CN101549688B - 控制混合动力变速器的方法 - Google Patents

控制混合动力变速器的方法 Download PDF

Info

Publication number
CN101549688B
CN101549688B CN2008101908244A CN200810190824A CN101549688B CN 101549688 B CN101549688 B CN 101549688B CN 2008101908244 A CN2008101908244 A CN 2008101908244A CN 200810190824 A CN200810190824 A CN 200810190824A CN 101549688 B CN101549688 B CN 101549688B
Authority
CN
China
Prior art keywords
torque
power
output
transfer clutch
constraint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008101908244A
Other languages
English (en)
Other versions
CN101549688A (zh
Inventor
A·H·希普
T·-M·谢
B·吴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN101549688A publication Critical patent/CN101549688A/zh
Application granted granted Critical
Publication of CN101549688B publication Critical patent/CN101549688B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/184Preventing damage resulting from overload or excessive wear of the driveline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/105Output torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/027Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/105Output torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

通过选择性应用转矩传递离合器,混合动力变速器可操作以多个固定档位和连续可变操作范围状态中的一个在输入部件和转矩装置以及输出部件之间传递转矩。转矩装置可以用于从能量存储装置传递功率。控制混合动力变速器的方法包括:以一个操作范围状态下操作混合动力变速器;确定传递给输出部件的输出转矩的第一组内部***约束;确定传递给输出部件的输出转矩的第二组内部***约束;和确定传递给输出部件的输出转矩的第一组内部***约束和第二组内部***约束内可获得的允许输出转矩范围。

Description

控制混合动力变速器的方法
相关申请的交叉引用
本申请请求享有2007年11月5日提交的美国临时专利申请No.60/985,404的优先权;其在本文中作为参考引入其中。
技术领域
本申请涉及用于混合动力***的控制***。
背景技术
本部分的说明仅仅是提供于本申请相关的背景信息,且可能不构成现有技术。
公知的混合动力系结构可以包括多个转矩产生装置,包括内燃机以及电机,它们通过变速器装置将转矩传递给输出部件。一种典型的混合动力系包括双模式、复合分离、机电变速器,其可以使用输入部件和输出部件,输入部件用于从原动力源接收牵引转矩,原动力源优选是内燃机。输出部件可操作地连接到机动车的传动系上,以便为其输送牵引转矩。电机,作为电动机或发电机工作,产生输送到变速器的输入转矩,而与内燃机的输入转矩无关。电机可以将通过车辆传动***传递的车辆动能转换为能够存储在能量存储装置中的电能。控制***监控来自车辆和操作者的各种输入,并且提供混合动力系的操作控制,包括控制变速器工作状态与换档,控制转矩发生装置,以及调整在能量存储装置和电机之间的功率交换,以控制变速器的输出,该输出包括转矩与转速。
发明内容
通过可选择地应用转矩传递离合器,混合动力变速器可操作以多个固定档位和连续可变操作范围状态中的一种在输入部件和转矩装置以及输出部件之间传递转矩。转矩装置可以操作以从能量存储装置传递功率。控制混合动力变速器的方法包括:在一个操作范围状态操作混合动力变速器;确定传递给输出部件的输出转矩的第一组内部***约束;确定传递给输出部件的输出转矩的第二组内部***约束;和确定传递给输出部件的输出转矩的第一组内部***约束和第二组内部***约束之中可以获得的允许输出转矩范围。
根据本发明的一方面,一种控制混合动力变速器的方法,通过可选择地应用转矩传递离合器,混合动力变速器可操作以多个固定档位和连续可变操作范围状态中的一个在输入部件和转矩装置以及输出部件之间传递转矩,转矩装置可操作从能量存储装置传递功率,该方法包括:
在一个操作范围状态下操作混合动力变速器;
确定传递给输出部件的输出转矩的第一组内部***约束;
确定传递给输出部件的输出转矩的第二组内部***约束;和
确定传递给输出部件的输出转矩的第一组内部***约束和第二组内部***约束内可获得的允许输出转矩范围;
其中确定输出转矩的第一组内部***约束包括确定***约束,所述***约束根据一个约束中的线性变化而在输出转矩上展现出线性变化;以及
线性转矩约束包括用于应用转矩传递离合器的最小离合器作用转矩和最大离合器作用转矩。
根据本发明的另一方面,一种控制混合动力变速器的方法,通过可选择地应用转矩传递离合器,混合动力变速器可操作以多个固定档位和连续可变操作范围状态中的一个在输入部件和转矩装置以及输出部件之间传递转矩,转矩装置可操作从能量存储装置传递功率,该方法包括:
应用转矩传递离合器,并且在一个操作范围状态下操作混合动力变速器;
确定应用离合器的离合器作用转矩范围、转矩装置的电机转矩范围和从能量存储装置传递的功率;
根据应用离合器的离合器作用转矩范围确定传递给输出部件的输出转矩的约束;
根据转矩装置的电机转矩范围确定传递给输出部件的输出转矩的约束;
根据从能量存储装置传递的功率确定传递给输出部件的输出转矩的约束;
根据应用离合器的离合器作用转矩范围、转矩装置的电机转矩范围和从能量存储装置传递的功率确定传递给输出部件的输出转矩的约束内可获得的允许输出转矩范围;和
根据允许输出转矩范围控制变速器的输出转矩。
根据本发明的又一方面,一种控制混合动力变速器的方法,通过可选择地应用转矩传递离合器,混合动力变速器可操作以多个固定档位和连续可变操作范围状态中的一个在输入部件和第一、第二转矩装置以及输出部件之间传递转矩,转矩装置可操作从能量存储装置传递功率,该方法包括:
确定操作者转矩请求;
确定应用离合器的离合器作用转矩范围、转矩装置的电机转矩范围和从能量存储装置传递的功率;
根据应用离合器的离合器作用转矩范围确定传递给输出部件的输出转矩的约束;
根据转矩装置的电机转矩范围确定传递给输出部件的输出转矩上的约束;
根据从能量存储装置传递的功率确定传递给输出部件的输出转矩上的约束;
在一个应用离合器的离合器作用转矩范围引入约束;
根据一个应用离合器的离合器作用转矩范围上引入的约束确定传递给输出部件的输出转矩上的约束;
根据应用离合器的离合器作用转矩范围、转矩装置的电机转矩范围、从能量存储装置传递的功率和在一个应用离合器的离合器作用转矩范围上引入的约束确定传递给输出部件的输出转矩的约束内可获得的允许输出转矩范围;和
根据允许输出转矩来控制转矩装置的的电机转矩。
附图说明
参照附图,下面示范性地将介绍一个或多个实施例,其中:
图1为根据本发明的示范性混合动力变速器的示意图;
图2为根据本发明的控制***和混合动力变速器的典型结构示意图;
图3是根据本发明的控制***结构的示意流程图,该***结构是用于控制和管理混合动力系中的转矩;
图4是根据本发明的示意图;
图5A和5B根据本发明的控制***结构的示意流程图,该***结构是用于控制和管理混合动力系中的转矩;
图6A和6B是根据本发明的示意图;
图7、8和9是根据本发明的算法流程图;
图10、11和12是根据本发明的示意图。
具体实施方式
参见附图,其显示仅用于图示特定典型实施例,而不是限制该实施例,图1与2表示了典型混合动力系。图1描绘了根据本发明的典型混合动力系,其包括双模式、复合分离、机电混合动力变速器10,该变速器可操作地连接至发动机14及转矩装置,例如第一与第二电机(‘MG-A’)56与(‘MG-B’)72。发动机14及第一与第二电机56与72均产生能够传递至变速器10的机械功率。在本实施例中,发动机14、变速器10和包括第一和第二电机的转矩装置包括转矩执行器。由发动机14及第一与第二电机56与72产生的,并且传递至变速器10的功率在下文中描述为输入转矩和电机转矩(在此分别称之为TI、TA和TB)和速度(在此分别称之为NI、NA和NB)。
典型发动机14包括多缸内燃机,其能在几种状态选择性地工作,将转矩经过输入轴12传递至变速器10,并且其可以是点燃式或压燃式发动机。发动机14包括操作地连接到变速器10的输入轴12上的曲轴(未示出)。转速传感器11监控输入轴12的转速。发动机14的功率输出包括转速和发动机转矩,由于在发动机14与变速器10之间的输入轴12上设置了转矩消耗部件,功率输出可能与变速器10的输入转速NI和输入转矩TI不同,转矩消耗部件例如是液压泵(未示出)和/或转矩控制装置(未示出)。
典型变速器10包括三套行星齿轮组24、26与28,以及四个可选择地接合的转矩传递装置,也就是离合器C1 70、C2 62、C3 73以及C4 75。如在此使用的,离合器指任何类型的摩擦转矩传递装置,其包括例如单个或复合片式离合器或离合器组件、带式离合器以及制动器。液压控制电路(‘HYD’)42,优选地由变速器控制模块(此后为‘TCM’)17控制,该液压控制电路可操作地控制离合器状态。离合器C2 62与C4 75优选地包括液压应用的旋转摩擦离合器。离合器C1 70与C3 73优选地包括液压控制的固定装置,该固定装置选择性地固定至变速箱68。每个离合器C1 70、C2 62、C3 73以及C4 75均优选地是液压应用的,经由液压控制电路42选择性地接收加压的液压流体。
第一与第二电机56与72优选地包括三相AC电机以及各自的解析器80与82,每个电机均包括定子(未示出)与转子(未示出)。每个电机的电机转子固定至变速箱68的外部,并且包括定子铁心,该定子铁心具有从其中延伸出来的绕成线圈的电绕组。第一电机56的转子支撑于毂衬齿轮上,该齿轮经由第二行星齿轮组26操作地连接至轴60。第二电机72的转子固定地连接至套轴毂66。
每个解析器80与82优选地包括可变磁阻装置,该可变磁阻装置包括解析器定子(未示出)与解析器转子(未示出)。解析器80与82适当地定位,并且装配在相应第一与第二电机56与72上。解析器80与82的定子可操作地连接至第一与第二电机56与72的一个定子。解析器转子可操作地连接至相应的第一与第二电机56与72的转子。每个解析器80与82信号地并且操作地连接至变速器功率变换器控制模块(以下为‘TPIM’)19,并且每个都能感应与监控解析器转子相对于解析器定子的旋转位置,因此监控相应第一与第二电机56与72的旋转位置。此外,来自解析器80与82的信号输出被编译用来分别提供第一与第二电机56与72的转速,即,NA与NB
变速器10包括输出部件64,例如,可操作地连接至车辆的传动***90的轴(未示出),以给传动***90提供输出功率,输出功率被传递至车轮93,一个车轮在图1中表示。输出部件64的输出功率用输出转速NO与输出转矩TO表示。变速器输出速度传感器84监控输出部件64的转速与旋转方向。每个车轮93优选地装配有一个适宜于监控轮速的传感器94,每个车轮的输出由图2中描绘的分布式控制模块***的控制模块监控,以确定用于制动控制、牵引控制、以及车辆加速控制的车速、以及绝对与相对轮速。
来自发动机14的输入转矩及第一与第二电机56与72的电机转矩(分别为TI、TA、以及TB)作为由于燃料或存储在电能存储装置(以下为‘ESD’)74中的电势进行功率转化而生成。ESD 74经由DC传递导体27高压直流连接至TPIM19上。传递导体27包括接触器开关38。当接触器开关38闭合时,在正常工作条件下,电流可以在ESD 74与TPIM 19之间流动。当接触器开关38断开时,在ESD 74与TPIM 19之间的电流中断。响应于电机转矩指令TA与TB,TPIM 19通过传递导体29将电功率传递至第一电机56,并且从第一电机56获得电功率,TPIM 19同样地通过传递导体31将电功率传递至第二电机72,并且从第二电机72获得电功率,以满足第一与第二电机56与72的转矩指令。根据ESD 74是充电还是放电,电流传递至ESD 74或从ESD 74输出。
TPIM 19包括一对功率变换器(未示出)和对应的电机控制模块(未示出),它们构造成接收电机转矩指令,并且根据指令控制变换器状态,用于提供电机驱动或再生功能,以满足指令的电机转矩TA与TB。功率变换器包括公知的互补三相功率电子装置,并且每个均包括多个绝缘栅双极晶体管(未示出),该绝缘栅双极晶体管通过高频率切换,用于将ESD 74的DC功率转换为AC功率,以便为相应的第一与第二电机56与72供电。绝缘栅双极晶体管形成开关型电源,其构造成接收控制指令。每个三相电机的每一相典型地都具有一对绝缘栅双极晶体管。控制绝缘栅双极晶体管的状态,以产生电机驱动机械功率产生或电功率再生功能。三相变换器经由DC传递导体27接收或提供DC电功率,并且将其转换为三相AC功率或从AC功率转换而来,该AC功率分别经由传递导体29与31传导至第一与第二电机56与72或从第一与第二电机56与72传导而来,用于作为电动机或发电机运行。
图2为分布式控制模块的示意性结构图。以下描述的元件包括总车辆控制结构的的子***,并且提供图1中典型混合动力系的协调***控制。分布式控制模块***综合相关信息与输入,并且执行算法控制各种执行器,以实现控制目标,包括关于燃料经济性、排放、性能、操作性以及硬件保护的目标,所述硬件包含ESD 74的电池以及第一与第二电机56与72。分布式控制模块包括发动机控制模块(以下为‘ECM’)23、TCM 17、电池组控制模块(以下为‘BPCM’)21、以及TPIM 19。混合动力控制模块(以下为‘HCP’)5提供ECM 23、TCM 17、BPCM 21与TPIM 19的监督控制以及协调。用户界面(‘UI’)13可操作地连接至多个装置,通过该用户界面,车辆操作者控制或指挥机电混合动力系的运行。装置包括加速踏板113(‘AP’)、操作者制动踏板112(‘BP’)、变速器档位选择器114(‘PRNDL’)以及车速巡航控制(未示出)。变速器档位选择器114可以具有离散数量的操作者可选择位置,包括输出部件64的旋转方向,以允许向前和向后方向之一。
前述控制模块经由局域网(以下为‘LAN’)总线6与其他控制模块、传感器以及执行器相通信。LAN总线6允许介于各个控制模块之间的操作参数的状态与执行器指令信号的结构化通信。使用的特定通信协议为专用的。LAN总线6与适当的协议为上述控制模块之间以及其他提供例如防抱死制动、牵引控制、以及车辆稳定性功能的模块之间提供鲁棒通信及多控制模块交接。可使用多路通信总线来提高通信速度,并且提供一定级别的信号冗余与完整性。单个控制模块之间的通信还可以使用直接链路实现,例如串行***接口(‘SPI’)总线(未示出)。
HCP 5提供混合动力系的监督控制,用于协调ECM 23、TCM 17、TPIM 19、以及BPCM 21的操作。根据来自用户界面13以及动力系、包括ESD 74的各种输入信号,HCP 5确定操作者转矩请求、输出转矩指令、发动机输入转矩指令、用于变速器10的所施加转矩传递离合器C1 70、C2 62、C3 73、C4 75的离合器转矩;以及第一与第二电机56与72的电机转矩指令TA和TB。
ECM 23可操作地连接至发动机14,用作经过多条分离的线从发动机14的传感器获取数据以及控制执行器,为了简化起见,多条分离的线以总的双向接口电缆35表示。ECM 23从HCP 5接收发动机输入转矩指令。ECM 23基于监控的发动机速度与载荷及时确定在该时间点处提供给变速器10的实际发动机输入转矩TI,该实际发动机输入转矩TI传送给HCP 5。ECM 23监控来自转速传感器11的输入,以确定输入轴12的发动机输入速度,该速度转化为变速器输入速度NI。ECM 23监控来自传感器(未示出)的输入,以确定其他发动机运行参数的状态,其中包括,例如歧管压力、发动机冷却剂温度、环境空气温度以及环境压力。可以例如由歧管压力,或者由监控加速踏板113的操作者输入而确定发动机载荷。ECM 23产生并传输指令信号,以控制发动机执行器,包括,例如燃料喷射器、点火模块、以及节气门控制模块,这些均未示出。
TCM 17可操作地连接至变速器10,并且监控来自传感器(未示出)的输入,以确定变速器操作参数的状态。TCM 17产生并传输指令信号,以控制变速器10,包括控制液压控制电路42。从TCM 17至HCP 5的输入包括每个离合器,即C170、C262、C373、以及C475的估算离合器转矩以及输出部件64的输出转速NO。为了进行控制,可使用其他执行器与传感器将TCM 17的附加信息提供至HCP 5。TCM 17监控来自压力开关(未示出)的输入,并且选择性地致动压力控制电磁线圈(未示出),切换液压控制电路42的电磁线圈(未示出),以便有选择地致动各种离合器C1 70、C2 62、C3 73、以及C4 75,从而实现如下文所述的各种变速器操作范围状态。
BPCM 21信号地连接至传感器(未示出),以监控ESD 74的状态,包括电流与电压参数,以将表示ESD 74的电池参数状态的指示信息提供至HCP 5。电池的参数状态优选地包括电池荷电状态、电池电压、电池温度、以及可用电池功率(称之为PBAT_MIN至PBAT_MAX的范围)。
制动控制模块(以下为‘BrCM’)22可操作地连接到位于每个车轮93的摩擦制动器上(未示出)。BrCM22监控制动踏板112的操作者输入,并产生控制摩擦制动器的控制信号,并将控制信号传递给HCP5来根据该信号操作第一和第二电机56和72。
每个控制模块ECM 23、TCM 17、TPIM 19、BPCM 21与BrCM22优选地为通用数字计算机,其包括:微处理器或中央处理单元、存储介质、模数(‘A/D’)与数模(‘D/A’)电路、高速时钟、输入/输出电路与装置(‘I/O’)以及合适的信号调节与缓冲电路,存储介质包括只读存储器(‘ROM’)、随机存取存储器(‘RAM’)、电可编程只读存储器(‘EPROM’)。每个控制模块均具有一套控制算法,包括存储在存储介质之一中、并且执行以提供每个计算机的各自功能的驻存程序指令以及标定。控制模块之间的信息传递优选地使用LAN总线6与SPI总线实现。在预期循环过程中执行控制算法,以使得每个算法在每个循环中执行至少一次。存储在非易失存储装置中的算法由中央处理单元之一执行,以监控来自传感装置的输入,并且执行控制与诊断程序,以使用预期标定控制执行器的运行。以规则时间间隔执行循环,例如在混合动力系的实时运行过程中每隔3.125、6.25、12.5、25以及100毫秒。或者,响应于事件的发生而执行算法。
典型的混合动力系可选择地以几种操作范围状态之一运行,这些操作范围状态可根据发动机状态与变速器状态描述,其中发动机状态包括发动机运行状态(‘ON’)与发动机停机状态(‘OFF’)之一,变速器操作范围状态包括多个固定档位与连续可变工作模式,以下参照表1描述。
表1
Figure GSB00000880115400081
表中描述了每个变速器操作范围状态,并且显示对于每一操作范围状态而言应用了哪些特定离合器C1 70、C2 62、C3 73以及C4 75。第一连续可变模式,即EVT模式1,或者M1,通过仅应用离合器C1 70而选择,以“固定”第三行星齿轮组28的外部齿轮元件。发动机状态可以为ON(‘M1_Eng_On’)或者OFF(‘M1_Eng_Off’)之一。第二连续变化模式,即EVT模式2,或者M2,通过仅应用离合器C2 62选定,以将轴60连接至第三行星齿轮组28的行星架。发动机状态可以为ON(‘M2_Eng_On’)或者OFF(‘M2_Eng_Off’)之一。为了便于说明,当发动机状态为OFF时,发动机输入速度等于每分钟零转(‘RPM’),即发动机曲轴不旋转。固定档位操作提供变速器10的输入-输出速度的固定比率操作,即NI/NO。通过应用离合器C1 70和C4 75可以选择第一固定档位操作(‘G1’)。通过应用离合器C1 70和C2 62而选择第二固定档位操作(‘G2’)。通过应用离合器C2 62和C4 75而选择第三固定档位操作(‘G3’)。通过应用离合器C2 62和C373而选择第四固定档位操作(‘G4’)。由于行星齿轮24、26及28中的传动比降低,输入-输出速度的固定比率操作随着固定档位操作的增加而增加。第一与第二电机56与72转速NA和NB分别取决于由离合器确定的机构的内部旋转,并且与输入轴12处测量的输入速度成比例。
根据经由加速踏板113与制动踏板112、作为通过用户界面13获取的操作者输入,HCP 5及一个或更多其他控制模块确定转矩指令,来控制包括发动机14和第一和第二电机56和72在内的转矩发生装置,从而满足在输出部件64处并且传递至传动***90的操作者转矩请求。根据用户界面13和包括ESD74在内的混合动力系的输入信号,HCP5确定操作者转矩请求、从变速器10到传动***90的指令输出转矩、来自发动机14的输入转矩、变速器10的转矩传递离合器C1 70、C2 62、C3 73、C4 75的离合器转矩和用于第一和第二电机56和72的电机转矩,如下所述。
最终的车辆加速度被其他因素影响,包括,例如道路载荷、道路坡度以及车辆重量。基于混合动力系的各种操作特性,可以确定发动机状态和变速器的操作范围状态。这包括操作者转矩请求,如前所述通过加速踏板113与制动踏板112而与用户界面13通信。变速器操作范围状态和发动机状态可以由混合动力系转矩需求表示,该需求由在电能发生模式或转矩发生模式下操作第一和第二电机56和72的指令来确定。变速器操作范围状态和发动机状态可以由优化算法或程序确定,它们可以根据操作者请求功率、电池荷电状态、以及发动机14及第一与第二电机56与72的能量效率确定最优***效率。控制***基于执行优化程序的结果来管理发动机14及第一与第二电机56与72的转矩输入,并且因此优化***效率,以控制燃料经济性与电池充电。而且,可以基于元件或***的故障而确定操作。HCP 5监控转矩发生装置,并且确定变速器10的输出部件64的所需的功率输出,以满足操作者转矩请求,同时满足其它动力系操作需求,例如给ESD74充电。正如从以上描述中显而易见的,ESD 74及第一与第二电机56与72电力地操作地连接,用于它们之间的功率流。而且,发动机14、第一与第二电机56与72、以及机电变速器10机械地操作地连接,以传递它们之间的功率,从而产生至输出部件64的功率流。
图3表示了一种控制***结构,用于控制和管理在具有多个转矩产生装置的混合动力***中的信号流,可以参见图1和2中的混合动力***描述,该控制***结构以可执行算法和标定形式存储在上述控制模块中。控制***结构也可以用于具有多个转矩产生装置的其它混合动力***,包括例如具有发动机和单个电机的混合动力***、具有发动机和多个电机的混合动力***。可替换地,混合动力***可以使用非电转矩装置和能量存储***,例如使用液压驱动的转矩装置(未示出)的液压-机械混合动力变速器。
在操作中,监控加速踏板113和制动踏板112的操作者输入,以便确定操作者转矩请求(‘To_req’)。监控发动机14和变速器10的操作以便确定输入速度(‘Ni’)和输出速度(‘No’)。战略优化控制方案(’Strategic Control’)310根据输出速度和操作者转矩请求来确定优选输入速度(’Ni_Des’)和优选发动机状态和变速器操作范围状态(’Hybrid Range State Des’),并根据混合动力系的其它操作参数进行优化,包括电池功率极限值和发动机14、变速器10、第一和第二电机56和72的响应极限值。战术优化控制方案310优选由HCP5在每个100毫秒周期和每个25毫秒周期中执行。变速器10的期望操作范围状态和发动机14到变速器10的期望输入速度被输入到换挡执行和发动机启动/停机控制方案320中。
换挡执行和发动机启动/停机控制方案320指令改变变速器操作(’Transmission Commands’),包括根据动力***的输入和操作改变操作范围状态。这包括如果优选操作范围状态与现有操作范围状态不同,则通过指令改变转矩传递离合器C1 70、C2 62、C3 73、C4 75中一个或多个的应用情况以及其它变速器指令,指令执行变速器的操作范围的改变。因此就可以确定当前操作范围状态(‘Hybrid Range State Actual’)和输入速度曲线(‘Ni_Prof’)。输入速度曲线是对即将到来的输入速度的估计值,优选包括一个标量参数值,该值是下个循环周期的目标输入速度。在变速器操作范围状态转换过程中,发动机操作指令和操作者转矩请求基于输入速度曲线。包括当前应用的离合器和没有应用的离合器在内的每个离合器的离合器转矩(‘Tcl’)也在TCM17中被估算。
战术控制方案(‘Tactical Control and Operation’)330在一个控制循环周期中反复执行,以基于输出速度、输入速度和操作者转矩请求和变速器的当前操作范围状态确定用于操作发动机的发动机指令(‘Engine Command’),其包括从发动机14到变速器10的优选输入转矩。发动机指令还包括发动机状态,包括全缸操作状态和气缸停用操作状态,在气缸停用操作状态中,发动机气缸的一部分停用并不供应燃料;发动机状态还包括燃料供应状态和燃料切断状态中的一个。在输入部件12上起作用的当前发动机输入转矩(‘Ti’)在ECM23中确定。
输出和电机转矩确定方案(‘Output and Motor Torque Determination’)340被执行来确定动力系的优选输出转矩(‘To_cmd’)。这包括在该实施例中通过控制第一和第二电机56和72来确定电机转矩指令(‘TA’、‘TB’)以将净指令输出转矩传递给变速器10的输出部件64以便满足操作者转矩请求。即时加速输出转矩请求、即时制动输出转矩请求、发动机14的当前输入转矩和估计应用的离合器转矩、变速器10的当前操作范围状态、输入速度、输入速度曲线和车轴转矩响应类型是输入。在一个循环周期的每次迭代过程中执行输出和电机转矩确定方案340来确定电机转矩指令。输出和电机转矩确定方案340包括逻辑代码,在6.25毫秒和12.5毫秒循环周期中要规律执行逻辑代码以确定优选电机转矩指令。
当变速器档位选择器114的操作者选择位置指令车辆的操作向前运动的时候,控制混合动力系以便将输出转矩传递给输出部件64,使得传动系90在车轮93处产生牵引转矩,从而响应于加速踏板113的操作者输入向前推动车辆。类似的,当变速器档位选择器14的操作者选择位置指令车辆的操作反向运动的时候,控制混合动力系以便将输出转矩传递给输出部件64,使得传动系90在车轮93处产生牵引转矩,从而响应于加速踏板113的操作者输入反向推动车辆。优选地,只要输出转矩足以克服车上的载荷,例如由于道路坡度、空气动力载荷以及其它载荷,则驱动车辆就可以使车辆加速。
通过发动机14、第一和第二电机56和72、ESD74和离合器C1 70、C2 62、C3 73和C4 75的功率、转矩和转速极限值,就可以约束发动机14和变速器10的操作。发动机14和变速器10的操作约束可以转化成一组***约束方程,在一个控制模块,例如HCP5中,作为一个或多个算法执行。
参见附图1,在一个实施例中,在所有的操作下,通过有选择地致动转矩传递离合器使得变速器10在一个操作范围状态下操作。确定对于发动机14和第一和第二电机56和72中的每个的转矩约束和速度约束。确定用于ESD74的电池功率约束,即可用电池功率,该约束用于进一步限制第一和第二电机56和72的操作。使用基于电池功率约束、电机转矩约束、速度约束和离合器作用转矩约束的***约束方程来确定动力系的优选操作区,优选操作区包括发动机14和第一和第二电机56和72的允许操作转矩或速度的范围。通过微分同时求解变速器10的动态方程,转矩极限值,在本实施例中是输出转矩To,可以使用下面的线性方程来确定:
TM1=TAtoTM1*TA+TBtoTM1*TB+Misc_TM1[1]
TM2=TAtoTM2*TA+TBtoTM2*TB+Misc_TM2   [2]
TM3=TAtoTM3*TA+TBtoTM3*TB+Misc_TM3   [3]
在一个实施例中,转矩值包括:TM1表示输出部件64的输出转矩TO,TM2表示输入轴12的输入转矩TI,TM3表示变速器10应用的转矩传递离合器C1 70、C2 62、C3 73、C4 75的离合器转矩。
系数TAtoTM1、TAtoTM2、TAtoTM3分别是TAtoTM1、TM2、TM3的决定因素。系数TBtoTM1、TBtoTM2、TBtoTM3分别是TBtoTM1、TM2、TM3的决定因素。系数Misc_TM1、Misc_TM2和Misc_TM3是常数,它们由非TA、TB、TM1、TM2和TM3参数对TM1、TM2和TM3作出贡献,非TA、TB、TM1、TM2和TM3参数取决于应用例如输入部件12速度的时间变化率、输出部件64速度的时间变化率、转矩传递离合器C1 70、C2 62、C3 73、C4 75的滑动速度,这将在下面介绍。转矩参数TA和TB是第一和第二电机56和72的电机转矩。转矩参数TM1、TM2和TM3是任意三个独立参数,取决于操作范围状态和应用。
由于机械和***限制,发动机14和变速器10以及第一和第二电机56和72具有速度约束、转矩约束和电池功率约束。速度约束包括NI=0(发动机停机状态)、NI从600rpm(怠速)到6000rpm的时候发动机14的输入速度约束。本实施例中用于第一和第二电机56和72的典型速度约束可以为:
-10,500rpm≤NA≤+10,500rpm,和
-10,500rpm≤NB≤+10,500rpm,
它们还可以根据操作条件而变化。转矩约束包括对输入部件12的发动机输入转矩约束,包括TI_MIN≤TI≤TI_MAX。转矩约束包括用于第一和第二电机56和72的电机转矩约束,包括第一和第二电机56和72的最大和最小电机转矩(‘TA_MAX’、‘TA_MIN’、‘TB_MAX’、‘TB_MIN’),这些转矩优选从储存在表格中的数据集中获得的,表格存储在一个控制模块的一个储存装置。这样的数据集是在不同温度和电压条件下,对电机和功率电子装置(例如第一和第二电机56和72和TPIM19)的测力计测试根据经验得到的。第一和第二电机56和72的电机转矩输出设定成:TA_MIN≤TA≤TA_MAX和TB_MIN≤TB≤TB_MAX,并且要取决于电机速度。转矩极限值包括基于速度的转矩线。电机转矩约束TA_MAX和TA_MIN包括第一电机56分别作为转矩发生电机和发电机时的转矩极限值。电机转矩约束TB_MAX和TB_MIN包括第二电机72分别作为转矩发生电机和发电机时的转矩极限值。项PBAT_MIN是ESD74的最大允许充电电池功率,PBAT_MAX是ESD74的最大允许放电电池功率,极限值是基于与ESD74的耐用性和充电容量相关的因素施加的。
操作范围,包括输出转矩范围,是根据ESD74的电池功率约束确定的。电池功率使用率PBAT的计算如下:
PBAT=PA,ELEC+PB,ELEC+PDC_LOAD    [4]
其中,PA,ELEC包括来自第一电机56的功率,
PB,ELEC包括来自第二电机72的功率,和
PDC_LOAD包括已知的DC载荷,包括附件载荷。
把PA,ELEC和PB,ELEC代入方程,可以得到下面的方程:
PBAT=(PA,MECH+PA,LOSS)+(PB,MECH+PB,LOSS)+PDC_LOAD    [5]
其中PA,MECH包括来自第一电机56的机械功率,
PA,LOSS包括来自第一电机56的功率损失,
PB,MECH包括来自第二电机72的机械功率,和
PB,LOSS包括来自第二电机72的功率损失。
方程5可以用下面的公式6重新表示,其中速度NA和NB,转矩TA和TB代替功率PA和PB。这包括假定电机和变换器损失可以用基于转矩的二次方程来建立数学模型,如下所示:
P BAT = ( N A T A + ( a 1 ( N A ) T A 2 + a 2 ( N A ) T A + a 3 ( N A ) ) ) + [6]
( N B T B + ( B 1 ( N B ) T B 2 + B 2 ( N B ) T B + B 3 ( N B ) ) ) + PDC _ LOAD
其中,NA和NB包括第一和第二电机56和72的电机速度,
TA和TB包括第一和第二电机56和72的电机转矩,
a1、a2、a3、b1、b2、b3都代表二次系数,是对应电机速度NA和NB的函数。
可以用下面的方程来重新表示:
P BAT = a 1 * T A 2 + ( N A + a 2 ) * T A + b 1 * T B 2 + ( N B + b 2 ) * T B + a 3 + b 3 + P DC _ LOAD - - - [ 7 ]
这简化为:
P BAT = a 1 [ T A 2 + T A ( N A + a 2 ) / a 1 + ( ( N A + a 2 ) / ( 2 * a 1 ) ) 2 ]
+ b 1 [ T B 2 + T B ( N B + b 2 ) / b 1 + ( ( N B + b 2 ) / ( 2 * b 1 ) ) 2 ]
+ a 3 + b 3 + P DC _ LOAD - ( N A + a 2 ) 2 / ( 4 * a 1 ) - ( N B + b 2 ) 2 / ( 4 * b 1 ) - - - [ 8 ]
这简化为:
PBAT=a1[TA+(NA+a2)/(2*a1)]2+b1[TB+(NB+b2)/(2*b1)]2
+a3+b3+PDC_LOAD-(NA+a2)2/(4*a1)-(NB+b2)2/(4*b1)
                                                [9]
这简化为:
PBAT=[SQRT(a1)*TA+(NA+a2)/(2*SQRT(a1))]2
+[SQRT(b1)*TB+(NB+b2)/(2*SQRT(b1))]2
+a3+b3+PDC_LOAD-(NA+a2)2/(4*a1)-(NB+b2)2/(4*b1)
                                                [10]
这简化为:
PBAT=(A1*TA+A2)2+(B1*TB+B2)2+C                 [11]
其中:
A1=SQRT(a1),
B1=SQRT(b1),
A2=(NA+a2)/(2*SQRT(a1)),
B2=(NB+b2)/(2*SQRT(b1)),和
C=a3+b3+PDC_LOAD-(NA+a2)2/(4*a1)-(NB+b2)2/(4*b1)
这可以用下面的方程来重新表示:
PBAT=PA_ELEC+PB_ELEC+PDC_LOAD                   [11A]
其中PA_ELEC=(A1*TA+A2)2+CA
PB_ELEC=(B1*TB+B2)2+CB
其中CA=a3-(NA+a2)2/(4*a1)
CB=b3-(NB+b2)2/(4*b1)
C=CA+CB+PDC_LOAD
电机转矩TA和TB可以如下方法转换成TX和TY
T X T Y = A 1 0 0 B 1 * T A T B + A 2 B 2 - - - [ 12 ]
其中TX是TA的变形,TY是TB的变形,A1、A2、B1、B2包括取决于应用的标量值。
公式11还可以简化成以下形式:
P BAT = ( T X 2 + T Y 2 ) + C - - - [ 13 ]
PBAT=R2+C                                         [14]
公式12表示电机转矩TA到TX的变形和电机转矩TB到TY的变形。这样,定义了一个称为TX/TY的新坐标系,公式13包括转换成TX/TY空间的电池功率PBAT。因此,在最大和最小电池功率PBAT_MAX到PBAT_MIN之间的可用电池功率可以用在TX/TY空间中位于点(0,0)的半径(‘RMAX’和‘RMIN’)来计算和图示,并用字母K来表示,其中:
RMIN=SQRT(PBAT_MIN-C)
RMAX=SQRT(PBAT_MAX-C)
最小和最大电池功率PBAT_MIN到PBAT_MAX优选与各种条件相关,例如荷电状态、温度、电压和使用率(安培小时/小时)。上述参数C定义为在特定电机转速NA、NB下的绝对最小可能电池功率,忽略电机转矩限制值。实际上,当TA=0且TB=0的时候,第一和第二电机56和72的机械输出功率为零。实际上TX=0且TY=0对应ESD74的最大充电电池功率条件。正号(‘+’)定义为从ESD74放电,负号(‘-’)定义为对ESD74充电。RMAX定义最大电池功率,通常为放电电池功率,RMIN定义最小电池功率,通常是充电电池功率。
上述对TX/TY空间的变型用第二坐标系K在图4中表示,电池功率约束用具有半径为RMIN和RMAX的同心圆来表示(‘电池功率约束’),用线性表示的电机转矩约束(‘电机转矩约束’)限定了允许操作区。经过分析,在公式12中确定的变形向量[TX/TY]与在公式13中定义的向量同时求解,来确定TX/TY空间中的允许转矩范围,其由最小和最大电池功率PBAT_MIN到PBAT_MAX限定的电机转矩TA和TB构成。TX/TY空间中的允许电机转矩范围在图4中表示,其中确定了表示边界、线和半径的点A、B、C、D和E。第一坐标系L表示与TX/TY空间相关的TA/TB空间。
图5A和5B表示了控制方案,图6A和6B表示了图5A和5B的控制方案的操作,以确定具有多个转矩发生装置的动力***的优选输出转矩,参考图1和2中的动力***在下文描述,其以可执行算法和标定的形式存储在上述控制模块中,优选是在图3的控制***结构中使用。
图5A表示在一个连续可变模式操作范围状态下的操作。在一个操作范围状态的操作中,监控加速踏板113和制动踏板112的操作者输入来确定操作者转矩请求。***根据输入计算出补偿电机转矩,输入包括变速器10的操作范围状态、输入转矩和基于***惯性、***阻尼和离合器滑动的项(‘TA Misc Opt’、‘TBMisc Opt’、‘TCL1 Misc Opt’),参见方程17、18和19在下文描述(510)。项‘CL1’表示第一应用离合器,即在所示实施例中离合器C1 70和C2 62中的一个,‘TCL1’是传递经过CL1的转矩。补偿电机转矩和离合器转矩是输入以计算对输出转矩的线性转矩约束(520),和计算对输出转矩的无约束二次解(530)。
输出转矩的无约束二次解(530)使用ESD74的功率限制值(即可用可用电池功率PBAT_MIN到PBAT_MAX)、补偿电机转矩约束、电机转矩特性和其它标量项(‘KTA from To’、‘KTB from To’、‘KTCL1 from To’)来计算,电机转矩特性定义为在机械转矩和电功率之间转换的系数(‘Donut Space Coefficient’),该系数与第一和第二电机56和72的效率和功率损失有关,标量项与第一和第二电机56和72转矩输出和所应用离合器的作用转矩相关。上述输入用来计算作用在变速器10输出转矩上的第一约束,其包括无约束二次解,该解包括优化输出转矩(‘To*’)和优化电池功率(‘P* BAT’),用来在不考虑其它***约束的情况下使***工作。能量存储装置74的功率可以如方程15表示的变速器输出转矩To的函数来在数学上表示。
P BAT ( T o ) = ( a 1 2 + b 1 2 ) ( T 0 - T 0 * ) 2 + P BAT * - - - [ 15 ]
其中a1和b1表示根据特定应用的标量值。方程15可以解出输出转矩,如方程16所示:
T o ( P BAT ) = T 0 * ± P BAT - P BAT * a 1 2 + b 1 2 - - - [ 16 ]
对于可用电池功率范围PBAT_MIN到PBAT_MAX,可以从方程16确定四个不同的输出转矩,包括正根情况的最大和最小二次输出转矩约束(‘ToPBATMaxOpt(PosRoot)和‘ToPBATMinOpt(PosRoot)),负根情况的最大和最小二次输出转矩约束(‘ToPBATMaxOpt(NegRoot)’和‘ToPBATMinOpt(NegRoot)’),在图6A中用曲线表示。图6A表示了根据电池功率约束确定的输出转矩的有效的,即可用范围。
对输出转矩的线性转矩约束,即最小和最大线性输出转矩(‘ToMinLinear’和‘ToMaxLinear’)(520)是根据补偿电机转矩、与第一和第二电机56和72的电机转矩和所应用离合器的作用转矩相关的标量项(‘KTAfromTo’、‘KTBfromTo’、‘KTCL1fromTo’)来确定的,电机转矩约束包括第一和第二电机56和72的最小和最大电机转矩限制值。应用的离合器CL1(和CL2)的最小和最大离合器作用转矩是相对第一应用离合器和如图所示的第二应用离合器(需要的话)的电机转矩约束画出的(‘TCL1MIN’、‘TCL1MAX’)和(‘TCL2MIN’、‘TCL2MAX’)。
图6B示意性的表示了根据补偿电机转矩、第一和第二电机56和72的最小和最大可获得电机转矩以及应用离合器的最小和最大离合器作用转矩确定的最小和最大线性输出转矩(‘ToMinLin’和‘ToMaxLin)(520)。最小和最大线性输出转矩是能满足电机转矩约束且满足应用的离合器转矩约束的最小和最大输出转矩。示范性表示了典型动力系的操作区,包括电机转矩约束(‘Motor TorqueConstraints’),在一个实施例中,该约束包括第一和第二电机56和72的最大和最小可获得电机转矩(‘TA_MAX’、‘TA_MIN’、‘TB_MAX’、‘TB_MIN’)。应用的离合器CL1和CL2的最小和最大离合器作用转矩是相对第一应用离合器和如图所示的第二应用离合器(需要的话)的电机转矩约束(‘TCL1MIN’、‘TCL1MAX’)和(‘TCL2MIN’、‘TCL2MAX’)表示。最小和最大线性输出转矩(‘ToMinLin’和‘ToMaxLin)可以根据补偿电机转矩、第一和第二电机56和72的最小和最大可获得电机转矩以及应用离合器的最小和最大离合器作用转矩确定。最小和最大线性输出转矩是能满足电机转矩约束且满足应用离合器转矩约束的最小和最大输出转矩。在所示的实施例中,第二应用离合器CL2的最小和最大离合器作用转矩限制更少,并且位于电机转矩约束之外,这样就不会限制输出转矩。操作限制在第一应用离合器CL1的最小和最大离合器作用转矩和第二电机72的最大和最小电机转矩约束即TB_MAX’和‘TB_MIN’限定的区域内。最大线性输出转矩是该区域中的最大输出转矩,即,在第二电机72的最大电机转矩约束和第一应用离合器的最小离合器作用转矩(‘TCL1Min’)之间交点处的输出转矩。最小线性输出转矩是该区域中的最小输出转矩,即,在第二电机72的最小电机转矩约束和第一应用离合器的最大离合器作用转矩(‘TCL1Max’)之间交点处的输出转矩。
图5B表示了在一个固定档位操作范围状态下的操作。在固定档位操作范围状态之一的操作,要监控加速踏板113和制动踏板112的操作者输入来确定操作者转矩请求。***根据输入计算出补偿转矩,输入包括变速器10的操作范围状态、输入转矩和基于***惯性、***阻尼和离合器滑动的项(‘TO Misc Opt’、‘TCL1MiscOpt’、‘TCL2MiscOpt’),参见方程20、21、22和23在下文描述(510’)。‘CL1’表示第一应用离合器,即在所示实施例中离合器C1 70和C2 62中的一个,‘TCL1’是传递经过CL1的转矩。‘CL2’表示应用时的第二应用离合器,即在所示实施例中离合器C2 62、C3 73和C4 75中的一个,‘TCL2’是传递经过CL2的转矩。补偿转矩是输入,以计算线性输出转矩约束(520’),和计算输出转矩的无约束二次解(530’)。
对输出转矩的无约束二次解(530’)使用ESD74的功率限制值(即可用电池功率PBAT_MIN到PBAT_MAX)、补偿电机转矩约束、电机转矩特性和其它标量项(‘KTAfromTo’、‘KTBfromTo’、‘KTCL1fromTo’)来计算,电机转矩特性定义为在机械转矩和电能之间的转换系数(‘Donut Space Coefficient’),该系数与在第一和第二电机56和72之间的效率和功率损失有关来确定的,其在公式11中详细表示,其它标量项是与第一和第二电机56和72转矩输出和所应用离合器的作用转矩相关,都是优选沿着最优电机转矩分离线确定的。上述输入用来计算变速器10输出转矩上的第一约束,其包括无约束二次解,该解包括优化输出转矩(‘To*’)和优化电池功率(‘P* BAT’),用来在不考虑其它***约束(530)的情况下使***工作,其在上面已经参照方程15和16介绍过了,并在图6A中表示。
对输出转矩的线性转矩约束,即最小和最大线性转矩约束(‘ToMaxLinear’和‘ToMinLinear)(520’)是根据补偿转矩、与所应用离合器的输出转矩和作用转矩有关的标量项(‘KT0fromTA’、‘KTOfromTB’、‘KTAfromTCL1’、‘KTBfromTCL1’、‘KTAfrom TCL2’‘KTBfromTCL2’)、第一和第二电机56和72的包括最小和最大电机转矩限制的电机转矩范围(‘TAMin’、‘TAMax’、‘TBMin’、‘TBMax’)来确定的。确定应用的转矩传递离合器的最小和最大离合器作用转矩约束(‘TCL1MIN’、‘TCL1MAX’)和(‘TCL2MIN’、‘TCL2MAX’),其包括在选定操作范围状态下特定应用的离合器。确定包括最小和最大线性输出转矩(‘ToMinLinear’和‘ToMaxLinear’)的约束,最小线性输出转矩优选包括上述最小转矩值的最大值,最大线性输出转矩优选包括上述最大转矩值的最小值。
在模式操作范围状态和固定档位操作范围状态中,对输出转矩的无约束二次解和最大和最小线性输出转矩与优选输出转矩结合起来计算优选输出转矩(‘ToOpt’)和输出转矩约束(‘ToMinRaw’、‘ToMaxRaw’)(540)。优选输出转矩用搜索范围(‘ToMinSearch’、‘ToMaxSearch’)来表示,其优选包括操作者转矩请求或另一个允许转矩约束。在实施例中,优选输出转矩可以包括输出转矩,其在输出转矩范围内使电池功率消耗最小,并且满足操作者转矩请求。
输出转矩约束(‘ToMinRaw’、‘ToMaxRaw’)包括最大和最小未滤波输出转矩,它们根据输入来确定,输入包括输入速度、输出速度、电机转矩约束、应用离合器的作用离合器转矩约束、发动机输入转矩、和输入和输出加速度。优选输出转矩要受到输出转矩约束的影响,并且根据允许输出转矩范围来确定,该范围可以是变化的,还包括即时加速输出转矩请求。优选输出转矩可以包括与最小电池放电电池功率对应的输出转矩或与最大电池充电电池功率对应的输出转矩。优选输出转矩是基于动力系通过第一和第二电机56和72传递和将电能转换成机械转矩的容量,以及即时或当前转矩、速度、和作用离合器转矩约束以及电功率输入来确定的。
包括了最大和最小未滤波输出转矩(‘ToMinRaw’、‘ToMaxRaw’)的输出转矩约束和优选输出转矩(‘ToOpt’)可以通过执行和求解空档、模式和固定档位操作的操作范围状态之一中的优化函数来确定。输出转矩约束包括在当前输入转矩下在可用电池功率(‘PBATMin/Max’)以及电机转矩约束范围内范围内的优选输出转矩范围,,电机转矩约束包括可用电机转矩范围(‘TAMin/Max’、‘TBMin/Max’),受应用转矩传递离合器的作用离合器转矩(‘TCL1Min’,‘TCL1Max’、‘TCL2Min’,‘TCL2Max’)的限制。在非制动操作中,输出转矩请求被限制在最大输出转矩容量之内。
用来确定输出转矩上的最大和最小约束和优选输出转矩的输入包括ESD74的功率输出容量(包括可用电池功率和作用在ESD74上的任何DC载荷)、电机转矩特性,该特性由在机械转矩和电功率之间转换系数根据在第一和第二电机56和72中的效率和功率损失(‘Donut Space Coefficient’)来限定。而且,监控变速器的当前操作范围状态(‘HybridRange State’)、输入转矩、输入速度(‘NI’)、输出速度(‘NO’)、离合器速度(‘NC’)、滑动离合器的加速度(‘Ncsdot’)、输出部件64的的加速度(‘Nodot’)和输入部件12的加速度(‘Nidot’),以及应用离合器的最小和最大作用离合器转矩(‘TCL1Min’‘TCL1Max’、‘TCL2Min’‘TCL2Max’)以及未应用、滑动离合器的估计转矩(‘Tcs’)。上述加速度优选是基于带有目标加速度变化率的加速度曲线,但是也可以是实际加速度。第一和第二电机56和72的可用电机转矩范围也可以如上所述进行监控和使用。
优化函数优选包括线性方程,该方程可以在***的正在操作中以可执行的算法执行并求解,来确定能将电池功率消耗最小化并满足操作者转矩请求的优选输出转矩范围。线性方程要考虑输入转矩(‘Ti’)、***惯性和线性阻尼。优选地,对于模式操作中的每个操作范围状态都有一个线性方程。
当变速器14处于一个模式操作范围状态的时候,***的线性方程是方程17:
T A T B T CL 1 = k T A From T O k T B From T O k T CL 1 From T O T O + k T A From T I k T B From T I k T CL 1 From T I T I + a 11 a 12 a 21 a 22 a 31 a 32 * Nidot Nodot +
b 11 b 12 b 21 b 22 b 31 b 32 * N I N o + c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33 * Tcs 1 Tcs 2 Tcs 3 - - - [ 17 ]
方程17可以求解来确定能将电池功率最小化并满足操作者转矩请求的优选输出转矩。TCL1项表示对于模式操作而言传递经过应用离合器(即在模式1下的离合器C1 62和模式2下的离合器C2 70)的作用转矩。项Tcs1、Tcs2和Tcs3表示对于特定模式操作而言传递经过未应用、滑动离合器的转矩。
k T A From T I k T B From T I k T CL 1 From T I T 1 表示由于输入转矩TI对传递经过应用离合器TCL1的电机转矩(TA、TB)和作用转矩的贡献。标量项是基于第一和第二电机56和72的转矩输出和与根据特定***应用确定的输入转矩相关的所应用离合器的作用转矩(‘KTA fromTI’、‘KTB fromTI’、‘KTCL1fromTI’)。
k T A From T O k T B From T O k T CL 1 From T O T o 表示由于输出转矩TO对电机转矩(TA、TB)和传递经过应用离合器TCL1的作用转矩的贡献。标量项是基于第一和第二电机56和72的转矩输出和与根据特定***应用确定的输入转矩相关的所应用离合器的作用转矩(‘KTAfromTo’、‘KTBfromTo’、‘KTCL1fromTo’)。
a 11 a 12 a 21 a 22 a 31 a 32 * Nidot Nodot 表示具有两个自由度的由于***惯性对电机转矩(TA、TB)和传递经过应用离合器TCL1的作用转矩的贡献。输入加速度项和输出加速度项选择为两个线性独立的***加速度,都可以用来表征动力***部件的惯性。a 11-a32项是根据特定***应用确定的***特定标量值。
b 11 b 12 b 21 b 22 b 31 b 32 * N I N o 表示由于线性阻尼对电机转矩(TA、TB)和传递经过应用离合器TCL1的作用转矩的贡献,线性阻尼具有两个自由度,选择为两个线性独立的***速度,即输入速度和输出速度,它们用来表征动力***部件的阻尼。b11-b32项是根据特定***应用确定的***特定标量值。
c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33 * Tcs 1 Tcs 2 Tcs 3 表示由于未应用、滑动离合器转矩对电机转矩(TA、TB)和传递经过应用离合器TCL1的作用转矩的贡献。Tcs1、Tcs2和Tcs3项表示传递经过未应用、滑动转矩传递离合器的离合器转矩。c11-c33项是根据特定***应用确定的***特定标量值。
方程17可以改写成方程18:
T A T B T CL 1 = k T A From T O k T B From T O k T CL 1 From T O T O + k T A From T I k T B From T I k T CL 1 From T I T I + T A Misc T B Misc T CL 1 Misc - - - [ 18 ]
带有根据输入确定的补偿电机转矩,输入包括变速器10的操作范围状态、输入转矩和基于合成单个向量的***惯性、***阻尼和离合器滑动的项(‘TAMisc’、‘TB Misc’、‘TCL1 Misc’)。
对于输入转矩TI来说,方程18可以如下简化为方程19:
T A T B T CL 1 = k T A From T O k T B From T O k T CL 1 From T O T O + T A Offset T B Offset T CL 1 Offset - - - [ 19 ]
方程19可以使用优选输出转矩(‘TO Opt’)来求解,以确定第一和第二电机56和72的优选电机转矩(‘TA Opt’、‘TB Opt’)(550)。据此也可以计算出优选电池功率(‘PBAT Opt’、‘PA Opt’、‘PB Opt’)(560)。
当变速器14处于一个固定档位操作范围状态下时,***的线性方程是方程20。
T O T CL 1 T CL 2 = k T O From T A k T O From T B k T CL 1 From T A k T CL 1 From T B k T CL 2 From T A k T CL 2 From T B * T A T B + k T O From T I k T CL 1 From T I k T CL 1 From T I T I + a 11 a 21 a 31 * N I +
b 11 b 21 b 31 * Nidot + c 11 c 12 c 21 c 22 c 31 c 32 * Tcs 1 Tcs 2 - - - [ 20 ]
可以求解方程20来确定能将电池功率最小化并满足操作者转矩请求的优选输出转矩。TCL1和TCL2项表示在固定档位操作下传输经过应用离合器的作用转矩。项Tcs1和Tcs2表示对于特定固定档位操作而言传递经过未应用、滑动离合器的转矩。
k T O From T I k T CL 1 From T I k T CL 2 From T I * T 1 表示由于输入转矩TI对输出转矩TO和传递经过应用离合器TCL1和TCL2的作用转矩的贡献。标量项基于输出转矩和与根据特定***应用确定的输入转矩有关的所应用离合器的作用转矩(‘KTofromTI’、‘KTCL1fromTI’、‘KTCL2from TI’)。
k T O From T A k T O From T b k T CL 1 From T A k T CL 1 From T b k T CL 2 From T A k T CL 2 From T b * T A T B 表示由于电机转矩TA和TB对输出转矩和传递经过应用离合器的作用转矩的贡献。标量项基于输出转矩和与根据特定***应用而确定的来自于第一和第二电机56和72转矩输出相关的所应用离合器的作用转矩。
b 11 b 21 b 31 * Nidot 表示由于具有单自由度的***惯性对输出转矩和传递经过应用离合器(TCL1、TCL2)的作用转矩的贡献。输入加速度项选择为线性独立的***加速度,即用来表征动力***部件的惯性。b11-b31项是根据特定***应用确定的***特定标量值。
a 11 a 21 a 31 * N I 表示由于单自由度的线性阻尼对输出转矩和传递经过应用离合器TCL1和TCL2的作用转矩的贡献,线性阻尼选择为线性独立的***速度用来表征动力***部件的阻尼。a11-a31项是根据特定***应用确定的***特定标量值。
c 11 c 12 c 21 c 22 c 31 c 32 * Tcs 1 Tcs 2 表示由于未应用、滑动离合器转矩对输出转矩和传递经过应用离合器TCL1和TCL2的作用转矩的贡献。Tcs1和Tcs2项表示传递经过未应用、滑动转矩传递离合器的离合器转矩。c11-c32项是根据特定***应用确定的***特定标量值。
方程20可以改写成方程21:
T o T CL 1 T CL 2 = k T O From T A k T O From T B k T CL 1 From T A k T CL 1 From T B k T CL 2 From T A k T CL 2 From T B * T A T B + k T O From T I k T CL 1 From T I k T CL 2 From T I T I + k T O Misc k T CL 1 Misc k T CL 2 Misc - - - [ 21 ]
对于输入转矩TI来说,方程21可以如下简化为方程22:
T o T CL 1 T CL 2 = k T O From T A k T O From T B k T CL 1 From T A k T CL 1 From T B k T CL 2 From T A k T CL 2 From T B * T A T B + T O Offset T CL 1 Offset T CL 2 Offset - - - [ 22 ]
带有根据变速器10的操作范围状态的电机转矩所确定的输出转矩和传递经过应用离合器TCL1和TCL2的作用转矩,以及合成单个向量的根据输入转矩、***惯性、***阻尼和离合器滑动的项(‘TO Offset’、‘TCL1Offset’、‘TCL2_Offset’)。方程22可以使用方程20中所确定的优选输出转矩(‘TO Opt’)来求解,以确定第一和第二电机56和72的优选电机转矩,包括确定优选电机转矩分离(‘TAOpt’、‘TB Opt’)(550’)。
电机转矩指令可以用来控制第一和第二电机56和72,以便将输出转矩传递给输出部件64以及传动系90,在车轮93处产生牵引转矩,从而根据加速踏板113的操作者输入向前推动车辆。优选地,只要输出转矩足以克服车上的外部载荷,例如道路坡度、空气动力载荷以及其它载荷,则驱动车辆就可以使车辆加速。
图7表示了确定优选输出转矩(‘To Opt’)的过程(700),优选输出转矩包括用于控制第一和第二电机56和72(‘TAOpt’、‘TBOpt’)的优选电机转矩、和基于它们的优选电池功率(‘PBAT Opt’)。这包括确定最小和最大线性输出转矩(‘ToMinLinear’和‘ToMaxLinear)(710),由此确定最小和最大输出转矩(‘ToMin’)(720)和(‘ToMax)(730)。要执行搜索以确定最小输出转矩,并计算优选输出转矩(‘TO Opt’)(740)。这包括选择暂时输出转矩,其包括最小输出转矩搜索范围的最小值(‘TO Min Search’)和最大输出转矩(‘TO Max’)。优选输出转矩选择为暂时输出转矩、最小输出转矩和最小线性输出转矩的最大值。优选电机转矩和电池功率(‘TA Opt’、‘TB Opt’和‘PBAT Opt’)可以根据优选输出转矩来确定(750),并用来控制动力***的工作。
图8表示了确定最小输出转矩(‘TO Min’)的流程图720。图10和11表示了当在固定档位操作范围状态下操作时构思的结果。最大充电电池功率(‘ToPBATMinPosRoot)下的优选输出转矩(‘DOPT’)可以确定,如图6和方程15和16所示(802)。最大充电电池功率下的优选输出转矩与最小线性输出转矩(‘ToMinLin’)进行比较(804)。当最小线性输出转矩大于或等于最大充电电池功率下的优选输出转矩的时候,输出转矩被设定为等于最小线性输出转矩(806)。这就是作为最小输出转矩ToMin在720处返回到过程700中的优选输出转矩。
当最小线性输出转矩小于最小充电电池功率下的优选输出转矩的时候,应用离合器的离合器转矩被确定为最大充电电池功率下的优选输出转矩使得动力***工作(808)。处于附图目的,应用离合器是指‘CL1’和‘CL2’,其中应用离合器对于选定的变速器操作范围状态来说是特定的。当变速器10在一个模式操作范围状态下即在本实施例中是M1和M2中操作时,就忽略离合器CL2的转矩和力。当第一和第二应用离合器CL1和CL2的离合器转矩位于各自最小和最大离合器作用转矩之间并且可以获得的时候(810),输出转矩就被设定为等于最大充电电池功率下的优选输出转矩(812)。
当第一应用离合器CL1的离合器转矩位于各自最小和最大离合器作用转矩之间并且可以获得的时候(814),第二应用离合器CL2的离合器转矩就与最大可获得离合器转矩进行比较(816),如果大于,则优选输出转矩(‘TOMin’)就被确定为在点(‘DCL2MAX’)处的最大充电电池功率(‘ToPBATMin),在该点,输出转矩满足第二应用离合器CL2的最大可获得离合器转矩(‘TCL2Max’)并位于电池功率约束和电机转矩约束内(818)。这是作为最小输出转矩ToMin在720处返回到过程700中(819)的优选输出转矩。
当第二应用离合器CL2小于最大可获得离合器转矩,即小于TCL2Min的时候(816),优选输出转矩(‘TOMin’)就被确定为在点(‘DCL2MIN’)处的最大充电电池功率(‘ToPBATMin’),在该点,输出转矩满足第二应用离合器CL2的最小可获得离合器转矩(‘TCL2Min’)并位于电池功率约束和电机转矩约束内(820)。这是作为最小输出转矩ToMin在720处返回到过程700中(821)的优选输出转矩。
当第一应用离合器CL1的离合器转矩不在各自最小和最大离合器作用转矩之间的时候(814),就要确定第二应用离合器CL2的离合器转矩是否位于各自最小和最大离合器作用转矩之间因而是可获得的(822)。当第二应用离合器CL2的离合器转矩位于各自最小和最大离合器作用转矩之间,就要将输出转矩线(‘To’)的斜度与第一应用离合器CL1的离合器转矩斜度进行比较(824)。当输出转矩线(‘To’)与第一应用离合器CL1的离合器转矩(‘TCL1’)平行的时候,最小输出转矩(‘TO Min’)就被确定为最小线性输出转矩(‘ToMinLin’)(826)。这是作为最小输出转矩ToMin在720处返回到过程700中的优选输出转矩。
当第一应用离合器CL1的离合器转矩(‘TCL1’)大于第一应用离合器CL1的最大离合器转矩(‘TCL1MAX’)的时候(828、830),优选输出转矩(‘TOMin’)就被确定为在点(‘DCL1MAX’)处的最大充电电池功率(‘ToPBATMin),在该点,输出转矩满足CL1的最大可获得离合器转矩(‘TCL1Max’)并位于电池功率约束和电机转矩约束内(830)。这是作为最小输出转矩ToMin在720处返回到过程700中的优选输出转矩(831)。
当输出转矩线(‘To’)不与第一应用离合器CL1的离合器转矩(‘TCL1’)平行的时候,且第一应用离合器CL1的离合器转矩(‘TCL1’)小于第一应用离合器CL1的最小离合器转矩(‘TCL1MAX’)即小于TCL2Min的时候(828、834),优选输出转矩(‘TO Min’)就被确定为在点(‘DCL1MIN’)处的最大充电电池功率(‘ToPBATMin),在该点,输出转矩满足CL1的最小可获得离合器转矩(‘TCL1Min’)并位于电池功率约束和电机转矩约束内(834)。这是作为最小输出转矩ToMin在720处返回到过程700中的优选输出转矩(835)。
当第二应用离合器CL2的离合器转矩位于各自最小和最大离合器作用转矩之外的时候,第一应用离合器CL1的离合器转矩极限值(‘TCL1Limit’)就要设定为第一应用离合器CL1的最大离合器转矩(‘TCL1MAX’)以及第一离合器转矩(‘TCL1’)和第一应用离合器CL1的最小离合器转矩(‘TCL1MIN’)中的最大值中的最小值。第二应用离合器CL2的离合器转矩极限值(‘TCL2Limit’)就要设定为第二应用离合器CL2的最大离合器转矩(‘TCL2MAX’)和第二离合器转矩(‘TCL2’)和第二应用离合器CL2的最小离合器转矩(‘TCL2MIN’)中的最大值中的最小值(836)。
因此输出转矩线(‘To’)的斜度就要与第一应用离合器CL1的离合器转矩斜度进行比较(838)。当输出转矩线(‘To’)与第一应用离合器CL1(‘TCL1’)的离合器转矩平行的时候,确定在某点的最大充电电池功率(‘ToPBATMin)处的输出转矩(‘Return To’),在该点位于电池功率约束和电机转矩约束内,并且满足第二应用离合器CL2的离合器转矩极限值(‘TCL2Limit’)(840)。最小输出转矩(‘To min’)就被确定为最大线性输出转矩(‘ToMaxLin’)和返回输出转矩(‘Return To’)中的最大值(841)。这是作为最小输出转矩ToMin在720处返回到过程700中的优选输出转矩。
当输出转矩线(‘To’)不与第一应用离合器CL1的离合器转矩(‘TCL1’)平行的时候,第一输出转矩就可以在某点的最大充电电池功率(‘ToPBATMin)处确定,在该点处位于电池功率约束和电机转矩约束内,并且满足第一应用离合器CL1的离合器转矩极限值(‘TCL1Limit’)。第二输出转矩就可以在某点处的最大充电电池功率(‘ToPBATMin)处确定,在该点处位于电池功率约束和电机转矩约束内,并且满足第二应用离合器CL2的离合器转矩极限值(‘TCL2Limit’)(842)。优选输出转矩就被确定为第一和第二输出转矩的最大值,其作为最小输出转矩ToMin在720处返回到过程700中(844)。
图9表示了确定最大输出转矩(‘TOMin’)的流程图30。图10和11表示了构思结果。包括图6中的‘ToPBATMax Pos Root’的最大放电电池功率下的优选输出转矩(‘ToPBATMax Opt’)可以确定(‘COPT’),如图6和方程15和16所示(902)。最大放电电池功率下的优选输出转矩要与最大线性输出转矩(‘ToMaxLin’)进行比较(904)。当最大放电电池功率下的优选输出转矩大于最大线性输出转矩的时候,输出转矩(‘COPT’)被设定为等于最大线性输出转矩(906)。这是作为最大输出转矩ToMax在720处返回到过程700中的优选输出转矩。
当最大放电电池功率下的优选输出转矩小于或等于最大线性输出转矩的时候,就要确定应用离合器的离合器转矩以使得动力***在最大放电电池功率下的优选输出转矩工作(908)。处于附图目的,应用离合器是指‘CL1’和‘CL2’,其中应用离合器对于选定的变速器操作范围状态来说是特定的。当变速器10在一个模式操作范围状态下(即在本实施例中是M1和M2中)工作时,就忽略离合器CL2的转矩和力。当第一和第二应用离合器CL1和CL2的离合器转矩位于各自最小和最大离合器作用转矩之间并且因而是可获得的时候(910),输出转矩就被设定为等于最大放电电池功率下的优选输出转矩(912)。
当第一应用离合器CL1的离合器转矩位于各自最小和最大离合器作用转矩之间并且因而是可获得的时候(914),第二应用离合器CL2的离合器转矩与最大可获得离合器转矩进行比较(916),如果大于,则优选输出转矩(‘TO Max’)就被确定为在点(‘CCL2MAX’)的最大放电电池功率(‘ToPBATMax’),在该点,输出转矩满足第二应用离合器CL2的最大可获得离合器转矩(‘TCL2Max’)并位于电池功率约束和电机转矩约束内(918)。这是作为最大输出转矩ToMax在720处返回到过程700中(919)的优选输出转矩。
当第二应用离合器CL2小于最大可获得离合器转矩的时候(916),优选输出转矩(‘TO Max’)就被确定为在点(‘CCL2MIN’)的最大放电电池功率(‘ToPBATMax’),在该点,输出转矩满足第二应用离合器CL2的最小可获得离合器转矩(‘TCL2Min’)并位于电池功率约束和电机转矩约束内(920)。这是作为最大输出转矩ToMax在720处返回到过程700中的优选输出转矩(921)。
当第一应用离合器CL1的离合器转矩没有位于各自最小和最大离合器作用转矩之间的时候(914),就要确定第二应用离合器CL2的离合器转矩是否位于最小和最大离合器作用转矩之间并且因而是可获得的(922)。当第二应用离合器CL2的离合器转矩位于最小和最大离合器作用转矩之间时,将输出转矩线(‘To’)的斜度与第一应用离合器CL1的离合器转矩斜度进行比较(924)。当输出转矩线(‘To’)与第一应用离合器CL1的离合器转矩(‘TCL1’)平行的时候,优选输出转矩(‘TO Max’)就被确定为最大线性输出转矩(‘ToMaxLin’)(926)。这是作为最大输出转矩ToMax在720处返回到过程700中的优选输出转矩。
当输出转矩线(‘To’)不与第一应用离合器CL1的离合器转矩(‘TCL1’)平行的时候,且第一应用离合器CL1的离合器转矩(‘TCL1’)大于第一应用离合器CL1的最大离合器转矩(‘TCL1MAX’)的时候(928、930),优选输出转矩(‘TOMax’)就被确定为在点(‘CCL1MAX’)的最大放电电池功率(‘ToPBATMax),在该点,输出转矩满足CL1的最大可获得离合器转矩(‘TCL1MAX’)并位于电池功率约束和电机转矩约束内(930)。这是作为最大输出转矩ToMax在720处返回到过程700中的优选输出转矩(931)。
当第一应用离合器CL1的离合器转矩(‘TCL1’)小于第一应用离合器CL1的最大离合器转矩(‘TCL1MAX’)的时候(928、934),优选输出转矩(‘TO Max’)就被确定为在点(‘CCL1MIN’)的最大放电电池功率(‘ToPBATMax’),在该点,输出转矩满足CL1的最小可获得离合器转矩(‘TCL1 MIN’)并位于电池功率约束和电机转矩约束内(934)。这是作为最大输出转矩ToM ax在720处返回到过程700中的优选输出转矩(935)。
当第二应用离合器CL2的离合器转矩位于各自最小和最大离合器作用转矩之外的时候,第一应用离合器CL1的离合器转矩极限值(‘TCL1Limit’)设定为第一应用离合器CL1的最大离合器转矩(‘TCL1MAX’)与第一离合器转矩(‘TCL1’)和第一应用离合器CL1的最小离合器转矩(‘TCL1MIN’)中的最大值中的最小值。第二应用离合器CL2的离合器转矩极限值(‘TCL2Limit’)设定为第二应用离合器CL2的最大离合器转矩(‘TCL2MAX’)与第二离合器转矩(‘TCL2’)和第二应用离合器CL2的最小离合器转矩(‘TCL2MIN’)中的最大值中的最小值(932)。随后,输出转矩线(‘To’)的斜度与第一应用离合器CL1的离合器转矩斜度进行比较(938)。当输出转矩线(‘To’)与第一应用离合器CL1的离合器转矩(‘TCL1’)平行的时候,确定为在某点处的最大放电电池功率(‘ToPBATMax)处的输出转矩(‘Return To’),在该点处位于电池功率约束和电机转矩约束内,并且满足第二应用离合器CL2的离合器转矩极限值(‘TCL2Limit’)(940)。最大输出转矩(‘To Max’)就被确定为最大线性输出转矩(‘ToMaxLin’)和返回输出转矩(‘ReturnTo’)中最小值(941)。这是作为最大输出转矩ToMax在720处返回到过程700中的优选输出转矩。
当输出转矩线(‘To’)不与第一应用离合器CL1的离合器转矩(‘TCL1’)平行的时候,第一输出转矩就可以确定在某点处的最大放电电池功率(‘ToPBATMax)处确定,在该点处位于电池功率约束和电机转矩约束内,并且满足第一应用离合器CL1的离合器转矩极限值(‘TCL1Limit’)。第二输出转矩就可以在某点处的最大放电电池功率(‘ToPBATMax)处确定,在该点处位于电池功率约束和电机转矩约束内,并且满足第二应用离合器CL2的离合器转矩极限值(‘TCL2Limit’)(942)。优选输出转矩就被确定为第一和第二输出转矩的最小值。这作为最大输出转矩ToMax在720处返回到过程700中(944)。
图10、11和12表示了用来控制图1、2和3中动力***的控制方案的操作过程,其使用了参照图4和6所示的图形数学结构。第一坐标系L表示TA/TB空间,且基于电机转矩TA和TB。第二坐标系K表示了变换到TX/TY空间的电机转矩TA和TB,参见图4和方程1-12,其与第一坐标系L和TA/TB空间的关系用图形表示。第三坐标系M表示了PBAT/TO空间,是基于与参考图6和方程1-12描述的输出转矩TO有关的电池功率PBAT。在所示的操作中,变速器10是在CL1=C1 70、CL2=C2 62的G2中工作。
独立确定的参数包括PBATMin和PBATMax,在相对于第二坐标系K的TX/TY空间中用RMIN和RMAX表示。表示了净零电池功率线R0。可以确定变换的电机转矩约束(‘Motor Torque Constraints’),并在TX/TY空间中或TA/TB空间中用图表示。第一坐标系L表示TA=0且TB=0的TA/TB空间,其可以在TX/TY空间中确定,并相对于K坐标系表示。两个点TA=0、TB=0和TX=0、TY=0确定了优选电机转矩分离线(‘Optimal Motor Torque Split Line’),其包括在第一和第二电机56和72之间的转矩分离,该分离可以获得最小功率损失,并且可以根据电机转矩约束确定,并且可以将输出转矩所需的电池功率最小化。离合器作用转矩范围包括第一离合器的最小、最大和零离合器转矩(‘TCL1MIN’、‘TCL1MAX’、‘TCL1=0’)和第二离合器的最小、最大和零离合器转矩(‘TCL2MIN’、‘TCL2MAX’、‘TCL2=0’),该范围可以相对于电机转矩约束和电池功率约束确定,并且相对于第二坐标系K在TX/TY空间中表示,或者相对于第一坐标系L在TA/TB空间中表示。电池功率PBATMin和PBATMax可以相对于表示了电池功率PBAT与输出转矩TO之间关系的第三坐标系M表示。第三坐标系M表示了电池功率PBAT与输出转矩TO之间的关系,从零输出转矩(‘TO=0’)开始增加输出转矩,包括表示了最大和最小线性输出转矩(‘ToMaxLin’、‘ToMinLin’)的线。最大和最小输出转矩在第三坐标系中表示(‘ToPBATMAX Opt’、‘ToPBATMAX Opt’),并表示了正根的情况,其推导过程已经参照附图6予以说明。最大和最小输出转矩如图所示转换成TX/TY空间。
这样,在操作过程中,通过选择性应用转矩传递离合器,,例如离合器C170、C2 62、C3 73以及C4 75混合动力变速器14以固定档位和连续可变操作范围状态之一将转矩在输入部件12和转矩装置(例如第一和第二电机56和72)以及输出部件64之间进行传递。离合器作用转矩范围是根据所应用的离合器确定,电机转矩范围是根据转矩装置确定。确定从ESD74传递的电功率。对于传递给输出部件64的输出转矩上的约束是根据所应用离合器的离合器作用转矩范围确定的。对于传递给输出部件64的输出转矩上的约束是根据转矩装置的电机转矩范围确定的。传递给输出部件64的输出转矩上的约束是根据从能量存储装置传递的功率确定的。确定输出部件64的允许输出转矩范围,它是在传递给输出部件64的输出转矩上的约束内可获得的,基于所应用离合器的离合器作用转矩范围、转矩装置的电机转矩范围和从能量存储装置传递的功率。根据允许输出转矩范围和约束控制混合动力变速器以便从变速器10产生输出转矩。这可以包括在所应用离合器之一的离合器作用转矩范围上的约束,例如离合器所传递的补偿转矩以便允许离合器在不滑动的情况下停用。如上所述,就可以根据在一个所应用离合器的离合器作用转矩范围上引入的约束来确定传递给输出部件的输出转矩上的约束。确定允许输出转矩范围,其是根据应用离合器的离合器作用转矩范围在传递给输出部件的输出转矩上的约束和其它约束(如果有的话)的范围内可获得的,其它约束包括转矩装置的电机转矩范围、能量存储装置所传递的功率和在一个应用离合器的离合器作用转矩范围上引入的约束。下面介绍动力***确定在输出转矩上的约束的操作。
图10表示了当操作不受第一和第二离合器CL1和CL2的离合器转矩约束限制的时候以一个固定档位的操作,即在图1和2所示实施例中固定档位G2。当最大充电电池功率下的优选输出转矩(‘ToPBATMax Opt’)大于最小线性输出转矩(‘ToMIN Lin’)的时候,只要优选输出转矩不违反离合器转矩约束,则优选输出转矩(‘DOPT’)是最大充电电池功率(‘ToPBATMIN Opt’)。当最大充电电池功率下的优选输出转矩(‘ToPBATMax Opt’)小于最大线性输出转矩(‘ToMax Lin’)的时候,只要优选输出转矩不违反离合器转矩约束,则优选输出转矩(‘COPT’)是最大充电电池功率(‘ToPBATMax Opt’)。
图11表示了以一个固定档位(即,在图1和2所示实施例中G2)和在过渡到模式2操作期间的操作,这时一个离合器CL1卸载。在这种情况下,CL1的离合器转矩会影响操作。最大放电电池功率下的优选输出转矩(‘ToPBATMaxOpt’)小于最大线性输出转矩(‘ToMaxLin’),但是包括了最大放电电池功率(‘ToPBATMAX Opt’)的在优选输出转矩(‘COPT’)处的第一离合器转矩TCL1要小于第一离合器的最小离合器转矩约束(‘TCL1MIN’)。在这种情况下,优选最大输出转矩(‘CCL1MIN’)包括满足电池功率约束(‘PBATMAX’)并满足第一离合器的最小离合器转矩约束(‘TCL1MIN’)的输出转矩。优选输出转矩(‘CCL1MIN’)不会与优选电机转矩分离线(‘Optimal Motor Torque Split Line’)相交,在第一和第二电机56和72之间的电机转矩分离TA和TB不会在离合器约束工作期间得到最小功率损失。电机转矩分离可以根据CL1转矩约束确定。
最大充电电池功率下的优选输出转矩(‘ToPBATMINOpt’)大于最小线性输出转矩(‘ToMIN Lin’),且包括了最大放电电池功率(‘ToPBATMAX Opt’)的优选输出转矩(‘DOPT’)在第一离合器的离合器转矩约束(‘TCL1MIN’)中。在这种情况下,优选最小输出转矩(‘DCL1MIN’)包括满足电池功率约束(‘PBATMIN’)和满足最大充电电池功率(‘ToPBATMIN Opt’)的输出转矩。
图12表示了以一个固定档位(在图1和2所示实施例中固定档位G2)向模式1过渡的过程中的操作,这时第二个离合器CL2卸载。在这种情况下,CL2的离合器作用转矩影响操作。最大充电电池功率下的优选输出转矩(‘ToPBATMINOpt’)小于最小线性输出转矩(‘ToMinLin’),但是包括了最大充电电池功率(‘ToPBATMIN Opt’)的优选输出转矩(‘DOPT’)超过第二离合器的最大离合器转矩约束(‘TCL2MAX’)。在这种情况下,优选最小输出转矩(‘ToMin Lin’)构成最小线性输出转矩。优选最小输出转矩不会与优选电机转矩分离线(‘Optimal Motor Torque Split Line’)相交,在第一和第二电机56和72之间的电机转矩分离TA和TB不会在离合器约束工作期间得到最小功率损失。电机转矩分离可以根据CL2的转矩约束确定。
可以理解的是,在本说明书的范围内变型是允许的。说明书是参照优选实施例及其变型作出的。在阅读和理解说明书的基础上,可以作出其它变型或改变。所有这样的变型和改变都应该处于本发明的范围中。

Claims (15)

1.一种控制混合动力变速器的方法,通过可选择地应用转矩传递离合器,混合动力变速器可操作以多个固定档位和连续可变操作范围状态中的一个在输入部件和转矩装置以及输出部件之间传递转矩,转矩装置可操作从能量存储装置传递功率,该方法包括:
在一个操作范围状态下操作混合动力变速器;
确定传递给输出部件的输出转矩的第一组内部***约束;
确定传递给输出部件的输出转矩的第二组内部***约束;和
确定传递给输出部件的输出转矩的第一组内部***约束和第二组内部***约束内可获得的允许输出转矩范围;
其中确定输出转矩的第一组内部***约束包括确定***约束,所述***约束根据一个约束中的线性变化而在输出转矩上展现出线性变化;以及
线性转矩约束包括用于应用转矩传递离合器的最小和最大离合器作用转矩。
2.如权利要求1所述的方法,其特征在于,线性转矩约束包括用于转矩装置的最小和最大可获得电机转矩。
3.根据权利要求1所述的方法,其特征在于,确定输出转矩的第二组内部***约束包括确定***约束,所述***约束根据一个约束中的线性变化而在输出转矩上展现出非线性变化。
4.如权利要求3所述的方法,其特征在于,非线性***约束包括来自能量存储装置的可用功率。
5.根据权利要求1所述的方法,其特征在于,
在传递给输出部件的输出转矩上引入外部***约束;
确定传递给输出部件的输出转矩的第一组内部***约束和第二组内部***约束内可获得的允许输出转矩范围,所述允许输出转矩范围响应于外部***约束。
6.如权利要求5所述的方法,其特征在于,外部***约束根据操作者转矩请求确定。
7.如权利要求5所述的方法,其特征在于,还包括确定优选输出转矩,其将从能量存储装置传递给转矩装置的功率最小化,并是在允许输出转矩范围内可获得的。
8.一种控制混合动力变速器的方法,通过可选择地应用转矩传递离合器,混合动力变速器可操作以多个固定档位和连续可变操作范围状态中的一个在输入部件和转矩装置以及输出部件之间传递转矩,转矩装置可操作从能量存储装置传递功率,该方法包括:
应用转矩传递离合器,并且在一个操作范围状态下操作混合动力变速器;
确定应用离合器的离合器作用转矩范围、转矩装置的电机转矩范围和从能量存储装置传递的功率;
根据应用离合器的离合器作用转矩范围确定传递给输出部件的输出转矩的约束;
根据转矩装置的电机转矩范围确定传递给输出部件的输出转矩的约束;
根据从能量存储装置传递的功率确定传递给输出部件的输出转矩的约束;
根据应用离合器的离合器作用转矩范围、转矩装置的电机转矩范围和从能量存储装置传递的功率确定传递给输出部件的输出转矩的约束内可获得的允许输出转矩范围;和
根据允许输出转矩范围控制变速器的输出转矩。
9.如权利要求8所述的方法,其特征在于,还包括:
在一个应用离合器的离合器作用转矩范围引入约束;
根据一个应用离合器的离合器作用转矩范围上引入的约束确定传递给输出部件的输出转矩的约束;
根据应用离合器的离合器作用转矩范围、转矩装置的电机转矩范围、从能量存储装置传递的功率和一个应用离合器的离合器作用转矩范围上引入的约束确定传递给输出部件的输出转矩的约束内可获得的允许输出转矩范围。
10.如权利要求9所述的方法,其特征在于,还包括:
确定操作者转矩请求;
控制变速器的输出转矩,所述变速器的输出转矩是在允许输出转矩范围内可获得的,响应于操作者转矩请求,并使得从能量存储装置传递给转矩装置的功率最小化。
11.如权利要求8所述的方法,其特征在于,还包括:
在一个转矩电机的电机转矩范围上引入约束;
根据一个转矩电机的电机转矩范围上引入的约束确定传递给输出部件的输出转矩的约束;
根据应用离合器的离合器作用转矩范围、转矩装置的电机转矩范围、从能量存储装置传递的功率和一个转矩电机的电机转矩范围上引入的约束确定传递给输出部件的输出转矩的约束内可获得的允许输出转矩范围。
12.如权利要求11所述的方法,其特征在于,还包括:
确定操作者转矩请求;和
控制变速器的输出转矩,所述变速器的输出转矩是在允许输出转矩范围内可获得的,响应于操作者转矩请求,并使得从能量存储装置传递给转矩装置的功率最小化。
13.如权利要求8所述的方法,其特征在于,还包括:
在从能量存储装置传递的功率引入约束;
根据从能量存储装置传递的功率上引入的约束确定传递给输出部件的输出转矩的约束;和
根据应用离合器的离合器作用转矩范围、转矩装置的电机转矩范围、从能量存储装置传递的功率和从能量存储装置传递的功率上引入的约束确定传递给输出部件的输出转矩的约束内可获得的允许输出转矩范围。
14.如权利要求13所述的方法,其特征在于,还包括:
确定操作者转矩请求;和
控制变速器的输出转矩,所述变速器的输出转矩是在允许输出转矩范围内可获得的,响应于操作者转矩请求,并使得从能量存储装置传递给转矩装置的功率最小化。
15.一种控制混合动力变速器的方法,通过可选择地应用转矩传递离合器,混合动力变速器可操作以多个固定档位和连续可变操作范围状态中的一个在输入部件和第一、第二转矩装置以及输出部件之间传递转矩,转矩装置可操作从能量存储装置传递功率,该方法包括:
确定操作者转矩请求;
确定应用离合器的离合器作用转矩范围、转矩装置的电机转矩范围和从能量存储装置传递的功率;
根据应用离合器的离合器作用转矩范围确定传递给输出部件的输出转矩的约束;
根据转矩装置的电机转矩范围确定传递给输出部件的输出转矩上的约束;
根据从能量存储装置传递的功率确定传递给输出部件的输出转矩上的约束;
在一个应用离合器的离合器作用转矩范围引入约束;
根据一个应用离合器的离合器作用转矩范围上引入的约束确定传递给输出部件的输出转矩上的约束;
根据应用离合器的离合器作用转矩范围、转矩装置的电机转矩范围、从能量存储装置传递的功率和在一个应用离合器的离合器作用转矩范围上引入的约束确定传递给输出部件的输出转矩的约束内可获得的允许输出转矩范围;和
根据允许输出转矩来控制转矩装置的的电机转矩。
CN2008101908244A 2007-11-05 2008-11-05 控制混合动力变速器的方法 Expired - Fee Related CN101549688B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US98540407P 2007-11-05 2007-11-05
US60/985404 2007-11-05
US12/254,985 US8285462B2 (en) 2007-11-05 2008-10-21 Method and apparatus to determine a preferred output torque in mode and fixed gear operation with clutch torque constraints for a hybrid powertrain system
US12/254985 2008-10-21

Publications (2)

Publication Number Publication Date
CN101549688A CN101549688A (zh) 2009-10-07
CN101549688B true CN101549688B (zh) 2013-05-29

Family

ID=40588998

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101908244A Expired - Fee Related CN101549688B (zh) 2007-11-05 2008-11-05 控制混合动力变速器的方法

Country Status (3)

Country Link
US (1) US8285462B2 (zh)
EP (1) EP2065270B1 (zh)
CN (1) CN101549688B (zh)

Families Citing this family (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8390240B2 (en) 2007-08-06 2013-03-05 GM Global Technology Operations LLC Absolute position sensor for field-oriented control of an induction motor
US7867135B2 (en) 2007-09-26 2011-01-11 GM Global Technology Operations LLC Electro-mechanical transmission control system
US8234048B2 (en) 2007-10-19 2012-07-31 GM Global Technology Operations LLC Method and system for inhibiting operation in a commanded operating range state for a transmission of a powertrain system
US8060267B2 (en) 2007-10-23 2011-11-15 GM Global Technology Operations LLC Method for controlling power flow within a powertrain system
US9140337B2 (en) 2007-10-23 2015-09-22 GM Global Technology Operations LLC Method for model based clutch control and torque estimation
US8118122B2 (en) 2007-10-25 2012-02-21 GM Global Technology Operations LLC Method and system for monitoring signal integrity in a distributed controls system
US8265821B2 (en) 2007-10-25 2012-09-11 GM Global Technology Operations LLC Method for determining a voltage level across an electric circuit of a powertrain
US8335623B2 (en) 2007-10-25 2012-12-18 GM Global Technology Operations LLC Method and apparatus for remediation of and recovery from a clutch slip event in a hybrid powertrain system
US8296027B2 (en) 2007-10-25 2012-10-23 GM Global Technology Operations LLC Method and apparatus to control off-going clutch torque during torque phase for a hybrid powertrain system
US8187145B2 (en) 2007-10-25 2012-05-29 GM Global Technology Operations LLC Method and apparatus for clutch torque control in mode and fixed gear for a hybrid powertrain system
US7985154B2 (en) 2007-10-26 2011-07-26 GM Global Technology Operations LLC Method and apparatus to control hydraulic pressure for component lubrication in an electro-mechanical transmission
US8303463B2 (en) 2007-10-26 2012-11-06 GM Global Technology Operations LLC Method and apparatus to control clutch fill pressure in an electro-mechanical transmission
US8204702B2 (en) 2007-10-26 2012-06-19 GM Global Technology Operations LLC Method for estimating battery life in a hybrid powertrain
US8560191B2 (en) 2007-10-26 2013-10-15 GM Global Technology Operations LLC Method and apparatus to control clutch pressures in an electro-mechanical transmission
US9097337B2 (en) 2007-10-26 2015-08-04 GM Global Technology Operations LLC Method and apparatus to control hydraulic line pressure in an electro-mechanical transmission
US8167773B2 (en) 2007-10-26 2012-05-01 GM Global Technology Operations LLC Method and apparatus to control motor cooling in an electro-mechanical transmission
US8548703B2 (en) 2007-10-26 2013-10-01 GM Global Technology Operations LLC Method and apparatus to determine clutch slippage in an electro-mechanical transmission
US8406945B2 (en) 2007-10-26 2013-03-26 GM Global Technology Operations LLC Method and apparatus to control logic valves for hydraulic flow control in an electro-mechanical transmission
US8244426B2 (en) 2007-10-27 2012-08-14 GM Global Technology Operations LLC Method and apparatus for monitoring processor integrity in a distributed control module system for a powertrain system
US8099219B2 (en) 2007-10-27 2012-01-17 GM Global Technology Operations LLC Method and apparatus for securing an operating range state mechanical transmission
US8428816B2 (en) 2007-10-27 2013-04-23 GM Global Technology Operations LLC Method and apparatus for monitoring software and signal integrity in a distributed control module system for a powertrain system
US8062174B2 (en) 2007-10-27 2011-11-22 GM Global Technology Operations LLC Method and apparatus to control clutch stroke volume in an electro-mechanical transmission
US8170762B2 (en) 2007-10-29 2012-05-01 GM Global Technology Operations LLC Method and apparatus to control operation of a hydraulic pump for an electro-mechanical transmission
US8095254B2 (en) 2007-10-29 2012-01-10 GM Global Technology Operations LLC Method for determining a power constraint for controlling a powertrain system
US8282526B2 (en) 2007-10-29 2012-10-09 GM Global Technology Operations LLC Method and apparatus to create a pseudo torque phase during oncoming clutch engagement to prevent clutch slip for a hybrid powertrain system
US8489293B2 (en) 2007-10-29 2013-07-16 GM Global Technology Operations LLC Method and apparatus to control input speed profile during inertia speed phase for a hybrid powertrain system
US8112194B2 (en) 2007-10-29 2012-02-07 GM Global Technology Operations LLC Method and apparatus for monitoring regenerative operation in a hybrid powertrain system
US8290681B2 (en) 2007-10-29 2012-10-16 GM Global Technology Operations LLC Method and apparatus to produce a smooth input speed profile in mode for a hybrid powertrain system
US8209098B2 (en) 2007-10-29 2012-06-26 GM Global Technology Operations LLC Method and apparatus for monitoring a transmission range selector in a hybrid powertrain transmission
US8145375B2 (en) 2007-11-01 2012-03-27 GM Global Technology Operations LLC System constraints method of determining minimum and maximum torque limits for an electro-mechanical powertrain system
US8035324B2 (en) * 2007-11-01 2011-10-11 GM Global Technology Operations LLC Method for determining an achievable torque operating region for a transmission
US7977896B2 (en) 2007-11-01 2011-07-12 GM Global Technology Operations LLC Method of determining torque limit with motor torque and battery power constraints
US8556011B2 (en) 2007-11-01 2013-10-15 GM Global Technology Operations LLC Prediction strategy for thermal management and protection of power electronic hardware
US8073602B2 (en) 2007-11-01 2011-12-06 GM Global Technology Operations LLC System constraints method of controlling operation of an electro-mechanical transmission with an additional constraint range
US8287426B2 (en) 2007-11-02 2012-10-16 GM Global Technology Operations LLC Method for controlling voltage within a powertrain system
US8133151B2 (en) 2007-11-02 2012-03-13 GM Global Technology Operations LLC System constraints method of controlling operation of an electro-mechanical transmission with an additional constraint
US8224539B2 (en) 2007-11-02 2012-07-17 GM Global Technology Operations LLC Method for altitude-compensated transmission shift scheduling
US8585540B2 (en) 2007-11-02 2013-11-19 GM Global Technology Operations LLC Control system for engine torque management for a hybrid powertrain system
US8170764B2 (en) 2007-11-02 2012-05-01 GM Global Technology Operations LLC Method and apparatus to reprofile input speed during speed during speed phase during constrained conditions for a hybrid powertrain system
US8131437B2 (en) 2007-11-02 2012-03-06 GM Global Technology Operations LLC Method for operating a powertrain system to transition between engine states
US8200403B2 (en) 2007-11-02 2012-06-12 GM Global Technology Operations LLC Method for controlling input torque provided to a transmission
US8825320B2 (en) 2007-11-02 2014-09-02 GM Global Technology Operations LLC Method and apparatus for developing a deceleration-based synchronous shift schedule
US8121767B2 (en) 2007-11-02 2012-02-21 GM Global Technology Operations LLC Predicted and immediate output torque control architecture for a hybrid powertrain system
US8121765B2 (en) 2007-11-02 2012-02-21 GM Global Technology Operations LLC System constraints method of controlling operation of an electro-mechanical transmission with two external input torque ranges
US8847426B2 (en) * 2007-11-02 2014-09-30 GM Global Technology Operations LLC Method for managing electric power in a powertrain system
US8135526B2 (en) 2007-11-03 2012-03-13 GM Global Technology Operations LLC Method for controlling regenerative braking and friction braking
US8868252B2 (en) 2007-11-03 2014-10-21 GM Global Technology Operations LLC Control architecture and method for two-dimensional optimization of input speed and input power including search windowing
US8002667B2 (en) 2007-11-03 2011-08-23 GM Global Technology Operations LLC Method for determining input speed acceleration limits in a hybrid transmission
US8204664B2 (en) 2007-11-03 2012-06-19 GM Global Technology Operations LLC Method for controlling regenerative braking in a vehicle
US8285431B2 (en) 2007-11-03 2012-10-09 GM Global Technology Operations LLC Optimal selection of hybrid range state and/or input speed with a blended braking system in a hybrid electric vehicle
US8068966B2 (en) 2007-11-03 2011-11-29 GM Global Technology Operations LLC Method for monitoring an auxiliary pump for a hybrid powertrain
US8010247B2 (en) 2007-11-03 2011-08-30 GM Global Technology Operations LLC Method for operating an engine in a hybrid powertrain system
US8155814B2 (en) 2007-11-03 2012-04-10 GM Global Technology Operations LLC Method of operating a vehicle utilizing regenerative braking
US8224514B2 (en) 2007-11-03 2012-07-17 GM Global Technology Operations LLC Creation and depletion of short term power capability in a hybrid electric vehicle
US8296021B2 (en) 2007-11-03 2012-10-23 GM Global Technology Operations LLC Method for determining constraints on input torque in a hybrid transmission
US8406970B2 (en) 2007-11-03 2013-03-26 GM Global Technology Operations LLC Method for stabilization of optimal input speed in mode for a hybrid powertrain system
US8260511B2 (en) 2007-11-03 2012-09-04 GM Global Technology Operations LLC Method for stabilization of mode and fixed gear for a hybrid powertrain system
US8414449B2 (en) 2007-11-04 2013-04-09 GM Global Technology Operations LLC Method and apparatus to perform asynchronous shifts with oncoming slipping clutch torque for a hybrid powertrain system
US8000866B2 (en) 2007-11-04 2011-08-16 GM Global Technology Operations LLC Engine control system for torque management in a hybrid powertrain system
US9008926B2 (en) 2007-11-04 2015-04-14 GM Global Technology Operations LLC Control of engine torque during upshift and downshift torque phase for a hybrid powertrain system
US8897975B2 (en) 2007-11-04 2014-11-25 GM Global Technology Operations LLC Method for controlling a powertrain system based on penalty costs
US8374758B2 (en) 2007-11-04 2013-02-12 GM Global Technology Operations LLC Method for developing a trip cost structure to understand input speed trip for a hybrid powertrain system
US8112206B2 (en) 2007-11-04 2012-02-07 GM Global Technology Operations LLC Method for controlling a powertrain system based upon energy storage device temperature
US8214114B2 (en) 2007-11-04 2012-07-03 GM Global Technology Operations LLC Control of engine torque for traction and stability control events for a hybrid powertrain system
US8095282B2 (en) 2007-11-04 2012-01-10 GM Global Technology Operations LLC Method and apparatus for soft costing input speed and output speed in mode and fixed gear as function of system temperatures for cold and hot operation for a hybrid powertrain system
US8346449B2 (en) 2007-11-04 2013-01-01 GM Global Technology Operations LLC Method and apparatus to provide necessary output torque reserve by selection of hybrid range state and input speed for a hybrid powertrain system
US8121766B2 (en) 2007-11-04 2012-02-21 GM Global Technology Operations LLC Method for operating an internal combustion engine to transmit power to a driveline
US8112192B2 (en) 2007-11-04 2012-02-07 GM Global Technology Operations LLC Method for managing electric power within a powertrain system
US8818660B2 (en) 2007-11-04 2014-08-26 GM Global Technology Operations LLC Method for managing lash in a driveline
US8494732B2 (en) 2007-11-04 2013-07-23 GM Global Technology Operations LLC Method for determining a preferred engine operation in a hybrid powertrain system during blended braking
US8092339B2 (en) 2007-11-04 2012-01-10 GM Global Technology Operations LLC Method and apparatus to prioritize input acceleration and clutch synchronization performance in neutral for a hybrid powertrain system
US8098041B2 (en) 2007-11-04 2012-01-17 GM Global Technology Operations LLC Method of charging a powertrain
US8204656B2 (en) 2007-11-04 2012-06-19 GM Global Technology Operations LLC Control architecture for output torque shaping and motor torque determination for a hybrid powertrain system
US8138703B2 (en) 2007-11-04 2012-03-20 GM Global Technology Operations LLC Method and apparatus for constraining output torque in a hybrid powertrain system
US8079933B2 (en) 2007-11-04 2011-12-20 GM Global Technology Operations LLC Method and apparatus to control engine torque to peak main pressure for a hybrid powertrain system
US8145397B2 (en) 2007-11-04 2012-03-27 GM Global Technology Operations LLC Optimal selection of blended braking capacity for a hybrid electric vehicle
US8067908B2 (en) 2007-11-04 2011-11-29 GM Global Technology Operations LLC Method for electric power boosting in a powertrain system
US8594867B2 (en) 2007-11-04 2013-11-26 GM Global Technology Operations LLC System architecture for a blended braking system in a hybrid powertrain system
US8135532B2 (en) 2007-11-04 2012-03-13 GM Global Technology Operations LLC Method for controlling output power of an energy storage device in a powertrain system
US8630776B2 (en) 2007-11-04 2014-01-14 GM Global Technology Operations LLC Method for controlling an engine of a hybrid powertrain in a fuel enrichment mode
US8504259B2 (en) 2007-11-04 2013-08-06 GM Global Technology Operations LLC Method for determining inertia effects for a hybrid powertrain system
US8396634B2 (en) 2007-11-04 2013-03-12 GM Global Technology Operations LLC Method and apparatus for maximum and minimum output torque performance by selection of hybrid range state and input speed for a hybrid powertrain system
US8118903B2 (en) 2007-11-04 2012-02-21 GM Global Technology Operations LLC Method for preferential selection of modes and gear with inertia effects for a hybrid powertrain system
US8221285B2 (en) 2007-11-04 2012-07-17 GM Global Technology Operations LLC Method and apparatus to offload offgoing clutch torque with asynchronous oncoming clutch torque, engine and motor torque for a hybrid powertrain system
US8214120B2 (en) 2007-11-04 2012-07-03 GM Global Technology Operations LLC Method to manage a high voltage system in a hybrid powertrain system
US8214093B2 (en) 2007-11-04 2012-07-03 GM Global Technology Operations LLC Method and apparatus to prioritize transmission output torque and input acceleration for a hybrid powertrain system
US8002665B2 (en) 2007-11-04 2011-08-23 GM Global Technology Operations LLC Method for controlling power actuators in a hybrid powertrain system
US8248023B2 (en) 2007-11-04 2012-08-21 GM Global Technology Operations LLC Method of externally charging a powertrain
US8126624B2 (en) 2007-11-04 2012-02-28 GM Global Technology Operations LLC Method for selection of optimal mode and gear and input speed for preselect or tap up/down operation
US8200383B2 (en) 2007-11-04 2012-06-12 GM Global Technology Operations LLC Method for controlling a powertrain system based upon torque machine temperature
US7988594B2 (en) 2007-11-04 2011-08-02 GM Global Technology Operations LLC Method for load-based stabilization of mode and fixed gear operation of a hybrid powertrain system
US8160761B2 (en) 2007-11-05 2012-04-17 GM Global Technology Operations LLC Method for predicting an operator torque request of a hybrid powertrain system
US8219303B2 (en) 2007-11-05 2012-07-10 GM Global Technology Operations LLC Method for operating an internal combustion engine for a hybrid powertrain system
US8099204B2 (en) 2007-11-05 2012-01-17 GM Global Technology Operatons LLC Method for controlling electric boost in a hybrid powertrain
US8135519B2 (en) 2007-11-05 2012-03-13 GM Global Technology Operations LLC Method and apparatus to determine a preferred output torque for operating a hybrid transmission in a fixed gear operating range state
US8073601B2 (en) 2007-11-05 2011-12-06 GM Global Technology Operations LLC Method for preferential selection of mode and gear and input speed based on multiple engine state fueling costs for a hybrid powertrain system
US8321100B2 (en) 2007-11-05 2012-11-27 GM Global Technology Operations LLC Method and apparatus for dynamic output torque limiting for a hybrid powertrain system
US8165777B2 (en) 2007-11-05 2012-04-24 GM Global Technology Operations LLC Method to compensate for transmission spin loss for a hybrid powertrain system
US8448731B2 (en) 2007-11-05 2013-05-28 GM Global Technology Operations LLC Method and apparatus for determination of fast actuating engine torque for a hybrid powertrain system
US8112207B2 (en) 2007-11-05 2012-02-07 GM Global Technology Operations LLC Method and apparatus to determine a preferred output torque for operating a hybrid transmission in a continuously variable mode
US8285432B2 (en) 2007-11-05 2012-10-09 GM Global Technology Operations LLC Method and apparatus for developing a control architecture for coordinating shift execution and engine torque control
US8155815B2 (en) 2007-11-05 2012-04-10 Gm Global Technology Operation Llc Method and apparatus for securing output torque in a distributed control module system for a powertrain system
US8249766B2 (en) 2007-11-05 2012-08-21 GM Global Technology Operations LLC Method of determining output torque limits of a hybrid transmission operating in a fixed gear operating range state
US8121768B2 (en) 2007-11-05 2012-02-21 GM Global Technology Operations LLC Method for controlling a hybrid powertrain system based upon hydraulic pressure and clutch reactive torque capacity
US8070647B2 (en) 2007-11-05 2011-12-06 GM Global Technology Operations LLC Method and apparatus for adapting engine operation in a hybrid powertrain system for active driveline damping
US8229633B2 (en) 2007-11-05 2012-07-24 GM Global Technology Operations LLC Method for operating a powertrain system to control engine stabilization
US8179127B2 (en) 2007-11-06 2012-05-15 GM Global Technology Operations LLC Method and apparatus to monitor position of a rotatable shaft
US8281885B2 (en) 2007-11-06 2012-10-09 GM Global Technology Operations LLC Method and apparatus to monitor rotational speeds in an electro-mechanical transmission
US8073610B2 (en) 2007-11-07 2011-12-06 GM Global Technology Operations LLC Method and apparatus to control warm-up of an exhaust aftertreatment system for a hybrid powertrain
US8433486B2 (en) 2007-11-07 2013-04-30 GM Global Technology Operations LLC Method and apparatus to determine a preferred operating point for an engine of a powertrain system using an iterative search
US8271173B2 (en) 2007-11-07 2012-09-18 GM Global Technology Operations LLC Method and apparatus for controlling a hybrid powertrain system
US8267837B2 (en) 2007-11-07 2012-09-18 GM Global Technology Operations LLC Method and apparatus to control engine temperature for a hybrid powertrain
US8209097B2 (en) 2007-11-07 2012-06-26 GM Global Technology Operations LLC Method and control architecture to determine motor torque split in fixed gear operation for a hybrid powertrain system
US8277363B2 (en) 2007-11-07 2012-10-02 GM Global Technology Operations LLC Method and apparatus to control temperature of an exhaust aftertreatment system for a hybrid powertrain
US8195349B2 (en) 2007-11-07 2012-06-05 GM Global Technology Operations LLC Method for predicting a speed output of a hybrid powertrain system
DE102010049933A1 (de) * 2009-11-12 2011-05-19 Schaeffler Technologies Gmbh & Co. Kg Verfahren zum Erkennen von Tuningmaßnahmen
DE102010014971B4 (de) * 2010-04-14 2016-05-04 Audi Ag Verfahren zum Betreiben eines Kraftfahrzeugs mit zumindest zwei Antrieben sowie Kraftfahrzeug mit zumindest zwei Antrieben
DE102010021996A1 (de) * 2010-05-29 2011-12-01 Audi Ag Verfahren zum Betreiben zweier Antriebe sowie Kraftfahrzeug mit zwei Antrieben, die auf voneinander entkoppelte Räder arbeiten
US9108528B2 (en) * 2011-04-06 2015-08-18 Gm Global Technoogy Operations Llc Open modular electric powertrain and control architecture
US8597158B2 (en) * 2011-06-17 2013-12-03 GM Global Technology Operations LLC Method and apparatus for simultaneous parallel control of a torque phase and an inertia phase for hybrid powertrains
KR101220388B1 (ko) * 2011-08-11 2013-01-09 현대자동차주식회사 전기자동차의 이코노미 주행장치 및 그 제어방법
US8827865B2 (en) 2011-08-31 2014-09-09 GM Global Technology Operations LLC Control system for a hybrid powertrain system
US8473134B1 (en) * 2012-02-07 2013-06-25 GM Global Technology Operations LLC Method and apparatus for operating a vehicle including a hybrid powertrain system during a launch maneuver
US9020799B2 (en) * 2012-02-14 2015-04-28 GM Global Technology Operations LLC Analytic method of fuel consumption optimized hybrid concept for fuel cell systems
US8801567B2 (en) 2012-02-17 2014-08-12 GM Global Technology Operations LLC Method and apparatus for executing an asynchronous clutch-to-clutch shift in a hybrid transmission
US8700276B2 (en) 2012-03-13 2014-04-15 Deere & Company Gear ratio emulation
US8554441B1 (en) 2013-03-13 2013-10-08 E-Aam Driveline Systems Ab Phasing of traction control based on vehicle speed and road slope
US9227525B2 (en) 2013-10-14 2016-01-05 Deere & Company Method and system for controlling torque in an electric drive powertrain
US9333964B2 (en) * 2014-07-11 2016-05-10 GM Global Technology Operations LLC Hybrid powertrain and method for controlling the same
GB2566962B (en) * 2017-09-28 2020-08-12 Jaguar Land Rover Ltd Method and apparatus for controlling electric machines
EP3860870A1 (en) * 2018-10-03 2021-08-11 Carrier Corporation Generator temperature control
CN111204323B (zh) * 2018-11-22 2023-03-28 丰田自动车株式会社 动力传动***
JP7226355B2 (ja) * 2020-01-28 2023-02-21 トヨタ自動車株式会社 パワートレーンシステム

Family Cites Families (203)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6946818B2 (en) 2003-10-14 2005-09-20 General Motors Corporation Method of determining battery power limits for an energy storage system of a hybrid electric vehicle
US6868318B1 (en) 2003-10-14 2005-03-15 General Motors Corporation Method for adjusting battery power limits in a hybrid electric vehicle to provide consistent launch characteristics
US6957137B2 (en) * 2003-10-14 2005-10-18 General Motors Corporation Real-time operating parameter selection in a vehicular transmission
US6910493B2 (en) 2003-10-14 2005-06-28 General Motors Corporation Control apparatus, method and diagnostic for hydraulic fill and drain
US7130734B2 (en) 2003-10-14 2006-10-31 General Motors Corporation Two clutch fixed-ratio exit control for multi-mode hybrid drive
US7127337B2 (en) 2003-10-14 2006-10-24 General Motors Corporation Silent operating mode for reducing emissions of a hybrid electric vehicle
US6832148B1 (en) 2003-10-14 2004-12-14 General Motors Corporation Automatic engine stop and restart mode for reducing emissions of a hybrid electric vehicle
US7356398B2 (en) 2003-10-14 2008-04-08 General Motors Corporation Synchronous shift control in an electrically variable transmission
US7200476B2 (en) 2003-10-14 2007-04-03 General Motors Corporation Optimal selection of input torque considering battery utilization for a hybrid electric vehicle
US7110871B2 (en) * 2003-10-14 2006-09-19 General Motors Corporation Method for determining preferred input operating points for a vehicle transmission
US7219000B2 (en) 2003-10-14 2007-05-15 General Motors Corporation Speed control for an electrically variable transmission
US7110869B2 (en) 2003-10-14 2006-09-19 General Motors Corporation Hybrid transmission member speed determination, sensor diagnostics and fault recovery
US7449891B2 (en) 2003-10-14 2008-11-11 General Motors Corporation Managing service life of a battery
US7222013B2 (en) 2004-02-14 2007-05-22 General Motors Corporation Throttle phase out control
US7076356B2 (en) 2004-02-14 2006-07-11 General Motors Corporation Optimal selection of input torque with stability of power flow for a hybrid electric vehicle
US7324885B2 (en) 2004-02-14 2008-01-29 General Motors Corporation Shift through neutral control in an electrically variable transmission
US7301304B2 (en) 2004-02-14 2007-11-27 General Motors Corporation Energy storage system state of charge diagnostic
US7010406B2 (en) 2004-02-14 2006-03-07 General Motors Corporation Shift inhibit control for multi-mode hybrid drive
US7369930B2 (en) 2004-05-14 2008-05-06 General Motors Corporation Method and apparatus to control hydraulic pressure in an electrically variable transmission
US7653474B2 (en) 2004-05-14 2010-01-26 Gm Global Technology Operations, Inc. Method of determining engine output power in a hybrid electric vehicle
US7131708B2 (en) 2004-05-14 2006-11-07 General Motors Corporation Coordinated regenerative and engine retard braking for a hybrid vehicle
US6976388B2 (en) 2004-05-14 2005-12-20 General Motors Corporation Diagnostic method for a torque control of an electrically variable transmission
US7222014B2 (en) 2004-05-14 2007-05-22 General Motors Corporation Method for automatic traction control in a hybrid electric vehicle
US7028657B2 (en) 2004-05-14 2006-04-18 General Motors Corporation Multi-stage compression ignition engine start
US7587442B2 (en) 2004-05-14 2009-09-08 Gm Global Technology Operations, Inc. Method of determining the derivative of an input signal
US7217221B2 (en) 2004-05-14 2007-05-15 General Motors Corporation Method for active engine stop of a hybrid electric vehicle
US7277781B2 (en) 2004-05-14 2007-10-02 General Motors Corporation Method of undervoltage protection during engine cranking
US7368886B2 (en) 2004-05-14 2008-05-06 General Motors Corporation Method of testing motor torque integrity in a hybrid electric vehicle
US7160224B2 (en) 2004-05-14 2007-01-09 General Motors Corporation Single motor recovery for an electrically variable transmission
US7214165B2 (en) 2004-05-14 2007-05-08 General Motors Corporation Method of automatically flushing debris from an electrically-operated hydraulic valve
US7236871B2 (en) 2004-05-14 2007-06-26 General Motors Corporation Acceleration limiting for a vehicle
US7163487B2 (en) 2004-05-14 2007-01-16 General Motors Corporation Engine retard operation scheduling and management in a hybrid vehicle
US7103463B2 (en) 2004-05-15 2006-09-05 General Motors Corporation Hydraulic clutch state diagnostic and control
US7024299B2 (en) 2004-05-15 2006-04-04 General Motors Corporation Method for dynamically determining peak output torque within battery constraints in a hybrid transmission including a parallel hybrid split
US7305873B2 (en) * 2004-05-15 2007-12-11 General Motors Corporation Method for dynamically determining peak output torque in an electrically variable transmission
US7090613B2 (en) 2004-05-15 2006-08-15 General Motors Corporation Method of providing electric motor torque reserve in a hybrid electric vehicle
US7149618B2 (en) 2004-05-15 2006-12-12 General Motors Corporation Cost structure method including fuel economy and engine emission considerations
US7601092B2 (en) 2005-12-23 2009-10-13 Gm Global Technology Operations, Inc. Vehicle propulsion system
US20070191181A1 (en) 2006-02-13 2007-08-16 Burns Robert D Method and apparatus for controlling vehicle rollback
US7154236B1 (en) 2006-02-13 2006-12-26 Gm Global Technology Operations, Inc. Control system for hybrid powertrain
US8010263B2 (en) 2006-03-22 2011-08-30 GM Global Technology Operations LLC Method and apparatus for multivariate active driveline damping
US7315774B2 (en) 2006-03-22 2008-01-01 Gm Global Technology Operations, Inc. Jerk management using multivariable active driveline damping
US7577507B2 (en) 2006-03-22 2009-08-18 Gm Global Technology Operations, Inc. Driveline lash estimation and clunk management using multivariable active driveline damping
US7739016B2 (en) 2006-03-22 2010-06-15 Gm Global Technology Operations, Inc. Parameter state estimation
US7908063B2 (en) 2006-05-03 2011-03-15 GM Global Technology Operations LLC Synchronous shift execution for hybrid transmission
US7706949B2 (en) 2006-05-25 2010-04-27 Gm Global Technology Operations, Inc. Method and apparatus to control an electro-mechanical transmission during shifting event
US7556120B2 (en) 2006-05-25 2009-07-07 Gm Global Technology Operations, Inc. Method and apparatus to control hydraulic pressure in an electro-mechanical transmission
US7647205B2 (en) 2006-06-07 2010-01-12 Gm Global Technology Operations, Inc. Method and apparatus for management of an electric energy storage device to achieve a target life objective
US7550946B2 (en) 2006-06-07 2009-06-23 Gm Global Technology Operations, Inc. Method and apparatus for real-time life estimation of an electric energy storage device in a hybrid electric vehicle
US7598712B2 (en) 2006-06-07 2009-10-06 Gm Global Technology Operations, Inc. Method and apparatus for real-time life estimation of an electric energy storage device
US7538520B2 (en) 2006-06-07 2009-05-26 Gm Global Technology Operations, Inc. Method and apparatus for quantifying quiescent period temperature effects upon an electric energy storage device
US7730984B2 (en) 2006-06-07 2010-06-08 Gm Global Technology Operations, Inc. Method and apparatus for control of a hybrid electric vehicle to achieve a target life objective for an energy storage device
US7638980B2 (en) 2006-06-07 2009-12-29 Gm Global Technology Operations, Inc. Method and apparatus for determining the effect of temperature upon life expectancy of an electric energy storage device in a hybrid electric vehicle
US8091667B2 (en) 2006-06-07 2012-01-10 GM Global Technology Operations LLC Method for operating a hybrid electric powertrain based on predictive effects upon an electrical energy storage device
US7639018B2 (en) 2006-06-07 2009-12-29 Gm Global Technology Operations, Inc. Method and apparatus for predicting change in an operating state of an electric energy storage device
US7585249B2 (en) 2006-06-30 2009-09-08 Gm Global Technology Operations, Inc. Apparatus and method to control transmission torque output during a gear-to-gear shift
US7568990B2 (en) 2006-08-04 2009-08-04 Gm Global Technology Operations, Inc. Method and apparatus to control operation of a hydraulic control circuit for an electro-mechanical transmission
US7568402B2 (en) 2006-08-04 2009-08-04 Gm Global Technology Operations, Inc. Method and apparatus for fault-tolerant transmission gear selector lever position determination
US7497803B2 (en) 2006-08-04 2009-03-03 Gm Global Technology Operations, Inc. Method and apparatus to control an electro-hydraulic transmission during shifting event
US7537542B2 (en) 2006-09-11 2009-05-26 Gm Global Technology Operations, Inc. Control system architecture for a hybrid powertrain
US7544151B2 (en) 2006-09-13 2009-06-09 Gm Global Technology Operations, Inc. Method and apparatus to monitor operation of an auxiliary hydraulic pump in a transmission
US7556578B2 (en) 2006-10-26 2009-07-07 Gm Global Technology Operations, Inc. Method and apparatus to control operation of a hydraulic control circuit for an electro-mechanical transmission
US7568994B2 (en) 2006-11-17 2009-08-04 Gm Global Technology Operations, Inc. Control architecture for selection of optimal mode or gear and input speed for a hybrid powertrain system
US7670252B2 (en) 2006-11-17 2010-03-02 Gm Global Technology Operations, Inc. Method and apparatus for controlling an electro-mechanical transmission during a shift execution
US7853386B2 (en) 2006-11-17 2010-12-14 Gm Global Technology Operations, Inc. Control architecture and method for two-dimensional optimization of input speed and input torque in mode for a hybrid powertrain system
US7691026B2 (en) 2006-11-17 2010-04-06 Gm Global Technology Operations, Inc. Control architecture for optimization and control of a hybrid powertrain system
US7641582B2 (en) 2006-11-17 2010-01-05 Gm Global Technology Operations, Inc. Control architecture and method for two-dimensional optimization of input torque and motor torque in fixed gear for a hybrid powertrain system
US7648440B2 (en) 2007-01-24 2010-01-19 Gm Global Technology Operations, Inc. Method and apparatus to control operation of an electro-mechanical transmission
US7670254B2 (en) 2007-01-24 2010-03-02 Gm Global Technology Operations, Inc. Method and apparatus to monitor devices of a hydraulic circuit of an electro-mechanical transmission
US7555411B2 (en) 2007-01-31 2009-06-30 Gm Global Technology Operations, Inc. Method and apparatus to monitor a temperature sensing device
US7529637B2 (en) 2007-01-31 2009-05-05 Gm Global Technology Operations, Inc. Method and apparatus to determine pressure in an unfired cylinder
US7670253B2 (en) 2007-03-20 2010-03-02 Gm Global Technology Operations, Inc. Clutch control for hybrid transmission
US7987934B2 (en) 2007-03-29 2011-08-02 GM Global Technology Operations LLC Method for controlling engine speed in a hybrid electric vehicle
US7865287B2 (en) 2007-03-29 2011-01-04 Gm Global Technology Operations, Inc. Method and apparatus for controlling power flow in a hybrid powertrain system
US7487030B2 (en) 2007-04-19 2009-02-03 Gm Global Technology Operations, Inc. Method and apparatus to optimize engine warm up
US7493206B2 (en) 2007-04-19 2009-02-17 Gm Global Technology Operations, Inc. Method and apparatus to determine instantaneous engine power loss for a powertrain system
US7835841B2 (en) 2007-05-03 2010-11-16 Gm Global Technology Operations, Inc. Method and apparatus to determine rotational position of an internal combustion engine
US7999496B2 (en) 2007-05-03 2011-08-16 GM Global Technology Operations LLC Method and apparatus to determine rotational position of an electrical machine
US7463968B2 (en) 2007-05-03 2008-12-09 Gl Global Technology Operations, Inc. Method and apparatus to control engine stop for a hybrid powertrain system
US7996145B2 (en) 2007-05-03 2011-08-09 GM Global Technology Operations LLC Method and apparatus to control engine restart for a hybrid powertrain system
US7991519B2 (en) 2007-05-14 2011-08-02 GM Global Technology Operations LLC Control architecture and method to evaluate engine off operation of a hybrid powertrain system operating in a continuously variable mode
US7983823B2 (en) 2007-09-11 2011-07-19 GM Global Technology Operations LLC Method and control architecture for selection of optimal engine input torque for a powertrain system
US8265813B2 (en) 2007-09-11 2012-09-11 GM Global Technology Operations LLC Method and control architecture for optimization of engine fuel-cutoff selection and engine input torque for a hybrid powertrain system
US7988591B2 (en) 2007-09-11 2011-08-02 GM Global Technology Operations LLC Control architecture and method for one-dimensional optimization of input torque and motor torque in fixed gear for a hybrid powertrain system
US7647154B2 (en) 2007-09-26 2010-01-12 Gm Global Technology Operations, Inc. Method and control architecture for optimization of cylinder deactivation selection and engine input torque for a hybrid powertrain system
US8062170B2 (en) 2007-09-28 2011-11-22 GM Global Technology Operations LLC Thermal protection of an electric drive system
US8234048B2 (en) 2007-10-19 2012-07-31 GM Global Technology Operations LLC Method and system for inhibiting operation in a commanded operating range state for a transmission of a powertrain system
US7555374B2 (en) 2007-10-23 2009-06-30 Gm Global Technology Operations, Inc. Method for monitoring a motor speed sensor
US8060267B2 (en) 2007-10-23 2011-11-15 GM Global Technology Operations LLC Method for controlling power flow within a powertrain system
US9140337B2 (en) 2007-10-23 2015-09-22 GM Global Technology Operations LLC Method for model based clutch control and torque estimation
US8118122B2 (en) 2007-10-25 2012-02-21 GM Global Technology Operations LLC Method and system for monitoring signal integrity in a distributed controls system
US8296027B2 (en) 2007-10-25 2012-10-23 GM Global Technology Operations LLC Method and apparatus to control off-going clutch torque during torque phase for a hybrid powertrain system
US8335623B2 (en) 2007-10-25 2012-12-18 GM Global Technology Operations LLC Method and apparatus for remediation of and recovery from a clutch slip event in a hybrid powertrain system
US8187145B2 (en) 2007-10-25 2012-05-29 GM Global Technology Operations LLC Method and apparatus for clutch torque control in mode and fixed gear for a hybrid powertrain system
US8265821B2 (en) 2007-10-25 2012-09-11 GM Global Technology Operations LLC Method for determining a voltage level across an electric circuit of a powertrain
US8560191B2 (en) 2007-10-26 2013-10-15 GM Global Technology Operations LLC Method and apparatus to control clutch pressures in an electro-mechanical transmission
US8303463B2 (en) 2007-10-26 2012-11-06 GM Global Technology Operations LLC Method and apparatus to control clutch fill pressure in an electro-mechanical transmission
US8548703B2 (en) 2007-10-26 2013-10-01 GM Global Technology Operations LLC Method and apparatus to determine clutch slippage in an electro-mechanical transmission
US8167773B2 (en) 2007-10-26 2012-05-01 GM Global Technology Operations LLC Method and apparatus to control motor cooling in an electro-mechanical transmission
US8406945B2 (en) 2007-10-26 2013-03-26 GM Global Technology Operations LLC Method and apparatus to control logic valves for hydraulic flow control in an electro-mechanical transmission
US9097337B2 (en) 2007-10-26 2015-08-04 GM Global Technology Operations LLC Method and apparatus to control hydraulic line pressure in an electro-mechanical transmission
US8204702B2 (en) 2007-10-26 2012-06-19 GM Global Technology Operations LLC Method for estimating battery life in a hybrid powertrain
US7985154B2 (en) 2007-10-26 2011-07-26 GM Global Technology Operations LLC Method and apparatus to control hydraulic pressure for component lubrication in an electro-mechanical transmission
US8244426B2 (en) 2007-10-27 2012-08-14 GM Global Technology Operations LLC Method and apparatus for monitoring processor integrity in a distributed control module system for a powertrain system
US8062174B2 (en) 2007-10-27 2011-11-22 GM Global Technology Operations LLC Method and apparatus to control clutch stroke volume in an electro-mechanical transmission
US8428816B2 (en) 2007-10-27 2013-04-23 GM Global Technology Operations LLC Method and apparatus for monitoring software and signal integrity in a distributed control module system for a powertrain system
US8099219B2 (en) 2007-10-27 2012-01-17 GM Global Technology Operations LLC Method and apparatus for securing an operating range state mechanical transmission
US8209098B2 (en) 2007-10-29 2012-06-26 GM Global Technology Operations LLC Method and apparatus for monitoring a transmission range selector in a hybrid powertrain transmission
US8170762B2 (en) 2007-10-29 2012-05-01 GM Global Technology Operations LLC Method and apparatus to control operation of a hydraulic pump for an electro-mechanical transmission
US8282526B2 (en) 2007-10-29 2012-10-09 GM Global Technology Operations LLC Method and apparatus to create a pseudo torque phase during oncoming clutch engagement to prevent clutch slip for a hybrid powertrain system
US8290681B2 (en) 2007-10-29 2012-10-16 GM Global Technology Operations LLC Method and apparatus to produce a smooth input speed profile in mode for a hybrid powertrain system
US8489293B2 (en) 2007-10-29 2013-07-16 GM Global Technology Operations LLC Method and apparatus to control input speed profile during inertia speed phase for a hybrid powertrain system
US8095254B2 (en) 2007-10-29 2012-01-10 GM Global Technology Operations LLC Method for determining a power constraint for controlling a powertrain system
US8112194B2 (en) 2007-10-29 2012-02-07 GM Global Technology Operations LLC Method and apparatus for monitoring regenerative operation in a hybrid powertrain system
US8078371B2 (en) 2007-10-31 2011-12-13 GM Global Technology Operations LLC Method and apparatus to monitor output of an electro-mechanical transmission
US7977896B2 (en) 2007-11-01 2011-07-12 GM Global Technology Operations LLC Method of determining torque limit with motor torque and battery power constraints
US8035324B2 (en) 2007-11-01 2011-10-11 GM Global Technology Operations LLC Method for determining an achievable torque operating region for a transmission
US8073602B2 (en) 2007-11-01 2011-12-06 GM Global Technology Operations LLC System constraints method of controlling operation of an electro-mechanical transmission with an additional constraint range
US8145375B2 (en) 2007-11-01 2012-03-27 GM Global Technology Operations LLC System constraints method of determining minimum and maximum torque limits for an electro-mechanical powertrain system
US8556011B2 (en) 2007-11-01 2013-10-15 GM Global Technology Operations LLC Prediction strategy for thermal management and protection of power electronic hardware
US8200403B2 (en) 2007-11-02 2012-06-12 GM Global Technology Operations LLC Method for controlling input torque provided to a transmission
US8131437B2 (en) 2007-11-02 2012-03-06 GM Global Technology Operations LLC Method for operating a powertrain system to transition between engine states
US8224539B2 (en) 2007-11-02 2012-07-17 GM Global Technology Operations LLC Method for altitude-compensated transmission shift scheduling
US8133151B2 (en) * 2007-11-02 2012-03-13 GM Global Technology Operations LLC System constraints method of controlling operation of an electro-mechanical transmission with an additional constraint
US8121767B2 (en) 2007-11-02 2012-02-21 GM Global Technology Operations LLC Predicted and immediate output torque control architecture for a hybrid powertrain system
US8287426B2 (en) 2007-11-02 2012-10-16 GM Global Technology Operations LLC Method for controlling voltage within a powertrain system
US8825320B2 (en) 2007-11-02 2014-09-02 GM Global Technology Operations LLC Method and apparatus for developing a deceleration-based synchronous shift schedule
US8170764B2 (en) 2007-11-02 2012-05-01 GM Global Technology Operations LLC Method and apparatus to reprofile input speed during speed during speed phase during constrained conditions for a hybrid powertrain system
US8121765B2 (en) 2007-11-02 2012-02-21 GM Global Technology Operations LLC System constraints method of controlling operation of an electro-mechanical transmission with two external input torque ranges
US8585540B2 (en) 2007-11-02 2013-11-19 GM Global Technology Operations LLC Control system for engine torque management for a hybrid powertrain system
US8847426B2 (en) 2007-11-02 2014-09-30 GM Global Technology Operations LLC Method for managing electric power in a powertrain system
US8010247B2 (en) 2007-11-03 2011-08-30 GM Global Technology Operations LLC Method for operating an engine in a hybrid powertrain system
US8285431B2 (en) 2007-11-03 2012-10-09 GM Global Technology Operations LLC Optimal selection of hybrid range state and/or input speed with a blended braking system in a hybrid electric vehicle
US8204664B2 (en) 2007-11-03 2012-06-19 GM Global Technology Operations LLC Method for controlling regenerative braking in a vehicle
US8868252B2 (en) 2007-11-03 2014-10-21 GM Global Technology Operations LLC Control architecture and method for two-dimensional optimization of input speed and input power including search windowing
US8224514B2 (en) 2007-11-03 2012-07-17 GM Global Technology Operations LLC Creation and depletion of short term power capability in a hybrid electric vehicle
US8406970B2 (en) 2007-11-03 2013-03-26 GM Global Technology Operations LLC Method for stabilization of optimal input speed in mode for a hybrid powertrain system
US8002667B2 (en) 2007-11-03 2011-08-23 GM Global Technology Operations LLC Method for determining input speed acceleration limits in a hybrid transmission
US8068966B2 (en) 2007-11-03 2011-11-29 GM Global Technology Operations LLC Method for monitoring an auxiliary pump for a hybrid powertrain
US8296021B2 (en) 2007-11-03 2012-10-23 GM Global Technology Operations LLC Method for determining constraints on input torque in a hybrid transmission
US8260511B2 (en) 2007-11-03 2012-09-04 GM Global Technology Operations LLC Method for stabilization of mode and fixed gear for a hybrid powertrain system
US8135526B2 (en) 2007-11-03 2012-03-13 GM Global Technology Operations LLC Method for controlling regenerative braking and friction braking
US8155814B2 (en) 2007-11-03 2012-04-10 GM Global Technology Operations LLC Method of operating a vehicle utilizing regenerative braking
US8248023B2 (en) 2007-11-04 2012-08-21 GM Global Technology Operations LLC Method of externally charging a powertrain
US8126624B2 (en) 2007-11-04 2012-02-28 GM Global Technology Operations LLC Method for selection of optimal mode and gear and input speed for preselect or tap up/down operation
US8079933B2 (en) 2007-11-04 2011-12-20 GM Global Technology Operations LLC Method and apparatus to control engine torque to peak main pressure for a hybrid powertrain system
US7988594B2 (en) 2007-11-04 2011-08-02 GM Global Technology Operations LLC Method for load-based stabilization of mode and fixed gear operation of a hybrid powertrain system
US8346449B2 (en) 2007-11-04 2013-01-01 GM Global Technology Operations LLC Method and apparatus to provide necessary output torque reserve by selection of hybrid range state and input speed for a hybrid powertrain system
US8897975B2 (en) 2007-11-04 2014-11-25 GM Global Technology Operations LLC Method for controlling a powertrain system based on penalty costs
US8214120B2 (en) 2007-11-04 2012-07-03 GM Global Technology Operations LLC Method to manage a high voltage system in a hybrid powertrain system
US8374758B2 (en) 2007-11-04 2013-02-12 GM Global Technology Operations LLC Method for developing a trip cost structure to understand input speed trip for a hybrid powertrain system
US8112206B2 (en) 2007-11-04 2012-02-07 GM Global Technology Operations LLC Method for controlling a powertrain system based upon energy storage device temperature
US8112192B2 (en) 2007-11-04 2012-02-07 GM Global Technology Operations LLC Method for managing electric power within a powertrain system
US8067908B2 (en) 2007-11-04 2011-11-29 GM Global Technology Operations LLC Method for electric power boosting in a powertrain system
US8092339B2 (en) 2007-11-04 2012-01-10 GM Global Technology Operations LLC Method and apparatus to prioritize input acceleration and clutch synchronization performance in neutral for a hybrid powertrain system
US9008926B2 (en) 2007-11-04 2015-04-14 GM Global Technology Operations LLC Control of engine torque during upshift and downshift torque phase for a hybrid powertrain system
US8200383B2 (en) 2007-11-04 2012-06-12 GM Global Technology Operations LLC Method for controlling a powertrain system based upon torque machine temperature
US8098041B2 (en) 2007-11-04 2012-01-17 GM Global Technology Operations LLC Method of charging a powertrain
US8214114B2 (en) 2007-11-04 2012-07-03 GM Global Technology Operations LLC Control of engine torque for traction and stability control events for a hybrid powertrain system
US8214093B2 (en) 2007-11-04 2012-07-03 GM Global Technology Operations LLC Method and apparatus to prioritize transmission output torque and input acceleration for a hybrid powertrain system
US8002665B2 (en) 2007-11-04 2011-08-23 GM Global Technology Operations LLC Method for controlling power actuators in a hybrid powertrain system
US8135532B2 (en) 2007-11-04 2012-03-13 GM Global Technology Operations LLC Method for controlling output power of an energy storage device in a powertrain system
US8396634B2 (en) 2007-11-04 2013-03-12 GM Global Technology Operations LLC Method and apparatus for maximum and minimum output torque performance by selection of hybrid range state and input speed for a hybrid powertrain system
US8818660B2 (en) 2007-11-04 2014-08-26 GM Global Technology Operations LLC Method for managing lash in a driveline
US8494732B2 (en) 2007-11-04 2013-07-23 GM Global Technology Operations LLC Method for determining a preferred engine operation in a hybrid powertrain system during blended braking
US8118903B2 (en) 2007-11-04 2012-02-21 GM Global Technology Operations LLC Method for preferential selection of modes and gear with inertia effects for a hybrid powertrain system
US8594867B2 (en) 2007-11-04 2013-11-26 GM Global Technology Operations LLC System architecture for a blended braking system in a hybrid powertrain system
US8138703B2 (en) 2007-11-04 2012-03-20 GM Global Technology Operations LLC Method and apparatus for constraining output torque in a hybrid powertrain system
US8000866B2 (en) 2007-11-04 2011-08-16 GM Global Technology Operations LLC Engine control system for torque management in a hybrid powertrain system
US8204656B2 (en) 2007-11-04 2012-06-19 GM Global Technology Operations LLC Control architecture for output torque shaping and motor torque determination for a hybrid powertrain system
US8145397B2 (en) 2007-11-04 2012-03-27 GM Global Technology Operations LLC Optimal selection of blended braking capacity for a hybrid electric vehicle
US8221285B2 (en) 2007-11-04 2012-07-17 GM Global Technology Operations LLC Method and apparatus to offload offgoing clutch torque with asynchronous oncoming clutch torque, engine and motor torque for a hybrid powertrain system
US8630776B2 (en) 2007-11-04 2014-01-14 GM Global Technology Operations LLC Method for controlling an engine of a hybrid powertrain in a fuel enrichment mode
US8095282B2 (en) 2007-11-04 2012-01-10 GM Global Technology Operations LLC Method and apparatus for soft costing input speed and output speed in mode and fixed gear as function of system temperatures for cold and hot operation for a hybrid powertrain system
US8121766B2 (en) 2007-11-04 2012-02-21 GM Global Technology Operations LLC Method for operating an internal combustion engine to transmit power to a driveline
US8504259B2 (en) 2007-11-04 2013-08-06 GM Global Technology Operations LLC Method for determining inertia effects for a hybrid powertrain system
US8414449B2 (en) 2007-11-04 2013-04-09 GM Global Technology Operations LLC Method and apparatus to perform asynchronous shifts with oncoming slipping clutch torque for a hybrid powertrain system
US8160761B2 (en) 2007-11-05 2012-04-17 GM Global Technology Operations LLC Method for predicting an operator torque request of a hybrid powertrain system
US8285432B2 (en) 2007-11-05 2012-10-09 GM Global Technology Operations LLC Method and apparatus for developing a control architecture for coordinating shift execution and engine torque control
US8099204B2 (en) 2007-11-05 2012-01-17 GM Global Technology Operatons LLC Method for controlling electric boost in a hybrid powertrain
US8448731B2 (en) 2007-11-05 2013-05-28 GM Global Technology Operations LLC Method and apparatus for determination of fast actuating engine torque for a hybrid powertrain system
US8073601B2 (en) 2007-11-05 2011-12-06 GM Global Technology Operations LLC Method for preferential selection of mode and gear and input speed based on multiple engine state fueling costs for a hybrid powertrain system
US8112207B2 (en) 2007-11-05 2012-02-07 GM Global Technology Operations LLC Method and apparatus to determine a preferred output torque for operating a hybrid transmission in a continuously variable mode
US8229633B2 (en) 2007-11-05 2012-07-24 GM Global Technology Operations LLC Method for operating a powertrain system to control engine stabilization
US8165777B2 (en) 2007-11-05 2012-04-24 GM Global Technology Operations LLC Method to compensate for transmission spin loss for a hybrid powertrain system
US8121768B2 (en) 2007-11-05 2012-02-21 GM Global Technology Operations LLC Method for controlling a hybrid powertrain system based upon hydraulic pressure and clutch reactive torque capacity
US8135519B2 (en) 2007-11-05 2012-03-13 GM Global Technology Operations LLC Method and apparatus to determine a preferred output torque for operating a hybrid transmission in a fixed gear operating range state
US8249766B2 (en) 2007-11-05 2012-08-21 GM Global Technology Operations LLC Method of determining output torque limits of a hybrid transmission operating in a fixed gear operating range state
US8070647B2 (en) 2007-11-05 2011-12-06 GM Global Technology Operations LLC Method and apparatus for adapting engine operation in a hybrid powertrain system for active driveline damping
US8219303B2 (en) 2007-11-05 2012-07-10 GM Global Technology Operations LLC Method for operating an internal combustion engine for a hybrid powertrain system
US8155815B2 (en) 2007-11-05 2012-04-10 Gm Global Technology Operation Llc Method and apparatus for securing output torque in a distributed control module system for a powertrain system
US8321100B2 (en) 2007-11-05 2012-11-27 GM Global Technology Operations LLC Method and apparatus for dynamic output torque limiting for a hybrid powertrain system
US8281885B2 (en) 2007-11-06 2012-10-09 GM Global Technology Operations LLC Method and apparatus to monitor rotational speeds in an electro-mechanical transmission
US8179127B2 (en) 2007-11-06 2012-05-15 GM Global Technology Operations LLC Method and apparatus to monitor position of a rotatable shaft
US8195349B2 (en) 2007-11-07 2012-06-05 GM Global Technology Operations LLC Method for predicting a speed output of a hybrid powertrain system
US8267837B2 (en) 2007-11-07 2012-09-18 GM Global Technology Operations LLC Method and apparatus to control engine temperature for a hybrid powertrain
US8073610B2 (en) 2007-11-07 2011-12-06 GM Global Technology Operations LLC Method and apparatus to control warm-up of an exhaust aftertreatment system for a hybrid powertrain
US8005632B2 (en) 2007-11-07 2011-08-23 GM Global Technology Operations LLC Method and apparatus for detecting faults in a current sensing device
US8277363B2 (en) 2007-11-07 2012-10-02 GM Global Technology Operations LLC Method and apparatus to control temperature of an exhaust aftertreatment system for a hybrid powertrain
US8271173B2 (en) 2007-11-07 2012-09-18 GM Global Technology Operations LLC Method and apparatus for controlling a hybrid powertrain system
US8433486B2 (en) 2007-11-07 2013-04-30 GM Global Technology Operations LLC Method and apparatus to determine a preferred operating point for an engine of a powertrain system using an iterative search
US8209097B2 (en) 2007-11-07 2012-06-26 GM Global Technology Operations LLC Method and control architecture to determine motor torque split in fixed gear operation for a hybrid powertrain system
US8224544B2 (en) 2007-11-07 2012-07-17 GM Global Technology Operations LLC Method and apparatus to control launch of a vehicle having an electro-mechanical transmission

Also Published As

Publication number Publication date
EP2065270B1 (en) 2013-05-29
US8285462B2 (en) 2012-10-09
EP2065270A2 (en) 2009-06-03
CN101549688A (zh) 2009-10-07
EP2065270A3 (en) 2012-05-16
US20090118943A1 (en) 2009-05-07

Similar Documents

Publication Publication Date Title
CN101549688B (zh) 控制混合动力变速器的方法
CN101539197B (zh) 确定在固定档位工作范围状态运行混合动力变速器中优选输出转矩的方法和装置
EP2070794B1 (en) Method and apparatus to determine a preferred output torque for operating a hybrid transmission in a continuously variable mode
CN101445111B (zh) 混合动力系***中发动机的操作方法
CN101497338B (zh) 补偿用于混合动力系***的变速器旋转损失的方法
CN101508298B (zh) 确定混合动力系***固定齿轮运行电动机转矩分配的方法和控制结构
US8204656B2 (en) Control architecture for output torque shaping and motor torque determination for a hybrid powertrain system
US8138703B2 (en) Method and apparatus for constraining output torque in a hybrid powertrain system
US8249766B2 (en) Method of determining output torque limits of a hybrid transmission operating in a fixed gear operating range state
US8145397B2 (en) Optimal selection of blended braking capacity for a hybrid electric vehicle
CN101451609B (zh) 动力传动***中的冲击管理方法
US8321100B2 (en) Method and apparatus for dynamic output torque limiting for a hybrid powertrain system
CN101469638A (zh) 用于混合动力***中转矩管理的发动机控制***
EP2058203B1 (en) Method and apparatus for dynamic output torque limiting for a hybrid powertrain system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130529

Termination date: 20201105