whereas no blocking artifacts are generated when using a multi-channel filterbank-based h.264 encoder. Therefore, the prediction residual block decomposition method based on the multi-channel filter bank can effectively perform decorrelation in video coding, reduce the block effect caused by the mismatching of the sizes of the DCT transform matrix and the prediction residual block, and improve the coding subjective and objective quality.

Claims (2)

1. A method of decomposition of a video coding prediction residual block, comprising:
(1) classifying the prediction residual blocks: classifying the input intra-frame or inter-frame prediction residual block, and performing the step (2) when the long edge size of the residual block is 4; when the size of the long edge of the residual block is 8, performing the step (3); when the size of the long side of the residual block is 16, performing the step (4);
(2) a first multi-channel filter bank transverse decomposition step: using a first multi-channel filter bank
Figure F2009100621650C00011
And carrying out transverse decomposition on the residual block X to obtain a transverse decomposition coefficient matrix Y, wherein the decomposition expression is as follows:
Figure F2009100621650C00012
wherein,
Figure F2009100621650C00014
Figure F2009100621650C00015
Figure F2009100621650C00016
α=0.1225π;
after the decomposition is finished, performing the step (5);
(3) a third multi-channel filter bank transverse decomposition step: using a third multi-channel filter bank
Figure F2009100621650C00017
And carrying out transverse decomposition on the residual block X to obtain a transverse decomposition coefficient matrix Y, wherein the decomposition expression is as follows:
Figure F2009100621650C00018
wherein,
R1=SR0PSP,T1=ST0PSP,
Figure DEST_PATH_FSB00000115817800013
α=0.4362π,β=0.38π;
after the decomposition is finished, performing the step (5);
(4) and a second multi-channel filter bank transverse decomposition step: using a second multi-channel filter bank
Figure DEST_PATH_FSB00000115817800015
Carrying out transverse decomposition on the residual block X to obtain a transverse decomposition coefficient matrix Y, wherein the process is as follows: (4.1) performing horizontal symmetric expansion and decomposition on each row vector of the residual block X:
for the ith row vector Ni=[xi,0xi,1xi,2xi,3xi,4xi,5xi,6xi,7xi,8xi,9xi,10xi,11xi,12xi,13xi,14xi,15]Transversely symmetrically expanding to obtain an expanded row vector Zi,Zi=[xi,1xi,0xi,0xi,1xi,2xi,3xi,4xi,5xi,6xi,7xi,8xi,9xi,10xi,11xi,12xi,13xi,14xi,15xi,15xi,14]To Z is paired withiPerforming transverse decomposition to obtain the ith row vector NiTransverse decomposition vector M ofi
Mi=[yi,0yi,1yi,2yi,3yi,4yi,5yi,6yi,7yi,8yi,9yi,10yi,11yi,12yi,13yi,14yi,15],
Wherein:
[yi,0yi,1yi,2yi,3]=[xi,1xi,0xi,0xi,1xi,2xi,3xi,4xi,5]F2 T
[yi,4 yi,5 yi,6 yi,7]=[xi,2 xi,3 xi,4 xi,5 xi,6 xi,7 xi,8 xi,9]F2 T
[yi,8 yi,9 yi,10 yi,11]=[xi,6 xi,7 xi,8 xi,9 xi,10 xi,11 xi,12 xi,13]F2 T
[yi,12 yi,13 yi,14 yi,15]=[xi,10 xi,11 xi,12 xi,13 xi,14 xi,15 xi,15 xi,14]F2 T
Figure F2009100621650C00031
Figure F2009100621650C00033
Figure F2009100621650C00034
Figure F2009100621650C00035
Figure F2009100621650C00036
Figure F2009100621650C00038
Figure F2009100621650C00039
alpha is-0.595 pi, i is 0-k-1, k is less than or equal to 16, and k is determined by the width size of the residual block X;
(4.2) transverse decomposition vector M of each row vectoriA matrix Y of transverse decomposition coefficients is constructed,
Figure F2009100621650C000310
wherein k is determined by the broadside size of the residual block X;
after the decomposition is finished, performing the step (5);
(5) and transverse decomposition coefficient matrix classification: the matrix of transverse decomposition coefficients Y is classified,
when the width side size of Y is 4, performing the step (6); when the width side size of Y is 8, performing the step (7); when the width side size of Y is 16, performing the step (8);
(6) a first multi-channel filter bank longitudinal decomposition step: using a first multi-channel filter bankAnd longitudinally decomposing the transverse decomposition coefficient matrix Y to obtain a decomposition coefficient matrix D of the residual block, wherein the decomposition expression is as follows:
Figure F2009100621650C00042
wherein, U0、U1、W0、W1And the value of α is the same as shown in step (2);
finishing the decomposition;
(7) a third multi-channel filter bank longitudinal decomposition step: using a third multi-channel filter bankAnd longitudinally decomposing the transverse decomposition coefficient matrix Y to obtain a decomposition coefficient matrix D of the residual block, wherein the decomposition expression is as follows:
Figure F2009100621650C00044
wherein R is0、R1、T0、T1The values of (a) are the same as shown in step (3);
finishing the decomposition;
(8) a second multi-channel filter bank longitudinal decomposition step: using a second multi-channel filter bank
Figure F2009100621650C00045
And longitudinally decomposing the transverse decomposition coefficient matrix Y to obtain a decomposition coefficient matrix D of the residual block, wherein the process is as follows:
(8.1) longitudinally symmetrically expanding and decomposing each column vector of the transverse decomposition coefficient matrix Y:
for the ith column vector Li=[y0,iy1,iy2,iy3,iy4,iy5,iy6,iy7,iy8,iy9,iy10,iy11,iy12,iy13,iy14,iy15,i]TLongitudinally symmetric expansion to obtain an expanded column vector Zi,Zi=[y1,iy0,iy0,iy1,iy2,iy3,iy4,iy5,iy6,iy7,iy8,iy9,iy10,iy11,iy12,iy13,iy14,iy15,iy15,iy14,i]TTo Z is paired withiPerforming longitudinal decomposition to obtain the ith column vector LiLongitudinal decomposition vector J ofi
Ji=[d0,id1,id2,id3,id4,id5,id6,id7,id8,id9,id10,id11,id12,id13,id14,id15,i]T
Wherein:
[d0,id1,id2,id3,i]T=F2[y1,iy0,iy0,iy1,iy2,iy3,iy4,iy5,i]T
[d4,id5,id6,id7,i]T=F2[y2,iy3,iy4,iy5,iy6,iy7,iy8,iy9,i]T
[d8,id9,id10,id11,i]T=F2[y6,iy7,iy8,iy9,iy10,iy11,iy12,iy13,i]T
[d12,id13,id14,id15,i]T=F2[y10,iy11,iy12,iy13,iy14,iy15,iy15,iy14,i]T
Figure DEST_PATH_FSB00000115817800021
H0、H1、H2、H3、G0、G1、G2、G3the value of (c) is the same as that shown in step (4.1), i is 0-k-1, k is less than or equal to 16, and k is determined by the size of the long side of the residual block X;
(8.2) vertical decomposition vector J of each column vectoriA matrix D of decomposition coefficients constituting the residual block,
D=[J0J1…Jk-1]where k is determined by the size of the long side of the residual block X;
and finishing the decomposition.
2. A method for reconstructing a prediction residual block for video coding using a matrix of decomposition coefficients, comprising:
(1) and classifying a decomposition coefficient matrix of the prediction residual block: classifying the input decomposition coefficient matrix D, and performing the step (2) when the broadside size of the decomposition coefficient matrix is 4; when the size of the wide side of the decomposition coefficient matrix is 8, performing the step (3); when the size of the wide side of the decomposition coefficient matrix is 16, performing the step (4);
(2) a first multi-channel filter bank longitudinal reconstruction step: using a first multi-channel filter bank
Figure F2009100621650C00061
Longitudinally reconstructing the decomposition coefficient matrix D to obtain a transverse decomposition coefficient matrix Y, wherein the reconstruction expression is as follows:
Figure F2009100621650C00062
wherein,
Figure F2009100621650C00063
Figure F2009100621650C00065
Figure F2009100621650C00066
α=0.1225π;
after reconstruction is completed, performing the step (5);
(3) a third multi-channel filter bank longitudinal reconstruction step: using a third multi-channel filter bank
Figure F2009100621650C00067
Longitudinally reconstructing the decomposition coefficient matrix D to obtain a transverse decomposition coefficient matrix Y, wherein the reconstruction expression is as follows:
Figure F2009100621650C00068
wherein,
Figure F2009100621650C00069
R1=SR0PSP,
Figure F2009100621650C00071
T1=ST0PSP,
α=0.4362π,β=0.38π;
after reconstruction is completed, performing the step (5);
(4) a second multi-channel filter bank longitudinal reconstruction step: using a second multi-channel filter bank
Figure F2009100621650C00074
Longitudinally reconstructing the decomposition coefficient matrix D to obtain a transverse decomposition coefficient matrix Y, wherein the process comprises the following steps:
(4.1) reconstructing each column vector of the decomposition coefficient matrix D:
for ith row vector J of decomposition coefficient matrix Di=[d0,i d1,i d2,i d3,i d4,i d5,i d6,i d7,id8,i d9,i d10,i d11,i d12,i d13,i d14,i d15,i]TReconstructing to obtain the ith column vector L of the transverse decomposition coefficient matrix Yi=[y0,i y1,i y2,i y3,i y4,iy5,i y7, i y8,i y9,i y10,i y11,i y12,i y13,i y14,i y15,i]TThe calculation expression is as follows:
y0,i=d0,i×h02+d0,i×h06+d1,i×h12-d1,i×h16+d2,i×g02+d2,i×g06+d3,i×g12-d3,i×g16
y1,i=d0,i×h03+d0,i×h07+d1,i×h13-d1,i×h17+d2,i×g03+d2,i ×g07+d3,i×g13-d3,i×g17
y2,i=d0,i×h04+d4,i×h00+d1,i×h14+d5,i×h10+d2,i×g04+d6,i×g00+d3,i×g14+d7,i×g10
y3,i=d0,i×h05+d4,i×h01+d1,i ×h15+d5,i×h11+d2,i×g05+d6,i×g01+d3,i×g15+d7,i×g11
y4,i=d0,i×h06+d4,i×h02+d1,i×h16+d5,i×h12+d2,i×g06+d6,i×g02+d3,i×g16+d7,i×g12
y5,i=d0,i×h07+d4,i×h03+d1,i×h17+d5,i×h13+d2,i×g07+d6,i×g03+d3,i×g17+d7,i×g13
y6,i=d4,i×h04+d8,i×h00+d5,i×h14+d9,i×h10+d6,i×g04+d10,i×g00+d7,i×g14+d11,i×g10
y7,i=d4,i×h05+d8,i×h01+d5,i×h15+d9,i×h11+d6,i×g05+d10,i×g01+d7,i×g15+d11,i×g11
y8,i=d4,i×h06+d8,i×h02+d5,i×h16+d9,i×h12+d6,i×g06+d10,i×g02+d7,i×g16+d11,i×g12
y9,i=d4,i×h07+d8,i×h03+d5,i×h17+d9,i×h13+d6,i×g07+dx×g03+d7,i×g17+d11,i×g13
y10,i=d8,i×h04+d12,i×h00+d9,i×h14+d13,i×h10+d10,i×g04+d14,i×g00+d11,i×g14+d15,i×g10
y11,i=d8,i×h05+d12,i×h01+d9,i×h15+d13,i×h11+d10,i×g05+d14,i×g01+d11,i×g15+d15,i×g11
y12,i=d8,i×h06+d12,i×h02+d9,i×h16+d13,i×h12+d10,i×g06+d14,i×g02+d11,i×g16+d15,i×g12
y13,i=d8,i×h07+d12,i×h03+d9,i×h17+d13,i×h13+d10,i×g07+d14,i×g03+d11,i×g17+d15,i×g13
y14,i=d12,i×h04+d12,i×h00+d13,i×h14-d13,i×h10+d14,i×g04+d14,i×g00+d15,i×g14-d15,i×g10
y15,i=d12,i×h05+d12,i×h01+d13,i×h15-d13,i×h11+d14,i×g05+d14,i×g01+d15,i×g15-d15,i×g11
wherein:
Figure F2009100621650C00081
Figure F2009100621650C00082
Figure F2009100621650C00083
Figure F2009100621650C00086
Figure F2009100621650C00087
Figure F2009100621650C00088
alpha is-0.595 pi, i is 0-k-1, k is less than or equal to 16, and k is determined by the long side size of the decomposition coefficient matrix D;
(4.2) longitudinal reconstructed vector L of each column vectoriA matrix Y of transverse decomposition coefficients is constructed,
Y=[L0 L1…Lk-1]wherein k is determined by the dimension of the long side of the decomposition coefficient matrix D;
after reconstruction is completed, performing the step (5);
(5) and transverse decomposition coefficient matrix classification: classifying the transverse decomposition coefficient matrix Y, and performing the step (6) when the long side size of Y is 4; when the long side size of Y is 8, performing the step (7); when the long side size of Y is 16, performing the step (8);
(6) a first multi-channel filter bank transverse reconstruction step: using a first multi-channel filter bank
Figure F2009100621650C00091
And transversely reconstructing the transverse decomposition coefficient matrix Y to obtain a residual block X, wherein the reconstruction expression is as follows:
wherein, U0、U1、W0、W1And the value of α is the same as shown in step (2);
finishing reconstruction;
(7) a third multi-channel filter bank transverse reconstruction step: using a third multi-channel filter bankAnd transversely reconstructing the transverse decomposition coefficient matrix Y to obtain a residual block X, wherein the reconstruction expression is as follows:
Figure F2009100621650C00094
wherein R is0、R1、T0、T1The values of (a) are the same as shown in step (3);
finishing reconstruction;
(8) a second multi-channel filter bank transverse reconstruction step: using a second multi-channel filter bank
Figure F2009100621650C00095
Performing transverse reconstruction on the transverse decomposition coefficient matrix Y to obtain a residual block X, wherein the process is as follows:
(8.1) reconstructing each row vector of the transverse decomposition coefficient matrix Y:
for the ith row vector M of the transverse decomposition coefficient matrix Yi=[yi,0 yi,1 yi,2 yi,3 yi,4 yi,5yi,6 yi,7 yi,8 yi,9 yi,10 yi,11 yi,12 yi,13 yi,14 yi,15]Rebuilding to obtain ith row vector N of residual block Xi=[xi,0 xi,1 xi,2 xi,3 xi,4 xi,5 xi,6 xi,7 xi,8 xi,9 xi,10 xi,11 xi,12 xi,13 xi,14 xi,15]The calculation expression is as follows:
xi,0=yi,0×h02+yi,0×h06+yi,1×h12-yi,1×h16+yi,2×g02+yi,2×g06+yi,3×g12-yi,3×g16
xi,1=yi,0×h03+yi,0×h07+yi,1×h13-yi,1×h17+yi,2×g03+yi,2×g07+yi,3×g13-yi,3×g17
xi,2=yi,0×h04+yi,4×h00+yi,1×h14+yi,5×h10+yi,2×g04+yi,6×g00+yi,3×g14+yi,7×g10
xi,3=yi,0×h05+yi,4×h01+yi,1×h15+yi,5×h11+yi,2×g05+yi,6×g01+yi,3×g15+yi,7×g11
xi,4=yi,0×h06+yi,4×h02+yi,1×h16+yi,5×h12+yi,2×g06+yi,6×g02+yi,3×g16+yi,7×g12
xi,5=yi,0×h07+yi,4×h03+yi,1×h17+yi,5×h13+yi,2×g07+yi,6×g03+yi,3×g17+yi,7×g13
xi,6=yi,4×h04+yi,8×h00+yi,5×h14+yi,9×h10+yi,6×g04+yi,10×g00+yi,7×g14+yi,11×g10
xi,7=yi,4×h05+yi,8×h01+yi,5×h15+yi,9×h11+yi,6×g05+yi,10×g01+yi,7×g15+yi,11×g11
xi,8=yi,4×h06+yi,8×h02+yi,5×h16+yi,9×h12+yi,6×g06+yi,10×g02+yi,7×g16+yi,11×g12
xi,9=yi,4×h07+yi,8×h03+yi,5×h17+yi,9×h13+yi,6×g07+yi,10×g03+yi,7×g17+yi,11×g13
xi,10=yi,8×h04+yi,12×h00+yi,9×h14+yi,13×h10+yi,10×g04+yi,14×g00+yi,11×g14+yi,15×g10
xi,11=yi,8×h05+yi,12×h01+yi,9×h15+yi,13×h11+yi,10×g05+yi,14×g01+yi,11×g15+yi,15×g11
xi,12=yi,8×h06+yi,12×h02+yi,9×h16+yi,13×h12+yi,10×g06+yi,14×g02+yi,11×g16+yi,15×g12
xi,13=yi,8×h07+yi,12×h03+yi,9×h17+yi,13×h13+yi,10×g07+yi,14×g03+yi,11×g17+yi,15×g13
xi,14=yi,12×h04+yi,12×h00+yi,13×h14-yi,13×h10+yi,14×g04+yi,14×g00+yi,15×g14-yi,15×g10
xi,15=yi,12×h05+yi,12×h01+yi,13×h15-yi,13×h11+yi,14×g05+yi,14×g01+yi,15×g15-yi,15×g11
wherein H0、H1、H2、H3、G0、G1、G2、G3The value of (c) is the same as that shown in step (4.1), i is 0-k-1, k is less than or equal to 16, and k is determined by the broadside size of the transverse decomposition coefficient matrix Y;
(8.2) transverse reconstructed vector N of each row vectoriA residual block X is formed,
Figure F2009100621650C00101
wherein k is determined by the broadside size of the transverse decomposition coefficient matrix Y;
and finishing the reconstruction.
CN 200910062165 2009-05-19 2009-05-19 Method for resolving and rebuilding video coding predictive residue block Expired - Fee Related CN101562747B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910062165 CN101562747B (en) 2009-05-19 2009-05-19 Method for resolving and rebuilding video coding predictive residue block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910062165 CN101562747B (en) 2009-05-19 2009-05-19 Method for resolving and rebuilding video coding predictive residue block

Publications (2)

Publication Number Publication Date
CN101562747A CN101562747A (en) 2009-10-21
CN101562747B true CN101562747B (en) 2010-08-25

Family

ID=41221334

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910062165 Expired - Fee Related CN101562747B (en) 2009-05-19 2009-05-19 Method for resolving and rebuilding video coding predictive residue block

Country Status (1)

Country Link
CN (1) CN101562747B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9094691B2 (en) * 2010-03-15 2015-07-28 Mediatek Singapore Pte. Ltd. Methods of utilizing tables adaptively updated for coding/decoding and related processing circuits thereof
CN111556319B (en) * 2020-05-14 2021-12-17 电子科技大学 Video coding method based on matrix decomposition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1463500A (en) * 2001-05-22 2003-12-24 皇家菲利浦电子有限公司 Method of decoding variable-length codeword sequence
CN1533184A (en) * 2003-03-24 2004-09-29 华为技术有限公司 Video image coding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1463500A (en) * 2001-05-22 2003-12-24 皇家菲利浦电子有限公司 Method of decoding variable-length codeword sequence
CN1533184A (en) * 2003-03-24 2004-09-29 华为技术有限公司 Video image coding method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开平11-68579A 1999.03.09 *

Also Published As

Publication number Publication date
CN101562747A (en) 2009-10-21

Similar Documents

Publication Publication Date Title
KR102053242B1 (en) Machine learning algorithm using compression parameter for image reconstruction and image reconstruction method therewith
KR100999091B1 (en) Method and apparutus for video coding using arbitrary-size variable block
US8184699B2 (en) Method of reducing computations in intra-prediction and mode decision processes in a digital video encoder
RU2686819C2 (en) Method of using edge shift
KR102024516B1 (en) Image encoding device, image decoding device, image encoding method, image decoding method and recording medium
TWI647951B (en) Image coding equipment
KR102138828B1 (en) Method and Apparatus for image encoding
KR20050045746A (en) Method and device for motion estimation using tree-structured variable block size
KR20100133006A (en) Dynamic image encoding/decoding method and device
JP2003533141A (en) Transform coding method of moving image sequence
JP4794147B2 (en) Method for encoding frame sequence, method for decoding frame sequence, apparatus for implementing the method, computer program for executing the method, and storage medium for storing the computer program
KR20110065089A (en) Method and apparatus for encoding video, and method and apparatus for decoding video
CN101742290B (en) Methods and devices for denoising in video coding and decoding,
CN101742288B (en) Video noise reduction encoding method and video noise reduction encoding device
CN101562747B (en) Method for resolving and rebuilding video coding predictive residue block
KR100711025B1 (en) The method for filtering a residual signal to improve performance in the standard coding mode of motion picture
KR20110087871A (en) Method and apparatus for image interpolation having quarter pixel accuracy using intra prediction modes
KR101906831B1 (en) Method and Apparatus for image encoding
Cheung et al. Optimizing MPEG-4 coding performance by taking post-processing into account

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100825

Termination date: 20130519