CN101550546A - A preparation method of surface metallized composite material through chemical plating under photocatalysis - Google Patents

A preparation method of surface metallized composite material through chemical plating under photocatalysis Download PDF

Info

Publication number
CN101550546A
CN101550546A CNA200910081920XA CN200910081920A CN101550546A CN 101550546 A CN101550546 A CN 101550546A CN A200910081920X A CNA200910081920X A CN A200910081920XA CN 200910081920 A CN200910081920 A CN 200910081920A CN 101550546 A CN101550546 A CN 101550546A
Authority
CN
China
Prior art keywords
inorganic powder
metal
nano inorganic
semiconductor nano
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200910081920XA
Other languages
Chinese (zh)
Other versions
CN101550546B (en
Inventor
刘雪峰
熊小庆
谢建新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN200910081920XA priority Critical patent/CN101550546B/en
Publication of CN101550546A publication Critical patent/CN101550546A/en
Application granted granted Critical
Publication of CN101550546B publication Critical patent/CN101550546B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The present invention pertains to the technical field of the preparation of surface metallized composite material and relates to a preparation method of surface metallized composite material through chemical plating under photocatalysis, wherein the fibre, plastic, fabric, resin, glass, ceramic, monocrystalline silicon or metal encapsulated with semiconductor nano inorganic powder is used as substrate material, or the semiconductor nano inorganic powder is used as substrate material, the photocatalytic technique integrates the reducer effect in conventional chemical plating, metal is carried on the surface of substrate material effectively, and surface metallized composite material is prepared. The advantage is that it makes use of the feature that semiconductor nano inorganic powder will be excited and generate a large number of electron-cavity pairs under the irradiation of photons of which energy is equal to or greater than band-gap energy, while electrons have a reducing effect and help accelerate the reduction of metal ions, and combines this feature with the reducer effect in conventional chemical plating to raise plating speed and production efficiency, reduce product cost and prepare surface metallized composite material with uniform surface metal layer, tiny metal particles, high quality and low cost.

Description

A kind of photochemical catalysis chemically plating Preparation Method of surface metallized composite material
Technical field
The invention belongs to the surface metallized composite material preparing technical field, relate to a kind of photochemical catalysis chemically plating Preparation Method of surface metallized composite material.
Background technology
Area load metal at macromolecular material, ceramic and metallic substance, the preparation surface metallized composite material, make it have the not available distinct advantages of single-material, have broad application prospects, be present one of research focus in Materials Science and Engineering field in the world, and improve the quality of products, shortened process, raising preparation efficiency, reduce production costs, reduce the key content that environmental pollution is these class surface metallized composite material research and development.
Electroless plating is a kind of typical method of preparation surface metallized composite material, its principle is: under the situation that does not add extrinsic current, utilize reductive agent self catalyzed reduction deposition on the activation substrate material surface to obtain metal plating [Jiang Xiaoxia, Shen Wei. the theoretical and practice of electroless plating. Beijing: National Defense Industry Press, 2000].But the electroless plating plating has a wide range of applications in fields such as weaving chemical industry, electronic information, automobile mechanical, space flight and aviation, health care, defence and military and daily lifes in materials such as fiber, plastics, fabric, resin, glass, pottery, silicon single crystal, metal and powders.
At present, carry out electroless plating to realize metallization at substrate material surface, traditional technology is at first to carry out sensitization, activation treatment (pre-treatment), make and on the process body material of surface preparation, adsorb a certain amount of metal nucleus with catalytic activity, and then under the effect of reductive agent, carry out electroless plating [Xu Lina, Liao Jianhui, Huang Lan, et al.Surface-bound nanoparticles for initiating metal deposition.Thin Solid Film, 2003,434 (1-2): 121-125].But this technology catalyzer commonly used is precious metals such as palladium metal, silver, and not only the waste of precious metal is serious, and whole process device complexity, and technical process is long, and the operative technique difficulty is bigger, and preparation efficiency is low, causes product cost higher; Various pretreatment fluid instabilities, composition are wayward, and big area plating qualification rate is low, and quality product is difficult to meet the demands; In addition, the use of a large amount of chemical reagent also makes and the production process heavy contamination does not meet Sustainable development requirement economic and society.
Utilize nano inorganic powder to have characteristics such as surfactivity height, specific surface area is big, catalytic activity is strong, precious metal palladium in the plating of replacement traditional chemical, silver etc. are as surface with autocatalytic activity, do not need through treatment process such as the sensitization in the traditional chemical plating, activation, can directly obtain the matrix material [Liu Xuefeng of surface metalation, Sui Shoujun thanks and builds new .Cu/n-TiO 2The preparation of/PBO conjugated fibre. matrix material journal, 2008,25 (1): 28-34], have the saving noble metal, reduce product cost, shortened process reduces advantages such as environmental pollution, can overcome the deficiency of above-mentioned traditional chemical electroplating method.But, only with nano inorganic powder as surface with autocatalytic activity, adopt traditional chemical plating method to realize metallization at substrate material surface, exist problems such as plating speed is slow, production efficiency is low, surface metal-layer is owed evenly, metallic particles is thicker, thereby cause quality product to be difficult to satisfy service requirements.
Summary of the invention
The object of the present invention is to provide a kind of photochemical catalysis chemically plating Preparation Method of surface metallized composite material, utilize the semiconductor nano inorganic powder to be equal to or greater than under the photon irradiation of its band-gap energy at energy, can excite and produce a large amount of electron-hole pairs, and electronics has reductive action, help to quicken metal ion reductive characteristics, combine with the reductive agent effect in the traditional chemical plating, improve plating speed, prepare the surface metallized composite material that bed thickness is even, particle is tiny efficiently, thereby reach the purpose of improving the quality of products, reduce preparation cost.
A kind of photochemical catalysis chemically plating Preparation Method of surface metallized composite material, it is characterized in that fiber, plastics, fabric, resin, glass, pottery, silicon single crystal or metal with surface coating semiconductor nano inorganic powder are body material, or with the semiconductor nano inorganic powder this as body material, reductive agent effect in adopting photocatalysis technology and traditional chemical plating combines, at substrate material surface loaded metal efficiently, preparation high quality, surface metallized composite material cheaply.
Semiconductor nano inorganic powder of the present invention is: the semiconductor nano inorganic powder of nano titanium oxide, nano silicon oxide, nano zine oxide, nano tin dioxide or process doping vario-property.
Semiconductor nano inorganic powder through doping vario-property of the present invention is: rare earth-doped semiconductor nano inorganic powder, doped with rare-earth oxide semiconductor nano inorganic powder, metal-doped semiconductor nano inorganic powder or nitrogen doped semiconductor nanocrystal inorganic powder.
Area load metal of the present invention is: the alloy that copper, silver, nickel, aluminium, gold, magnesium, titanium, iron or this several metals are formed.
The photochemical catalysis chemical plating technology of surface metallized composite material of the present invention is as follows:
1, the body material with semiconductor nano inorganic powder or surface coating semiconductor nano inorganic powder directly immerses in the chemical plating fluid of the metal-salt that contains surperficial required loaded metal, and 0~80 ℃ of temperature range does not stop to stir;
2, shine 0.1~40min under wavelength is the UV-light of 200~400nm and carry out electroless plating, keeping bath pH value with alkaline solution between the reaction period is 7~13;
3, the matrix material with the coating surface metal takes out, washing, and 30~180min is handled in oven dry under 50~200 ℃ of vacuum or protective gas atmosphere, can make surface metallized composite material.
Metal-salt of the present invention is mantoquita, silver salt, nickel salt, aluminium salt, golden salt, magnesium salts, titanium salt or molysite; It is metal-salt 40~20%, reductive agent 35~20%, complexing agent 25~30%, additive 0~30% that described chemical plating fluid prescription is formed (massfraction).Wherein reductive agent is HCHO, NaH 2PO 2H 2O or HO (CH 2CH 2O) nH (n=4~450), complexing agent is KNaC 4H 4O 64H 2O, Na 2EDTA2H 2O or C 6H 5Na 3O 72H 2O, additive are C 10H 8N 2Or K 4Fe (CN) 6H 2O.
The invention has the advantages that, utilize the semiconductor nano inorganic powder to be equal to or greater than under the photon irradiation of its band-gap energy at energy, can excite and produce a large amount of electron-hole pairs, and electronics has reductive action, help to quicken metal ion reductive characteristics, combine, improve plating speed and production efficiency with reductive agent effect in the traditional chemical plating, reduce product cost, preparation surface metal-layer is even, metallic particles is tiny high quality, low-cost surface metallized composite material.
Embodiment
Below in conjunction with embodiment the present invention is specifically described; be necessary to be pointed out that at this present embodiment only is used for the present invention is further specified; can not be interpreted as limiting the scope of the invention, the those of skill in the art in this field can make some nonessential improvement and adjustment according to the content of the invention described above.
Embodiment 1:
Nano-titanium dioxide powder 1g is immersed in the 1L chemical bronze plating liquid, and 20~50 ℃ of temperature ranges do not stop to stir.
Be to shine 0.1~10min under the UV-light of 254nm to carry out electroless plating at wavelength, use NaOH 14gL between the reaction period -1Keeping bath pH value is 11.5~12.
The nano-titanium dioxide powder matrix material of coating surface metallic copper is taken out, washing, 60~150min is handled in oven dry under 80~200 ℃ of argon gas atmosphere, makes metallic copper clad nano titanium dioxide powder composite material.
It is 30% CuSO that the prescription of chemical plating fluid is formed (massfraction) 45H 2O 16gL -1, 20% HCHO 16mLL -1, 20% mixed twine mixture (KNaC 4H 4O 64H 2O 15gL -1, Na 2EDTA2H 2O 24gL -1), 30% mixed additive (C 10H 8N 224mgL -1, K 4Fe (CN) 6H 2O 12mgL -1).
Embodiment 2:
Nano-titanium dioxide powder is coated pbo fiber matrix material 1.5g immerse in the 2L chemical bronze plating liquid, 20~80 ℃ of temperature ranges do not stop to stir.
Be to shine 1~30min under the UV-light of 360nm to carry out electroless plating at wavelength, use NaOH 14gL between the reaction period -1Keeping bath pH value is 11.5~12.5.
The pbo fiber matrix material of coating surface metallic copper is taken out, and washing is dried processing 60~180min down in 50~200 ℃ of hydrogen atmospheres, makes metallic copper and coats the pbo fiber matrix material.
It is 30% CuSO that the prescription of chemical plating fluid is formed (massfraction) 45H 2O 16gL -1, 30% HCHO 16mLL -1, 20% mixed twine mixture (KNaC 4H 4O 64H 2O 15gL -1, Na 2EDTA2H 2O 24gL -1), 20% mixed additive (C 10H 8N 224mgL -1, K 4Fe (CN) 6H 2O 12mgL -1).
Embodiment 3:
Nanometer Zinc oxide powder carbon coated fibre composite 2g is immersed in the 3L chemical bronze plating liquid, and 0~50 ℃ of temperature range does not stop to stir.
Be to shine 20~40min under the UV-light of 254nm to carry out electroless plating at wavelength, use NaOH 14gL between the reaction period -1Keeping bath pH value is 11~12.
With table and the carbon-fibre composite of metal lining copper takes out, washing, 60~120min is handled in oven dry under 50~100 ℃ of vacuum, makes metallic copper carbon coated fibre composite.
It is 20% CuSO that the prescription of chemical plating fluid is formed (massfraction) 45H 2O 16gL -1, 30% HCHO 16mLL -1, 30% mixed twine mixture (KNaC 4H 4O 64H 2O 15gL -1, Na 2EDTA2H 2O 24gL -1), 20% mixed additive (C 10H 8N 224mgL -1, K 4Fe (CN) 6H 2O 12mgL -1).
Embodiment 4:
Nano-titanium dioxide powder is coated glass composite material 7g immerse in the 1.5L chemical nickel-plating liquid, 20~40 ℃ of temperature ranges do not stop to stir.
Be to shine 10~30min under the UV-light of 400nm to carry out electroless plating at wavelength, use NaOH 14gL between the reaction period -1Keeping bath pH value is 9~10.
The glass composite material of coating surface metallic nickel is taken out, washing, 30~90min is handled in oven dry under 50~120 ℃ of vacuum, makes metallic nickel and coats glass composite material.
It is 35%NiSO that the prescription of chemical plating fluid is formed (massfraction) 46H 2O 30gL -1, 35%NaH 2PO 2H 2O 30gL -1, 30% C 6H 5Na 3O 72H 2O 20gL -1
Embodiment 5:
Nano-titanium dioxide powder is coated pbo fiber matrix material 2g immerse in the 2L chemical nickel-plating liquid, 20~70 ℃ of temperature ranges do not stop to stir.
Be to shine 5~20min under the UV-light of 200nm to carry out electroless plating at wavelength, use NaOH 14gL between the reaction period -1Keeping bath pH value is 9~10.
The pbo fiber matrix material of coating surface metallic nickel is taken out, washing, 60~100min is handled in oven dry under 50~150 ℃ of vacuum, makes metallic nickel and coats the pbo fiber matrix material.
It is 40% NiSO that the prescription of chemical plating fluid is formed (massfraction) 46H 2O 30gL -1, 35%NaH 2PO 2H 2O 30gL -1, 25%C 6H 5Na 3O 72H 2O 20gL -1

Claims (2)

1. the photochemical catalysis chemically plating Preparation Method of a surface metallized composite material, it is characterized in that fiber, plastics, fabric, resin, glass, pottery, silicon single crystal or metal with surface coating semiconductor nano inorganic powder are body material, or with the semiconductor nano inorganic powder this as body material, reductive agent effect in adopting photocatalysis technology and traditional chemical plating combines, at substrate material surface loaded metal efficiently, the preparation surface metallized composite material;
Described semiconductor nano inorganic powder is: the semiconductor nano inorganic powder of nano titanium oxide, nano silicon oxide, nano zine oxide, nano tin dioxide or process doping vario-property;
Described semiconductor nano inorganic powder through doping vario-property is: rare earth-doped semiconductor nano inorganic powder, doped with rare-earth oxide semiconductor nano inorganic powder, metal-doped semiconductor nano inorganic powder or nitrogen doped semiconductor nanocrystal inorganic powder;
Described area load metal is: the alloy that copper, silver, nickel, aluminium, gold, magnesium, titanium, iron or this several metals are formed.
2. the photochemical catalysis chemical plating technology is as follows:
1) body material with semiconductor nano inorganic powder or surface coating semiconductor nano inorganic powder directly immerses in the chemical plating fluid of the metal-salt that contains surperficial required loaded metal, and 0~80 ℃ of temperature range does not stop to stir;
2) shine 0.1~40min under wavelength is the UV-light of 200~400nm and carry out electroless plating, keeping bath pH value with alkaline solution between the reaction period is 7~13;
3) matrix material with the coating surface metal takes out, washing, and 30~180min is handled in oven dry under 50~200 ℃ of vacuum or protective gas atmosphere, can make surface metallized composite material;
Metal-salt of the present invention is mantoquita, silver salt, nickel salt, aluminium salt, golden salt, magnesium salts, titanium salt or molysite; It is metal-salt 40~20%, reductive agent 35~20%, complexing agent 25~30%, additive 0~30% that described chemical plating fluid prescription is formed massfraction, and wherein reductive agent is HCHO, NaH 2PO 2H 2O or HO (CH 2CH 2O) nH (n=4~450), complexing agent is KNaC 4H 4O 64H 2O, Na 2EDTA2H 2O or C 6H 5Na 3O 72H 2O, additive are C 10H 8N 2Or K 4Fe (CN) 6H 2O.
CN200910081920XA 2009-04-08 2009-04-08 A preparation method of surface metallized composite material through chemical plating under photocatalysis Expired - Fee Related CN101550546B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910081920XA CN101550546B (en) 2009-04-08 2009-04-08 A preparation method of surface metallized composite material through chemical plating under photocatalysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910081920XA CN101550546B (en) 2009-04-08 2009-04-08 A preparation method of surface metallized composite material through chemical plating under photocatalysis

Publications (2)

Publication Number Publication Date
CN101550546A true CN101550546A (en) 2009-10-07
CN101550546B CN101550546B (en) 2010-08-18

Family

ID=41155029

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910081920XA Expired - Fee Related CN101550546B (en) 2009-04-08 2009-04-08 A preparation method of surface metallized composite material through chemical plating under photocatalysis

Country Status (1)

Country Link
CN (1) CN101550546B (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102071411A (en) * 2010-08-19 2011-05-25 比亚迪股份有限公司 Plastic product and preparation method thereof
CN102254704A (en) * 2011-05-06 2011-11-23 海南科技职业学院 Dye sensitized noble metal deposited titanium dioxide light anode and preparation method thereof
CN101717070B (en) * 2009-11-11 2012-08-15 中国科学院理化技术研究所 Method for preparing aluminum-doping zinc oxide nanometer sheet with photo-catalysis function
WO2012155811A1 (en) 2011-05-13 2012-11-22 Byd Company Limited Method for selectively metallizing surface of ceramic substrate, ceramic product and use of ceramic product
CN103328685A (en) * 2010-11-23 2013-09-25 新型材料莱布尼兹研究所公益性有限责任公司 Process for producing metallic structures
CN103646835A (en) * 2013-12-02 2014-03-19 北京科技大学 A ceramic electric vacuum tube with a metalized end face and a method for producing same
WO2014187340A1 (en) * 2013-05-23 2014-11-27 Shenzhen Byd Auto R&D Company Limited Polymer article and method for selective metallization of the same
CN104789950A (en) * 2015-03-18 2015-07-22 北京科技大学 Photocatalytic plating preparation method for material surface metal pattern
WO2016054955A1 (en) * 2014-10-10 2016-04-14 比亚迪股份有限公司 Plastic product and method for selectively metalizing surface of plastic base material
CN106957490A (en) * 2017-05-16 2017-07-18 周付军 A kind of conductive rubber strip
CN108130722A (en) * 2016-11-30 2018-06-08 比亚迪股份有限公司 A kind of metallized product and the method for metallization
CN108441843A (en) * 2018-03-13 2018-08-24 北京科技大学 Preparation method is plated in the laser direct-writing preform photocatalysis of material surface metal pattern
WO2018152975A1 (en) * 2017-02-22 2018-08-30 南方科技大学 Photo-catalyst assembly and a preparation method therefor
CN108906129A (en) * 2018-06-22 2018-11-30 东华大学 It is a kind of based on composite electroless-plating fiber base nickel-loaded/optically catalytic TiO 2 degradable material preparation method
CN109176330A (en) * 2018-07-13 2019-01-11 白鸽磨料磨具有限公司 A kind of grinding wheel additive and preparation method thereof, grinding wheel and preparation method thereof
CN110180561A (en) * 2019-05-29 2019-08-30 景德镇陶瓷大学 Flower-shaped MoS2/TiO2The preparation method of catalysis material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI414630B (en) * 2010-10-11 2013-11-11 Nat Applied Res Laboratories A method for producing a metal-titanium dioxide composite material using a micro-localized metal precursor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100500979C (en) * 2007-05-22 2009-06-17 北京科技大学 Metal-coated polymer fiber and preparing method
CN101181755A (en) * 2007-12-17 2008-05-21 中国铝业股份有限公司 Method for preparing nano Cu/ZnO composite material

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101717070B (en) * 2009-11-11 2012-08-15 中国科学院理化技术研究所 Method for preparing aluminum-doping zinc oxide nanometer sheet with photo-catalysis function
CN102071411B (en) * 2010-08-19 2012-05-30 比亚迪股份有限公司 Plastic product and preparation method thereof
CN102071411A (en) * 2010-08-19 2011-05-25 比亚迪股份有限公司 Plastic product and preparation method thereof
CN103328685B (en) * 2010-11-23 2015-08-19 新型材料莱布尼兹研究所公益性有限责任公司 The preparation method of metal construction
CN103328685A (en) * 2010-11-23 2013-09-25 新型材料莱布尼兹研究所公益性有限责任公司 Process for producing metallic structures
CN102254704A (en) * 2011-05-06 2011-11-23 海南科技职业学院 Dye sensitized noble metal deposited titanium dioxide light anode and preparation method thereof
US11382216B2 (en) 2011-05-13 2022-07-05 Byd Company Limited Method for selectively metallizing surface of ceramic substrate, ceramic product and use of ceramic product
WO2012155811A1 (en) 2011-05-13 2012-11-22 Byd Company Limited Method for selectively metallizing surface of ceramic substrate, ceramic product and use of ceramic product
WO2014187340A1 (en) * 2013-05-23 2014-11-27 Shenzhen Byd Auto R&D Company Limited Polymer article and method for selective metallization of the same
WO2014187360A1 (en) * 2013-05-23 2014-11-27 Shenzhen Byd Auto R & D Company Limited Doped tin oxide and method for selective metallization of insulating substrate
US9869025B2 (en) 2013-05-23 2018-01-16 Byd Company Limited Doped tin oxide and method for selective metallization of insulating substrate
CN103646835B (en) * 2013-12-02 2017-01-04 北京科技大学 A kind of end plane metal ceramic electrical vacuum tube and preparation method thereof
CN103646835A (en) * 2013-12-02 2014-03-19 北京科技大学 A ceramic electric vacuum tube with a metalized end face and a method for producing same
KR20170048580A (en) * 2014-10-10 2017-05-08 비와이디 컴퍼니 리미티드 Plastic product and method for selectively metalizing surface of plastic base material
CN105568266B (en) * 2014-10-10 2017-12-12 比亚迪股份有限公司 Plastic products and plastic basis material surface selective metallization method
EP3196338A4 (en) * 2014-10-10 2017-12-13 BYD Company Limited Plastic product and method for selectively metalizing surface of plastic base material
WO2016054955A1 (en) * 2014-10-10 2016-04-14 比亚迪股份有限公司 Plastic product and method for selectively metalizing surface of plastic base material
CN105568266A (en) * 2014-10-10 2016-05-11 比亚迪股份有限公司 Plastic product and plastic base surface selective metallization method
CN104789950A (en) * 2015-03-18 2015-07-22 北京科技大学 Photocatalytic plating preparation method for material surface metal pattern
CN108130722B (en) * 2016-11-30 2020-03-31 比亚迪股份有限公司 Metallized product and metallization method
CN108130722A (en) * 2016-11-30 2018-06-08 比亚迪股份有限公司 A kind of metallized product and the method for metallization
WO2018152975A1 (en) * 2017-02-22 2018-08-30 南方科技大学 Photo-catalyst assembly and a preparation method therefor
US11179699B2 (en) 2017-02-22 2021-11-23 Southern University Of Science And Technology Photocatalytic assembly and its preparation method
CN106957490A (en) * 2017-05-16 2017-07-18 周付军 A kind of conductive rubber strip
CN108441843A (en) * 2018-03-13 2018-08-24 北京科技大学 Preparation method is plated in the laser direct-writing preform photocatalysis of material surface metal pattern
CN108441843B (en) * 2018-03-13 2020-02-18 北京科技大学 Laser direct-writing preformed photocatalytic plating preparation method for metal patterns on surface of material
CN108906129A (en) * 2018-06-22 2018-11-30 东华大学 It is a kind of based on composite electroless-plating fiber base nickel-loaded/optically catalytic TiO 2 degradable material preparation method
CN109176330A (en) * 2018-07-13 2019-01-11 白鸽磨料磨具有限公司 A kind of grinding wheel additive and preparation method thereof, grinding wheel and preparation method thereof
CN110180561A (en) * 2019-05-29 2019-08-30 景德镇陶瓷大学 Flower-shaped MoS2/TiO2The preparation method of catalysis material

Also Published As

Publication number Publication date
CN101550546B (en) 2010-08-18

Similar Documents

Publication Publication Date Title
CN101550546B (en) A preparation method of surface metallized composite material through chemical plating under photocatalysis
Gao et al. Reversing Free‐Electron Transfer of MoS2+ x Cocatalyst for Optimizing Antibonding‐Orbital Occupancy Enables High Photocatalytic H2 Evolution
CN100534675C (en) Method for preparing spherical nano silver powder
CN102002694B (en) Method for preparing uniform silver conducting layer on surface of metal or nonmetal material
CN101439305B (en) Composite material using nano inorganic powder as surface with autocatalytic activity and preparation method thereof
CN101428345B (en) Method of manufacturing ultrafine molybdenum powder or ultrafine tungsten powder surface clad metal copper
Granata et al. Preparation of copper nanoparticles for metal-metal bonding by aqueous reduction with d-glucose and PVP
CN102248177B (en) Laser-induced method for preparing spherical silver powder
CN100451166C (en) Chemical plating activating process and metal depositing process therewith
CN108723379B (en) Preparation method of multi-principal-element alloy nano powder
CN105296976A (en) Chemical-copper solution and chemical copper plating method
CN101024188A (en) Halogen-oxide photocatalytic material and preparing method
CN109970464B (en) Preparation method of porous metal oxide
CN101054663A (en) Activating process for nonmetal basal body chemical plating
CN110923679A (en) Graphene-loaded nano copper particle composite material and preparation method thereof
CN110699676A (en) High-strength high-conductivity metal glass composite material and preparation method thereof
Wei et al. Facile electroless copper plating on diamond particles without conventional sensitization and activation
Wang et al. Functional metal powders: Design, properties, applications, and prospects
Niazi et al. Parameters optimization of electroless deposition of Cu on Cr-coated diamond
CN1258009C (en) ZnO nano crystal whisker material and its preparing method
CN111495412A (en) Iron-based amorphous alloy/g-C3N4Composite photocatalyst and preparation method and application thereof
Wei et al. 3D porous Ni–Zn catalyst for catalytic hydrolysis of sodium borohydride and ammonia borane
CN111482183A (en) Composite photocatalytic material and preparation method thereof
CN113802042B (en) Uniformly dispersed Al 2 O 3 Preparation method of/Fe composite material
Cao et al. Preparation of a composite particle electrode by electroless plating and its electrocatalytic performance in the decolorization of methyl orange dye solution

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100818

CF01 Termination of patent right due to non-payment of annual fee