CN101483309B - 以可饱和吸收体作为选频和调q元件的双波长激光器及应用 - Google Patents

以可饱和吸收体作为选频和调q元件的双波长激光器及应用 Download PDF

Info

Publication number
CN101483309B
CN101483309B CN2009100138947A CN200910013894A CN101483309B CN 101483309 B CN101483309 B CN 101483309B CN 2009100138947 A CN2009100138947 A CN 2009100138947A CN 200910013894 A CN200910013894 A CN 200910013894A CN 101483309 B CN101483309 B CN 101483309B
Authority
CN
China
Prior art keywords
laser
dual
wavelength
yag
saturable absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009100138947A
Other languages
English (en)
Other versions
CN101483309A (zh
Inventor
于浩海
张怀金
王正平
王继扬
张行愚
蒋民华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN2009100138947A priority Critical patent/CN101483309B/zh
Publication of CN101483309A publication Critical patent/CN101483309A/zh
Application granted granted Critical
Publication of CN101483309B publication Critical patent/CN101483309B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

本发明涉及一种以可饱和吸收体作为选频和调Q元件的双波长激光器及应用。双波长激光器,包括闪光灯或者激光二极管泵浦源,在适当抑制1.06微米激光的激光谐振腔中***对1.05微米或1.08微米强吸收的可饱和吸收体,以激光材料为增益介质。通过可饱和吸收体Cr:YAG或半导体对1.05或者1.08微米激光强吸收、对1.06微米激光相对弱吸收的特点进行选频,与端面或者侧面泵浦的激光装置相结合,产生双波长脉冲激光,利用该激光的差频实现太赫兹输出。该激光器具有结构紧凑、操作简单、光束质量好、转换效率高、成本低,便于工业化大批量制造等优点。

Description

以可饱和吸收体作为选频和调Q元件的双波长激光器及应用
技术领域
本发明涉及一种以可饱和吸收体作为选频和调Q元件的双波长激光器及应用,属于激光技术领域。
背景技术
太赫兹辐射是指波长从30微米到3000微米、频率从0.1THz到10THz的电磁波。由于这种光具有长波长和低光子能量等特点,已经在科学研究和技术应用方面展示了诱人前景。通过两束近红外激光进行差频产生的太赫兹辐射具有高峰值功率的特点,成为近年来人们关注的热点。但是这种方法不仅需要庞大且复杂的光学***产生双波长激光,而且需要一些光学元件将这两束光合并,这给太赫兹波的产生和应用带来了极大不便。可以看出,波长相近的双波长激光的自差频是客服这一困难的最理想的方法。2007年,Creeden等人利用波长为1064.2nm和1059nm的双波长光纤激光的自差频实现了太赫兹辐射(Opt.Express,15,6478-6483(2007)),但是到目前为止,由于缺少合适的双波长晶体激光器,还没有利用晶体激光的自差频实现太赫兹辐射的报道。
发明内容
本发明针对现有技术的不足,提供一种以可饱和吸收体作为选频和调Q元件的双波长激光器及应用。
术语解释:
Nd:YAG是掺钕钇铝石榴石的简称;Nd:YAP是掺钕铝酸钇的简称;Nd:GGG是掺钕钆镓石榴石的简称;Nd:CNGG是掺钕钙铌镓石榴石的简称;Nd:CLNGG是掺钕和锂的钙铌镓石榴石的简称;Nd:RVO4(R=Gd,Lu、Y和La)是掺钕钒酸盐晶体的简称;Cr4+:YAG是掺四价铬钇铝石榴石晶体的简称。按本领域惯例,本申请文件中使用上述简称。
发明详述
一、双波长激光器
本发明的双波长激光器,包括闪光灯或者激光二极管(LD)泵浦源,在适当抑制1.06微米激光的激光谐振腔中***对1.05微米或1.08微米强吸收的可饱和吸收体,以激光材料为增益介质;其中,所述的激光材料是下列之一:
(1)Nd:YAG、Nd:YAP、Nd:GGG、Nd:CNGG、Nd:CLNGG、Nd:RVO4(R=Gd,Lu、Y或La)晶体,晶体双面抛光,不镀膜或者镀以对泵浦光和双波长都抗反射的介质膜;
(2)Nd:YAG、Nd:YAP、Nd:GGG、Nd:CNGG、Nd:CLNGG、Nd:RVO4(R=Gd,Lu、Y或La)陶瓷,陶瓷双面抛光,不镀膜或者镀以对泵浦光和双波长都抗反射的介质膜;
所述的可饱和吸收体是Cr:YAG晶体或者半导体,双面抛光且镀以对双波长都抗反射的介质膜。
可饱和吸收体Cr:YAG晶体或半导体是对激光材料中小的发射1.05微米或1.08微米吸收大,而对大的发射1.06微米吸收小的可饱和吸收材料。
上述可产生太赫兹辐射的双波长激光器,优选的,以LD作为泵浦源、以Nd:YAG晶体作为增益材料、以Cr:YAG晶体作为可饱和吸收体。
本发明选用的激光材料Nd:YAG、Nd:YAP、Nd:GGG、Nd:CNGG、Nd:CLNGG和Nd:RVO4(R=Gd,Lu、Y和La)晶体或陶瓷,由于Nd离子处于晶格场中,其发射光谱会发生斯塔克***。光谱分析表明,Nd:YAG、Nd:GGG、Nd:CNGG、Nd:CLNGG、Nd:RVO4(R=Gd,Lu、Y或La)晶体或陶瓷在近红外波段具有较多的发射峰,选择合适的发射峰实现双波长激光输出,可以通过其差频实现太赫兹发射。
以上所述的对晶体进行加工、抛光,或者再镀膜,均采用本领域现有技术即可。
本发明的双波长激光器,双波长激光的实现基于对激光二极管(LD)或者闪光灯端面或者侧面泵浦的激光器。其具体原理如下:
可在适当抑制1.06微米激光的激光谐振腔中(损耗为70-90%),实现1.05或者1.08微米单波长连续激光输出。谐振腔中***可饱和吸收体,利用可饱和吸收体对1.05或1.08微米强的吸收,对1.05或1.08微米激光进行适当抑制。可饱和吸收体的可饱和吸收性能使得在激光脉冲开始时,其激光材料的增益很大,此时由于Nd离子在1.06微米发射时大的荧光分值比,激光材料在该波段的增益会大于损耗,这样就可以在脉冲激光中同时实现1.05或1.08微米与1.06微米波长的同时发射。由于两种波长的发射截面不同,且谐振腔对其损耗也不同,可以通过调节泵浦功率实现对双波长功率密度的比值进行调节。
二、双波长激光器的应用
本发明双波长激光器的应用,利用激光器同时输出波长相近的双波长脉冲激光的差频获得太赫兹辐射。具体方法如下:
利用聚焦***将双波长脉冲激光照射到谐振腔外放置的合适的非线性材料上,通过腔外差频产生太赫兹辐射;或者将非线性材料直接放入激光谐振腔内,通过腔内差频产生太赫兹辐射。所述的合适的非线性材料为本领域公知技术,例如周期性极化的铌酸锂、合适切向的砷化镓或者磷化镓等。
本发明的技术特点几两效果在于:
1、本发明的双波长激光器以可饱和吸收体作为选频和调Q元件,以Nd掺杂激光材料作为增益介质,在对1.06微米激光适当抑制(损耗70-90%),对另一波长(1.05或1.08微米)高反射(R=70-80%)的谐振腔中同时输出波长相近的双波长脉冲激光。
2、通过双波长激光的差频实现太赫兹发射。
3、本发明的双波长激光器具有结构紧凑、操作简单、光束质量好、转换效率高、成本低,便于工业化大批量制造等优点。
附图说明
图1是本发明双波长激光器的示意图,其中,1是耦合光纤,2是聚焦***,LD是激光二极管泵浦源,M1为镀以对1.06和1.05微米全反射的入射镜,M2为对1.06微米透过77%、对1.05微米透过30%的输出镜,Nd:YAG是激光晶体,Cr:YAG为可饱和吸收体。图中箭头指示的是光束传播的方向。
图2是本发明实施例1双波长激光器在不同泵浦功率时输出波长的相对大小,横坐标是波长(nm),纵坐标是相对强度(任意单位)。其中图2(a)是入射泵浦功率(Pin)小于4.55W时的激光光谱,图2(b)是入射泵浦功率为4.55W时的激光光谱,图2(c)是入射泵浦功率为8.56W时激光光谱,图2(d)是入射泵浦功率为17.25W时的激光光谱,由图中可以看出输出激光的波长成分随泵浦功率增加逐渐变化,1.06微米的成分逐渐增加。最大平均输出功率为3.75W,峰值功率为3.79kW。
图3是本发明实施例2双波长激光器在不同泵浦功率时输出波长的相对大小,横坐标是波长(nm),纵坐标是相对强度(任意单位)。其中,图3(a)-(d)为初始透过率为91%的Cr:YAG作为可饱和吸收体时分别在入射泵浦功率(Pin)2.63W、3.79W、13W、17W时的激光光谱。图3(e)-(h)为初始透过率为77%的Cr:YAG作为可饱和吸收体时分别在入射泵浦功率(Pin)4.55W、7.02W、13W、17W时的激光光谱。
具体实施方式
下面结合实施例对本发明做进一步说明,但不限于此。
实施例1.
一种可产生双波长的激光器,以LD作为泵浦源、以Nd:YAG晶体作为增益材料、以Cr:YAG作为可饱和吸收体的元件进行封装而成的激光器(如图1所示),通过聚焦***将泵浦光聚焦到激光晶体Nd:YAG上;M1为镀以对1.06和1.05微米全反射的入射镜;Nd:YAG中Nd浓度为1.1at%,尺寸为3mm×3mm×6mm,放入水冷的铜块中;Cr:YAG为对1.06微米透过97%的可饱和吸收体;M2为对1.06微米透过77%、对1.05微米透过30%的输出镜;整个谐振腔长为2.5cm。输出波长随泵浦功率的增加逐渐变化,1.06微米的成分逐渐增加,如图2所示。最大平均输出功率为3.75W,峰值功率为3.79kW。
实施例2.
一种可产生双波长的激光器,以LD作为泵浦源、以Nd:YAG陶瓷作为增益材料、以Cr:YAG作为可饱和吸收体的元件进行封装而成的激光器(结构如图1所示),通过聚焦***将泵浦光聚焦到激光陶瓷Nd:YAG上;M1为镀以对1.06和1.05微米全反射的入射镜;Nd:YAG中Nd浓度为2at%,尺寸为3mm×3mm×4.96mm,放入水冷的铜块中;Cr:YAG为对1.06微米透过分别为91%和77%的两块可饱和吸收体;M2为对1.06微米透过85.6%、对1.05微米透过21%的输出镜;整个谐振腔长为2.5cm。
当选用初始透过率为91%的Cr:YAG时,如图3(a)-(d)所示:泵浦功率低于3.79W时,输出波长为1.05微米,当泵浦功率高于3.79W时,波长为1.06微米的成分出现,并且输出波长随泵浦功率的增加逐渐变化,1.06微米的成分逐渐增加。最大平均输出功率为2.82W。
当选用初始透过率为77%可饱和吸收体时,如图3(f)-(h)所示:当泵浦功率低于7.02W时,输出波长为1.06微米,当泵浦功率高于7.02W时,波长为1.05微米的成分出现,并且输出波长随泵浦功率的增加逐渐变化,1.05微米的成分逐渐增加。最大平均输出功率为1.81W,峰值功率为21.5kW。

Claims (4)

1.双波长激光器,包括闪光灯或者激光二极管泵浦源,其特征在于在适当抑制1.06微米激光的激光谐振腔中***对1.05微米或1.08微米强吸收的可饱和吸收体,以激光材料为增益介质;其中,所述的激光材料是下列之一:
(1)Nd:YAG、Nd:YAP、Nd:GGG、Nd:CNGG、Nd:CLNGG、R=Gd、Lu、Y或La的Nd:RVO4晶体,晶体双面抛光,不镀膜或者镀以对泵浦光和双波长都抗反射的介质膜;
(2)Nd:YAG、Nd:YAP、Nd:GGG、Nd:CNGG、Nd:CLNGG、R=Gd、Lu、Y或La的Nd:RVO4陶瓷,陶瓷双面抛光,不镀膜或者镀以对泵浦光和双波长都抗反射的介质膜;
所述的可饱和吸收体是Cr:YAG晶体或者半导体,双面抛光且镀以对双波长都抗反射的介质膜。
2.如权利要求1所述的双波长激光器,其特征在于以激光二极管作为泵浦源,以Nd:YAG晶体作为增益介质,以Cr:YAG晶体作为可饱和吸收体。
3.权利要求1所述的双波长激光器的应用,利用激光器同时输出波长相近的双波长脉冲激光的差频获得太赫兹辐射。
4.如权利要求3所述的双波长激光器的应用,其特征在于具体方法如下:
利用聚焦***将双波长脉冲激光照射到谐振腔外放置的合适的非线性材料上,通过腔外差频产生太赫兹辐射;或者将非线性材料直接放入激光谐振腔内,通过腔内差频产生太赫兹辐射。 
CN2009100138947A 2009-01-21 2009-01-21 以可饱和吸收体作为选频和调q元件的双波长激光器及应用 Active CN101483309B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100138947A CN101483309B (zh) 2009-01-21 2009-01-21 以可饱和吸收体作为选频和调q元件的双波长激光器及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100138947A CN101483309B (zh) 2009-01-21 2009-01-21 以可饱和吸收体作为选频和调q元件的双波长激光器及应用

Publications (2)

Publication Number Publication Date
CN101483309A CN101483309A (zh) 2009-07-15
CN101483309B true CN101483309B (zh) 2012-01-04

Family

ID=40880297

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100138947A Active CN101483309B (zh) 2009-01-21 2009-01-21 以可饱和吸收体作为选频和调q元件的双波长激光器及应用

Country Status (1)

Country Link
CN (1) CN101483309B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847820A (zh) * 2010-05-21 2010-09-29 山东大学 一种免镀耦合输出介质膜的固体激光器
CN102545014A (zh) * 2010-12-13 2012-07-04 青岛大学 一种波长为1.0μm/1.3μm的双脉冲激光方法
CN102142653B (zh) * 2011-01-13 2012-07-11 山东大学 Nd:YGG晶体1111nm激光器及在一氧化碳中毒检测中的应用
CN102130420A (zh) * 2011-01-27 2011-07-20 山东大学 一种1106nm和1110nm双波长激光器
CN102185247B (zh) * 2011-04-08 2012-04-25 山东大学 一种537nm和556nm双波长激光器
CN103457145A (zh) * 2013-08-22 2013-12-18 中国电子科技集团公司第十一研究所 一种激光器
CN103928831B (zh) * 2014-04-18 2017-02-15 中国科学院上海光学精密机械研究所 基于达曼光栅的点阵输出固体激光器
CN110655386A (zh) * 2019-10-29 2020-01-07 中国工程物理研究院化工材料研究所 一种掺镱钠钙锂铌石榴石透明陶瓷、制备方法及应用
CN112615245B (zh) * 2020-12-17 2022-06-24 山东科技大学 基于石墨炔可饱和吸收的中红外脉冲固体激光器及工作方法

Also Published As

Publication number Publication date
CN101483309A (zh) 2009-07-15

Similar Documents

Publication Publication Date Title
CN101483309B (zh) 以可饱和吸收体作为选频和调q元件的双波长激光器及应用
CA2750297C (en) Novel photonic devices based on conical refraction
CA2627418A1 (en) High power, end pumped laser with off-peak pumping
CN109378691B (zh) 一种基于声子带边发射的全固态大功率板条激光器
CN105071217A (zh) 一种自倍频全固态黄光激光器
CN102545027B (zh) 掺镱钇铝石榴石与双掺铬镱钇铝石榴石自调q激光器
CN102044834B (zh) 一种非线性镜自锁模激光器
CN207994332U (zh) 激光二极管泵浦的二硫化钨调Q的Yb:GYSO全固态激光器
CN113594842A (zh) 一种铒掺杂激光器超短脉冲产生装置及方法
CN100365887C (zh) 全固态分体式拉曼激光器
CN107994453B (zh) 激光二极管泵浦的二硫化钨调QYb:GYSO全固态激光器
CN108923236B (zh) 一种基于钕离子掺杂的钒酸盐晶体激光器
Shen et al. Efficient and compact intracavity-frequency-doubled Nd: GdVO4/KTP laser end-pumped by a fiber-coupled laser diode
CN102185237B (zh) 单波长高功率1319nm连续激光器
CN1317598C (zh) 一种通信波段单光子源的产生方法
CN114825023A (zh) 基于掺镨氟化物晶体直接发射486.1nm蓝光激光的全固态激光器
US8315283B2 (en) Wavelength selectable laser systems and related methods
CN210201153U (zh) 中长波红外激光器
Zhao et al. Spectroscopic properties and diode-pumped 1594 nm laser performance of Er: Yb: Li 6 Y (BO 3) 3 crystal
Johannsen et al. Nd: YAG thin disk laser
Berrou et al. Crystalline fiber Ho3+: YAG laser resonantly pumped by high-spectral-brightness laser diodes
Martial et al. High-power diode-pumped Er3+: YAG single-crystal fiber laser
CN115000788B (zh) 一种窄脉宽微片激光器
RU2459328C1 (ru) Оптический квантовый генератор двухмикронного диапазона длин волн
Yao 2.53 W of 261nm Continuous wave generation in a Pr: YLF laser pumped by blue laser diode at 444.2 nm

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant