CN101479549B - 乙烷回收方法和配置 - Google Patents

乙烷回收方法和配置 Download PDF

Info

Publication number
CN101479549B
CN101479549B CN200780023572XA CN200780023572A CN101479549B CN 101479549 B CN101479549 B CN 101479549B CN 200780023572X A CN200780023572X A CN 200780023572XA CN 200780023572 A CN200780023572 A CN 200780023572A CN 101479549 B CN101479549 B CN 101479549B
Authority
CN
China
Prior art keywords
gas
pressure
domethanizing column
heat exchanger
expander
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200780023572XA
Other languages
English (en)
Other versions
CN101479549A (zh
Inventor
J·马克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fluor Technologies Corp
Original Assignee
Fluor Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fluor Technologies Corp filed Critical Fluor Technologies Corp
Publication of CN101479549A publication Critical patent/CN101479549A/zh
Application granted granted Critical
Publication of CN101479549B publication Critical patent/CN101479549B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0242Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/02Mixing or blending of fluids to yield a certain product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/60Methane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/62Ethane or ethylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/66Separating acid gases, e.g. CO2, SO2, H2S or RSH
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

所涉及的方法和配置使用冷却的含乙烷和CO2的原料气,使该原料气在第一透平膨胀机中膨胀且随后热交换以使得第二透平膨胀机的入口温度相对高。因此,来自第二膨胀机的相对热的脱甲烷塔原料从乙烷产物中有效除去CO2并防止二氧化碳在脱甲烷塔中冻结,同时将另一部分热交换并膨胀的原料气进一步冷却且降低压力以形成贫回流以得到高乙烷回收率。

Description

乙烷回收方法和配置
本申请要求2006年6月27日提交的我们的同时待审的美国临时专利申请60/817169号的优先权。
发明领域
本发明的领域是气体处理,特别是其涉及用于乙烷回收的天然气处理。
发明背景
对于烃类液体回收,特别是自高压原料气回收乙烷和丙烷来说,已知各种膨胀方法。大多数常规方法需要冷冻丙烷以使原料气冷却和/或在脱甲烷塔(demethanizer)和/或脱甲烷塔(demethanizer)中回流冷凝,并且在原料气压力较低或包含大量丙烷和较重组分的情况下,对丙烷冷冻的需要经常显著增加NGL回收方法的开支。
为了降低外部冷冻丙烷的需求,可通过热交换用脱甲烷塔塔顶蒸气、塔侧再沸器和补充的外部丙烷冷冻来使原料气冷却且部分冷凝。随后使如此形成的原料气液体部分与蒸气部分分离,在许多情况下它被分成两部分。一部分经进一步冷却且供应到脱甲烷塔的上部,而另一部分在单透平膨胀机中压力降低且供应到脱甲烷塔的中段。虽然这种配置对于具有相对高C3+(例如大于3%摩尔)含量和约1000psig或更低的原料气压力的原料气来说经常为经济且有效的,但是它们对于低C3+含量(例如等于或小于3%摩尔,更通常小于1%摩尔),尤其对于具有相对高压力(例如1400psig及以上)的原料气来说通常不具经济性和有效性。
遗憾的是,在许多已知的膨胀机方法中,得自分馏塔的残余气体仍包含大量乙烷和丙烷,如果将其冷冻到甚至更低的温度或使其经历另一精馏阶段,则可将其回收。最一般来说,较低温度可通过透平膨胀机的高膨胀比实现。或者或另外,在存在相对高的原料气压力(例如,1600psig及以上)的情况下,理论上可增加脱甲烷塔压力来藉此降低残余气体压缩功率并降低总能量消耗。然而,脱甲烷塔压力的增加通常限于450psig到550psig,因为更高的塔压力会降低甲烷组分与乙烷组分之间的相对挥发性,使分馏困难,甚至不可行。因此,通过透平膨胀自大多数高压原料气产生过度冷却,其为迄今已知无法充分利用的方法。
例如,在Campbell等的美国专利第4,854,955号中描述了具有透平膨胀机、原料气冷却器、分离器和回流脱甲烷塔的示例性NGL回收成套设备(plant)。在此,使用包括透平膨胀的配置来回收乙烷,其中脱甲烷塔塔顶蒸气通过塔顶交换器使用自原料气冷却产生的冷冻来冷却并冷凝。这种额外冷却步骤冷凝来自脱甲烷塔塔顶的大部分乙烷和较重组分,随后在分离器中将它回收并使其以回流形式回到塔中。遗憾的是,高乙烷回收率通常限于80%-90%,因为C2回收经常受脱甲烷塔中CO2冻结限制。因此,不能利用由高压透平膨胀机产生的过度冷却得到高乙烷回收率,且其在别处必定遭到拒绝。然而,在这类配置中使脱乙烷塔回流通常需要丙烷冷冻,这消耗了大量能量。因此,对于具有相对高压力和低丙烷和较重组分含量的原料气来说,所有或几乎所有已知方法都没能利用原料气的潜在能量。
Campbell等在美国专利第6,182,469号中指出包括在NGL分馏塔中除去CO2的NGL回收方法。在此,将顶部塔盘中的一部分液体移出、加热并使其回到脱甲烷塔的下段以除去CO2。虽然所述配置可在至少一定程度上除去不合需要的CO2,但降低了NGL分馏效率且必定增加额外处理步骤的额外分馏塔盘、加热和冷却任务。在当前经济情况下,此追加支出相对于如此实现的乙烷回收率的微小增加是不合理的。更进一步,这类体系通常针对1100psig(psi表压)或更低的原料气压力设计,它不适用于高原料气压力(例如,1600psig或更高)。具有类似难点的其他已知配置描述在美国专利第4,155,729号、美国专利第4,322,225号、美国专利第4,895,584号、美国专利第7,107,788号、美国专利第4,061,481号和WO2007/008254中。
因此,虽然已进行许多尝试来提高自天然气及其他来源分离和回收乙烷和较重天然气液体的方法的效率和经济性,但所有或几乎所有方法都受一个或多个缺点的困扰。最显著地,迄今已知的配置和方法都没能利用高原料气压力的经济效益和脱甲烷塔的冷却潜力,特别是在原料气包含相对低的C3和较重组分含量的情况下。因此,仍然需要提供用于天然气液体回收的改进方法和配置。
发明概述
本发明涉及使用相对高压力的具有相对低C3+含量的含CO2原料气提供冷却和再压缩能量而同时使乙烷回收率达到最大的配置和方法。最优选使原料气在至少两段中冷却并膨胀,其中将原料的蒸气部分供应到处于相对高温度下的第二膨胀机中,因此防止CO2在脱甲烷塔中冻结,且其中使另一蒸气部分过冷,藉此形成贫回流(lean reflux)。
在本发明主题的一个方面,气体处理成套设备(最优选用于处理具有相对低C3+含量的含CO2原料气)包括第一热交换器、第一透平膨胀机和第二热交换器,它们彼此串联连接且经配置以使原料气冷却并膨胀到压力高于脱甲烷塔工作压力(例如,1000psig到1400psig)。分离器与第二热交换器流体连接且经配置以将冷却并膨胀的原料气分离为液相和气相,第二透平膨胀机与分离器连接且经配置以使一部分气相膨胀到脱甲烷塔压力,而第三热交换器和减压装置经配置以接收并冷凝另一部分气相,藉此形成到达脱甲烷塔的回流。
因此,从不同观点来看,自含乙烷的气体分离乙烷的方法包括使原料气冷却并从原料气压力膨胀到高于脱甲烷塔工作压力的步骤和另一自冷却并膨胀的原料气分离气相的步骤。一部分过热气相在透平膨胀机中膨胀到脱甲烷塔的工作压力,而另一部分气相经冷却、液化且膨胀,藉此产生供应到脱甲烷塔中的回流。
最优选第一热交换器和第二热交换器与脱甲烷塔热连接以提供脱甲烷塔的至少一部分再沸任务,和/或塔侧再沸器与脱乙烷塔塔顶冷凝器和/或残余气体热交换器热连接以提供体系的冷冻/再沸需求。为了重新利用高压原料气中的至少一些能量,优选第一透平膨胀机与残余气体压缩机(或发电机)机械连接。通常,在至少1500psig压力下原料气通过来源(例如,气田、LNG的再气化成套设备)提供,和/或原料气包含至少0.5%摩尔CO2和小于3%摩尔C3+组分。
更进一步通常优选第一热交换器、第一透平膨胀机和第二热交换器经配置以冷却原料气到高于-10°F的温度,和/或第二透平膨胀机经配置使得气相的膨胀部分(即,脱甲烷塔进料)的温度为-75°F到-85°F且压力为400psig到550psig。另外,通常优选第三热交换器和减压装置经配置以在等于或小于-130°F的温度下冷凝气相以提供脱甲烷塔回流。
本发明的各种目标、特征、方面和优势自本发明的优选实施方案的以下详细说明以及附图将变得更加显而易见。
附图简述
图1为根据本发明主题的一个示例性乙烷回收配置的示意图。
图2为根据本发明主题的另一示例性乙烷回收配置的示意图。
发明详述
本发明人已发现各种高压烃原料气(例如,至少1400psig,更优选至少1600psig,甚至更高)可在包括两阶段透平膨胀的配置和方法中处理,两阶段透平膨胀将显著有助于下游脱甲烷塔和脱乙烷塔的冷却需求。在优选方面的原料气包含至少0.5%摩尔且更通常至少1-2%摩尔的量的CO2,且具有通常等于或小于3%摩尔的相对低的C3+(即,C3和更高碳数)含量。
在大多数考虑的配置和方法中,实现至少70%-95%的乙烷回收率,同时显著降低冷冻和能量需求。另外,在特别优选的配置和方法中,脱甲烷塔再沸器任务由原料气热含量提供,且原料气的膨胀提供回流和脱甲烷塔进料中的冷冻容量,它还用以冷凝经由塔侧自脱甲烷塔取出的脱乙烷塔塔顶产物和/或降低再压缩机入口温度。
应特别理解的是,在考虑的配置和方法中,原料气在第一透平膨胀机中膨胀且随后热交换使得第二透平膨胀机的膨胀机入口温度显著高于迄今已知的典型配置。所述相对高的入口温度致使进入脱甲烷塔的原料有助于自乙烷产物除去二氧化碳且防止二氧化碳冻结,而相对低的回流物流温度和约450psig的塔压有助于有效分离乙烷与较重组分。在需要的情况下,可将残余气体与自原料气提取的C3和较重组分合并,而将乙烷单独使用或作为商品销售。
在本发明主题的一个特别优选方面,如图1所示的示例性成套设备包括与两个串联操作的透平膨胀机流体连接的脱甲烷塔,其中原料气在第一透平膨胀机的上游和下游冷却。最优选调节这些装置中的冷却和膨胀以维持第二膨胀机吸入口温度为0-30°F。利用此相对高的膨胀机温度以在脱甲烷塔中汽提CO2,同时避免CO2在塔中冻结。还应理解,双透平膨胀机产生的额外动力可用以降低残余气体压缩能量需求,和/或可用以降低或甚至消除丙烷冷冻。此外,应认识到,在优选成套设备中的脱甲烷塔塔侧再沸器通过提供到达脱乙烷塔中的回流的冷凝任务而被加热,它更进一步降低丙烷冷冻需求。此用途还将通过在脱甲烷塔中自NGL汽提CO2而帮助防止CO2冻结。
进一步参考图1,处于85°F和1700psig下的原料气流1在第一交换器50中冷却到约40°F到70°F,形成冷却的原料气流2和加热的物流32。交换器50的冷冻容量(refrigeration content)由脱甲烷塔再沸器原料流31提供。因此,用于汽提脱甲烷塔塔底物流12中的不合需要组分的再沸器加热任务的至少一部分由原料气提供。任选加热器81可用于进一步加热物流32到更高温度,形成物流33,它通过利用来自残余压缩机排出物或热油物流60的热量补充脱甲烷塔再沸器热需求。物流2通过第一透平膨胀机51膨胀到较低压力,通常为1000psig到1400psig,形成物流3,它在第二交换器53中进一步冷却到约-10°F到30°F,形成物流5。冷冻容量由上部塔侧再沸器物流21提供,藉此形成加热的物流22。当处理富气时,冷凝物在分离器54中分离为液体流11和蒸汽流4。
将物流11的压力降低且供应到脱甲烷塔59下段,而使蒸气流4分成两部分,物流6和物流7,通常物流4与物流7的分流比为0.3-0.6。应理解,冷却气的分流比可不同,优选随针对所要乙烷回收率和CO2去除的膨胀机入口温度而不同。脱甲烷塔塔顶交换器的流率增加会增加回流率,得到更高乙烷回收率。因此,共吸收的CO2必须通过膨胀机的较高温度和/或较高流率来除去以避免CO2冻结。如本文所用,术语“约”与数字结合是指自低于所述数字绝对值20%开始到高于所述数字绝对值20%的数字范围(包括端值)。例如,术语“约-100°F”是指-80°F到-120°F的范围,术语“约1000psig”是指800psig到1200psig的范围。
物流6在第二透平膨胀机55中膨胀到约400psig到550psig,形成温度通常为约-80°F的物流10。将物流10供应到脱甲烷塔59的上段。物流7在脱甲烷塔塔顶交换器57中利用脱甲烷塔塔顶蒸气流13的冷冻容量冷却为约-140°F的物流8,物流8在JT(Joule-Thomson)阀58中压力进一步降低。如此形成的物流9以过冷贫回流形式供应到脱甲烷塔59上部。虽然通常优选物流8在Joule-Thomson阀中膨胀,但认为供选的已知膨胀装置同样适用于本文且包括动力再生涡轮(power recovery turbines)和膨胀喷嘴。
应注意到,优选配置中的脱甲烷塔用来自(a)原料气、(b)压缩的残余气体和(c)脱乙烷塔回流冷凝器65的热含量再沸以限制塔底产物中的甲烷含量为2%重量或更小。更进一步,被考虑的配置和方法还产生在约-135°F和400psig到550psig下的塔顶蒸气流13和在50°F到70°F和405psig到555psig下的塔底物流12。塔顶蒸气13优选用于提供在交换器57中冷却以形成物流14的原料气,随后通过第一段再压缩机56(由第二透平膨胀机55驱动)压缩形成在约45°F和约600psig下的物流15。压缩的物流15通过由第一透平膨胀机51驱动的第二再压缩机52进一步压缩为约750psig下的物流16,且最终由残余气体压缩机61压缩,因此形成在1600psig或更高压力下的物流17。优选利用压缩的残余气体的热含量以供应脱甲烷塔再沸器81和脱乙烷塔再沸器68中的至少一部分再沸器任务(例如,经由交换器62)。随后使压缩并冷却的残余气体流18任选与丙烷流78混合,形成供应气体管道的物流30。由脱乙烷塔底物流制备的丙烷有利地增加热值容量,这在丙烷和较重组分的价值如同天然气的情况下和且液体丙烷商品不易于得到的情况下尤其合乎需要。
脱甲烷塔底残留物12在JT阀63中压力下降到约300psig到400psig,且作为物流23供应到脱乙烷塔64的中段,脱乙烷塔64产生乙烷塔顶物流24和C3+(丙烷和较重组分)塔底物流28。脱乙烷塔塔顶蒸气24通过交换器70和交换器65中的丙烷冷冻来任选冷却,在交换器65中将自脱甲烷塔塔侧抽出的物流19自约-50°F加热到约10°F,形成物流20,而将脱乙烷塔塔顶蒸气在约20°F下冷凝,形成物流25。将脱乙烷塔塔顶物流25完全冷凝,在分离器66中分离且由产物/回流泵67以物流26形式泵送,产生到达脱乙烷塔的回流物流27和乙烷液体产物流29。包含C3和较重烃的脱乙烷塔塔底物流28通过泵95泵送达到约1600psig以与供应管道的压缩残余气体混合。或者,还可取出C3+组分进行储存或作为商品销售。
图2展示包括使用用于冷却残余气体压缩机吸入口藉此降低残余气体压缩功率的脱甲烷塔塔侧再沸器的供选配置。在此配置中,将约-50°F下的物流19自脱甲烷塔的上段移出以将残余气体压缩机吸入口物流16从90°F冷却到约20°F,形成物流34。使加热的塔侧抽出物流20回到脱甲烷塔中以便汽提不合需要的组分。随后通过交换器70将脱乙烷塔塔顶物流24冷凝且将冷凝物在分离器66中分离以形成乙烷物流26。物流26通过泵67泵压到脱乙烷塔压力且分流以提供到达脱乙烷塔64的贫回流27和乙烷产物流29。此配置的其余组件和操作与图1的配置和用途类似,且对于其余组件和编号,适用于上文图1中相同的数字和因素。
最优选原料气烃的压力为约至少1200psig,更优选为至少1400psig,最优选为至少1600psig,且原料气烃具有相对高的CO2含量(例如,至少0.2%摩尔,更通常至少0.5%摩尔,最通常至少1.0%摩尔)。此外,特别合适的原料气优选基本贫C3+组分(即,C3+总含量小于3%摩尔,更优选小于2%摩尔,最优选小于1%摩尔)。例如,典型的原料气包含0.5%N2、0.7%CO2、90.5%C1、5.9%C2、1.7%C3和0.7%C4+。
最通常,原料气在第一交换器中用脱甲烷塔塔底再沸器的冷冻容量冷却到约40°F到70°F的温度,随后在第一透平膨胀机中膨胀到约1100psig到约1400psig的压力。优选利用自第一透平膨胀产生的功率以驱动第二段残余气体再压缩机。随后通过脱甲烷塔塔侧再沸器将如此部分膨胀并冷却的原料气冷却到维持进入膨胀机的气体处于过热态(即,没有液体形成)的吸入口温度的程度。应理解,所述高温(例如,0°F-30°F)在脱甲烷塔中对汽提不合需要的CO2过程有利,同时增加膨胀机的功率输出,其转而又降低残余气体压缩功率。从另一观点来看,可使用被考虑的方法和配置以自NGL中除去CO2使其达到低含量且降低下游CO2移除体系的能量消耗。
相反,在迄今已知的配置中的原料气通常被冷却到较低温度(通常0°F到-50°F)且分成分别供应到脱甲烷塔塔顶交换器(过冷器)和用于进一步冷却(例如,冷却到低于-120°F到-160°F)的膨胀机中的两部分。因此,应注意到这些已知配置的低效率连同其他因素一起均源于较低温度,较低温度降低了膨胀机的功率输出,随后需要较高残余气体压缩功率。另外,膨胀机吸入口/出口处的较低温度还冷凝脱甲烷塔内的CO2蒸气,这导致NGL产物中CO2含量增加。从另一观点来看,已知配置没能降低NGL中的CO2含量,并且还需要显著能量而未提高乙烷回收率。
因此,应特别认识到,在被考虑的配置中,将一部分原料气冷却以供应回流形式的过冷液体,而另一部分用作相对热的膨胀机入口原料以控制CO2在塔中的冻结。此外,两塔的冷却需求至少部分由自两段透平膨胀得到的冷冻容量提供。关于乙烷回收率,预期根据本发明主题的配置在使用再循环到脱甲烷塔中的残余气体时(在图中未示出)提供至少70%,更通常至少80%,最通常至少95%的回收率,而C3+回收率将为至少90%(优选再注入销售气体中以提高残余气体的热值)。
另外或或者,预期可将至少一部分残余气体压缩机排出物冷却以供应脱甲烷塔和脱乙烷塔的再沸器任务。关于热交换器配置,应认识到,使用塔侧再沸器以供应原料气和残余气体冷却和脱乙烷塔回流冷凝器任务将用于乙烷回收的总功率需求减至最少。因此,可使丙烷冷冻减至最少或甚至消除,与已知方法相比,显著节约了成本。因此,应注意到,在乙烷回收方法中在使用与脱甲烷塔和脱乙烷塔连接的两个透平膨胀机时,操作能汽提CO2、减少CO2冻结和消除丙烷冷冻或使丙烷冷冻减至最少,它又继而降低功率消耗并提高乙烷回收率。适于本发明主题的其他方面和预期内容描述在我们的国际专利申请案PCT/US04/32788号和美国专利第7,051,553号中,二者都通过引用结合到本文中来。
因此,为此已公开了乙烷回收配置和方法的具体实施方案和应用。然而,本领域的技术人员应显而易见在不脱离本文的发明构思的情况下可能有已描述内容之外的许多改进。因此,本发明的主题不受除本公开的精神之外的限制。另外,在解释本说明书和被考虑的权利要求的过程中,所有术语均应按照上下文以尽可能最广泛的方式加以解释。具体地说,术语“包括”、“包含”应解释为以非穷举方式提及元件、组件或步骤,表明所提及的元件、组件或步骤可与其他没有明确提及的元件、组件或步骤存在或利用或组合。此外,在通过引用结合到本文中的参考文献中的术语的定义和使用与本文提供的此术语的定义不一致或相反的情况下,适用于本文提供的此术语的定义,而不适用于参考文献中的此术语的定义。

Claims (20)

1.一种气体处理成套设备,其包括:
第一热交换器、第一透平膨胀机和第二热交换器,它们在脱甲烷塔上游彼此串联连接且经配置以使原料气冷却并膨胀到高于脱甲烷塔工作压力的压力;
分离器,它与第二热交换器流体连接且经配置以将冷却并膨胀的原料气分离为液相和气相;
第二透平膨胀机,它与分离器连接且经配置以使一部分气相膨胀到脱甲烷塔压力;和
第三热交换器和减压装置,它们彼此连接且经配置以接收并冷凝另一部分气相,藉此形成到达脱甲烷塔的回流。
2.权利要求1的成套设备,其中第一热交换器和第二热交换器与脱甲烷塔热连接以提供脱甲烷塔的至少一部分再沸任务。
3.权利要求1的成套设备,其还包括脱甲烷塔的塔侧再沸器,它与脱乙烷塔塔顶冷凝器和残余气体热交换器中的至少一者热连接。
4.权利要求1的成套设备,其中所述第一透平膨胀机与残余气体压缩机机械连接。
5.权利要求1的成套设备,其还包括原料气来源,该原料气来源经配置以提供压力为至少1500psig的原料气。
6.权利要求1的成套设备,其中所述原料气包含至少0.5%摩尔的CO2和小于3%摩尔的C3+组分。
7.权利要求1的成套设备,其中所述高于脱甲烷塔工作压力的压力为1000psig到1400psig。
8.权利要求1的成套设备,其中所述第一热交换器、所述第一透平膨胀机和所述第二热交换器经配置以使原料气冷却到高于-10°F的温度。
9.权利要求1的成套设备,其中所述第二透平膨胀机经配置使得所述气相的膨胀部分的温度为-75°F到-85°F,压力为400psig到550psig。
10.权利要求1的成套设备,其中所述第三热交换器和所述减压装置经配置以使所述气相的另一部分在等于或低于-130°F的温度下冷凝。
11.一种自含乙烷的气体中分离乙烷的方法,其包括:
在脱甲烷塔上游使原料气冷却并从原料气压力膨胀到高于脱甲烷塔工作压力的压力;
自冷却并膨胀的原料气中分离过热气相且使一部分过热气相在透平膨胀机中膨胀到脱甲烷塔工作压力;和
使另一部分过热气相冷却并膨胀以产生回流,且将所述回流供应到脱甲烷塔中。
12.权利要求11的方法,其中所述使原料气膨胀的步骤在任选与压缩机机械连接的另一透平膨胀机中进行。
13.权利要求11的方法,其中所述使原料气冷却的步骤使用经配置以将再沸热提供给脱甲烷塔的热交换器进行。
14.权利要求11的方法,其还包括将来自脱乙烷塔塔顶冷凝器和残余气体热交换器的热含量提供给塔侧再沸器的步骤。
15.权利要求11的方法,其中所述原料气的压力为至少1500psig。
16.权利要求11的方法,其中所述原料气包含至少0.5%摩尔的CO2和小于3%摩尔的C3+组分。
17.权利要求11的方法,其中所述高于脱甲烷塔工作压力的压力为1000psig到1400psig。
18.权利要求11的方法,其中所述冷却并膨胀的原料气的温度高于-10°F。
19.权利要求11的方法,其中所述在透平膨胀机中膨胀到脱甲烷塔工作压力的部分过热气相的温度为-75°F到-85°F,压力为400psig到550psig。
20.权利要求11的方法,其中将所述过热气相的另一部分冷却使得回流的温度等于或低于-130°F。
CN200780023572XA 2006-06-27 2007-06-26 乙烷回收方法和配置 Expired - Fee Related CN101479549B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US81716906P 2006-06-27 2006-06-27
US60/817,169 2006-06-27
PCT/US2007/014874 WO2008002592A2 (en) 2006-06-27 2007-06-26 Ethane recovery methods and configurations

Publications (2)

Publication Number Publication Date
CN101479549A CN101479549A (zh) 2009-07-08
CN101479549B true CN101479549B (zh) 2011-08-10

Family

ID=38846280

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200780023572XA Expired - Fee Related CN101479549B (zh) 2006-06-27 2007-06-26 乙烷回收方法和配置

Country Status (9)

Country Link
US (2) US9316433B2 (zh)
EP (1) EP2032921A2 (zh)
CN (1) CN101479549B (zh)
AU (1) AU2007265476B2 (zh)
CA (1) CA2662803C (zh)
EA (1) EA013423B1 (zh)
MX (1) MX2008015056A (zh)
NO (1) NO20084735L (zh)
WO (1) WO2008002592A2 (zh)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007265476B2 (en) * 2006-06-27 2010-07-15 Fluor Technologies Corporation Ethane recovery methods and configurations
RU2495343C2 (ru) * 2008-02-08 2013-10-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ и устройство для охлаждения криогенного теплообменника и способ сжижения углеводородного потока
EA021006B1 (ru) 2009-04-20 2015-03-31 Эксонмобил Апстрим Рисерч Компани Способ удаления кислотных газов из потока углеводородного газа
FR2947897B1 (fr) * 2009-07-09 2014-05-09 Technip France Procede de production d'un courant riche en methane et d'un courant riche en hydrocarbures en c2+, et installation associee.
US20120125043A1 (en) 2009-09-09 2012-05-24 Exxonmobile Upstream Research Company Cryogenic system for removing acid gases from a hydrocarbon gas stream
MX338688B (es) 2010-01-22 2016-04-27 Exxonmobil Upstream Res Co Eliminacion de gases acidos de una corriente de gas, con captura y secuestro de co2.
US20120118007A1 (en) * 2010-05-28 2012-05-17 Conocophillips Company Process of heat integrating feed and compressor discharge streams with heavies removal system in a liquefied natural gas facility
JP5892165B2 (ja) 2010-07-30 2016-03-23 エクソンモービル アップストリーム リサーチ カンパニー 並流分離装置を用いて炭化水素ガス流から酸性ガスを除去する極低温システム
RU2459160C2 (ru) * 2010-08-30 2012-08-20 Открытое акционерное общество "Научно-исследовательский и проектный институт по переработке газа" (ОАО "НИПИгазпереработка") Способ выделения этановой фракции
SG190308A1 (en) 2010-10-26 2013-06-28 Kirtikumar Natubhai Patel Process for separating and recovering ngls from hydrocarbon streams
US10451344B2 (en) * 2010-12-23 2019-10-22 Fluor Technologies Corporation Ethane recovery and ethane rejection methods and configurations
AU2011349713B2 (en) 2010-12-23 2015-04-09 Fluor Technologies Corporation Ethane recovery and ethane rejection methods and configurations
FR2970258B1 (fr) * 2011-01-06 2014-02-07 Technip France Procede de production d'une coupe riche en hydrocarbures en c3+ et d'un courant riche en methane et ethane a partir d'un courant d'alimentation riche en hydrocarbures et installation associee.
US10852060B2 (en) 2011-04-08 2020-12-01 Pilot Energy Solutions, Llc Single-unit gas separation process having expanded, post-separation vent stream
US20130019634A1 (en) * 2011-07-18 2013-01-24 Henry Edward Howard Air separation method and apparatus
CA2867287C (en) 2012-03-21 2019-06-11 Exxonmobil Upstream Research Company Separating carbon dioxide and ethane from a mixed stream
KR20150102931A (ko) * 2012-08-30 2015-09-09 플루오르 테크놀로지스 코포레이션 연안 ngl 회수를 위한 구성 및 방법
US9423175B2 (en) 2013-03-14 2016-08-23 Fluor Technologies Corporation Flexible NGL recovery methods and configurations
MX2016004599A (es) * 2013-10-09 2016-12-09 Lummus Technology Inc Adicion por alimentacion dividida para la recuperacion de lpg mediante refrigeracion abierta a iso-presion.
WO2015084495A2 (en) 2013-12-06 2015-06-11 Exxonmobil Upstream Research Company Method and system of maintaining a liquid level in a distillation tower
MY177768A (en) 2013-12-06 2020-09-23 Exxonmobil Upstream Res Co Method and device for separating hydrocarbons and contaminants with a heating mechanism to destabilize and/or prevent adhesion of solids
US9874395B2 (en) 2013-12-06 2018-01-23 Exxonmobil Upstream Research Company Method and system for preventing accumulation of solids in a distillation tower
CA2924695C (en) 2013-12-06 2018-10-02 Exxonmobil Upstream Research Company Method and system for separating a feed stream with a feed stream distribution mechanism
AU2014357663B2 (en) 2013-12-06 2016-12-22 Exxonmobil Upstream Research Company Method and device for separating hydrocarbons and contaminants with a spray assembly
US9562719B2 (en) 2013-12-06 2017-02-07 Exxonmobil Upstream Research Company Method of removing solids by modifying a liquid level in a distillation tower
AU2014357668B2 (en) 2013-12-06 2017-05-25 Exxonmobil Upstream Research Company Method and system of modifying a liquid level during start-up operations
WO2015084497A2 (en) 2013-12-06 2015-06-11 Exxonmobil Upstream Research Company Method and system of dehydrating a feed stream processed in a distillation tower
AU2014357665B2 (en) 2013-12-06 2017-06-22 Exxonmobil Upstream Research Company Method and device for separating a feed stream using radiation detectors
CA2959152C (en) * 2014-09-02 2021-11-16 GE Oil & Gas, Inc. Low pressure ethane liquefaction and purification from a high pressure liquid ethane source
KR102448446B1 (ko) 2014-09-30 2022-09-30 다우 글로벌 테크놀로지스 엘엘씨 프로필렌 플랜트로부터 에틸렌 및 프로필렌 수율을 증가시키기 위한 방법
SG11201705162SA (en) 2015-02-27 2017-09-28 Exxonmobil Upstream Res Co Reducing refrigeration and dehydration load for a feed stream entering a cryogenic distillation process
WO2017048346A1 (en) 2015-09-18 2017-03-23 Exxonmobil Upstream Research Company Heating component to reduce solidification in a cryogenic distillation system
MY187623A (en) 2015-09-24 2021-10-04 Exxonmobil Upstream Res Co Treatment plant for hydrocarbon gas having variable contaminant levels
US10006701B2 (en) 2016-01-05 2018-06-26 Fluor Technologies Corporation Ethane recovery or ethane rejection operation
US10323495B2 (en) 2016-03-30 2019-06-18 Exxonmobil Upstream Research Company Self-sourced reservoir fluid for enhanced oil recovery
US10330382B2 (en) 2016-05-18 2019-06-25 Fluor Technologies Corporation Systems and methods for LNG production with propane and ethane recovery
US11402155B2 (en) 2016-09-06 2022-08-02 Lummus Technology Inc. Pretreatment of natural gas prior to liquefaction
US11725879B2 (en) 2016-09-09 2023-08-15 Fluor Technologies Corporation Methods and configuration for retrofitting NGL plant for high ethane recovery
AU2018328192B2 (en) * 2017-09-06 2023-08-24 Linde Engineering North America, Inc. Methods for providing refrigeration in natural gas liquids recovery plants
CN107560319B (zh) * 2017-10-12 2019-08-23 中国石油工程建设有限公司 一种采用阶式制冷的天然气乙烷回收装置及方法
WO2019078892A1 (en) 2017-10-20 2019-04-25 Fluor Technologies Corporation IMPLEMENTATION BY PHASES OF RECOVERY PLANTS OF NATURAL GAS LIQUIDS
JP7051372B2 (ja) 2017-11-01 2022-04-11 東洋エンジニアリング株式会社 炭化水素の分離方法及び装置
CN108759305B (zh) * 2018-06-11 2019-08-23 西南石油大学 一种多回流的天然气乙烷回收方法
WO2020005553A1 (en) 2018-06-29 2020-01-02 Exxonmobil Upstream Research Company (Emhc-N1.4A.607) Mixing and heat integration of melt tray liquids in a cryogenic distillation tower
WO2020005552A1 (en) 2018-06-29 2020-01-02 Exxonmobil Upstream Research Company Hybrid tray for introducing a low co2 feed stream into a distillation tower
US11619140B1 (en) * 2022-04-08 2023-04-04 Sapphire Technologies, Inc. Producing power with turboexpander generators based on specified output conditions

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203741A (en) * 1978-06-14 1980-05-20 Phillips Petroleum Company Separate feed entry to separator-contactor in gas separation
CN88100540A (zh) * 1987-01-30 1988-09-07 兰德尔公司 从烃气中回收丙烷和重烃的方法
WO1998059205A2 (en) * 1997-06-20 1998-12-30 Exxon Production Research Company Improved process for liquefaction of natural gas
WO2002014242A1 (en) * 2000-08-15 2002-02-21 Elcor Corporation Hydrocarbon gas processing
CN1426524A (zh) * 2000-04-25 2003-06-25 国际壳牌研究有限公司 液化天然气产品流的生产的控制
CN1479851A (zh) * 2000-12-13 2004-03-03 泰克尼普法国公司 通过蒸馏对含甲烷的气体混合物进行分离的工艺和设备、以及分离所得的气体
CN1612998A (zh) * 2001-11-09 2005-05-04 弗劳尔公司 提高ngl回收率的装置和方法
US20050255012A1 (en) * 2002-08-15 2005-11-17 John Mak Low pressure ngl plant cofigurations
WO2006036441A1 (en) * 2004-09-22 2006-04-06 Fluor Technologies Corporation Configurations and methods for lpg and power cogeneration

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1021254A (en) * 1974-10-22 1977-11-22 Ortloff Corporation (The) Natural gas processing
US4155729A (en) * 1977-10-20 1979-05-22 Phillips Petroleum Company Liquid flash between expanders in gas separation
US4322225A (en) * 1980-11-04 1982-03-30 Phillips Petroleum Company Natural gas processing
US4657571A (en) * 1984-06-29 1987-04-14 Snamprogetti S.P.A. Process for the recovery of heavy constituents from hydrocarbon gaseous mixtures
US4854955A (en) * 1988-05-17 1989-08-08 Elcor Corporation Hydrocarbon gas processing
US4895584A (en) * 1989-01-12 1990-01-23 Pro-Quip Corporation Process for C2 recovery
US5568737A (en) * 1994-11-10 1996-10-29 Elcor Corporation Hydrocarbon gas processing
US5953935A (en) * 1997-11-04 1999-09-21 Mcdermott Engineers & Constructors (Canada) Ltd. Ethane recovery process
US6237365B1 (en) * 1998-01-20 2001-05-29 Transcanada Energy Ltd. Apparatus for and method of separating a hydrocarbon gas into two fractions and a method of retrofitting an existing cryogenic apparatus
US6182469B1 (en) * 1998-12-01 2001-02-06 Elcor Corporation Hydrocarbon gas processing
US6116050A (en) * 1998-12-04 2000-09-12 Ipsi Llc Propane recovery methods
US6516631B1 (en) * 2001-08-10 2003-02-11 Mark A. Trebble Hydrocarbon gas processing
US6758060B2 (en) * 2002-02-15 2004-07-06 Chart Inc. Separating nitrogen from methane in the production of LNG
DE60220954T2 (de) 2002-05-08 2008-02-28 Fluor Corp., Aliso Viejo Konfiguration und verfahren zur gewinnung von flüssigem erdgas unter verwendung eines unterkühlten rückflussverfahrens
US7051553B2 (en) * 2002-05-20 2006-05-30 Floor Technologies Corporation Twin reflux process and configurations for improved natural gas liquids recovery
US7107788B2 (en) * 2003-03-07 2006-09-19 Abb Lummus Global, Randall Gas Technologies Residue recycle-high ethane recovery process
EP1824583A4 (en) * 2004-12-16 2011-07-27 Fluor Tech Corp DESIGNS AND METHODS FOR LNG REGASIFICATION AND BTU CONTROL
US20100011810A1 (en) 2005-07-07 2010-01-21 Fluor Technologies Corporation NGL Recovery Methods and Configurations
AU2007265476B2 (en) * 2006-06-27 2010-07-15 Fluor Technologies Corporation Ethane recovery methods and configurations

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203741A (en) * 1978-06-14 1980-05-20 Phillips Petroleum Company Separate feed entry to separator-contactor in gas separation
CN88100540A (zh) * 1987-01-30 1988-09-07 兰德尔公司 从烃气中回收丙烷和重烃的方法
WO1998059205A2 (en) * 1997-06-20 1998-12-30 Exxon Production Research Company Improved process for liquefaction of natural gas
CN1426524A (zh) * 2000-04-25 2003-06-25 国际壳牌研究有限公司 液化天然气产品流的生产的控制
WO2002014242A1 (en) * 2000-08-15 2002-02-21 Elcor Corporation Hydrocarbon gas processing
CN1479851A (zh) * 2000-12-13 2004-03-03 泰克尼普法国公司 通过蒸馏对含甲烷的气体混合物进行分离的工艺和设备、以及分离所得的气体
CN1612998A (zh) * 2001-11-09 2005-05-04 弗劳尔公司 提高ngl回收率的装置和方法
US20050255012A1 (en) * 2002-08-15 2005-11-17 John Mak Low pressure ngl plant cofigurations
WO2006036441A1 (en) * 2004-09-22 2006-04-06 Fluor Technologies Corporation Configurations and methods for lpg and power cogeneration

Also Published As

Publication number Publication date
MX2008015056A (es) 2008-12-10
WO2008002592A2 (en) 2008-01-03
WO2008002592A3 (en) 2008-03-20
CA2662803C (en) 2012-09-18
CN101479549A (zh) 2009-07-08
EP2032921A2 (en) 2009-03-11
US9316433B2 (en) 2016-04-19
US20160187058A1 (en) 2016-06-30
US20100011809A1 (en) 2010-01-21
WO2008002592B1 (en) 2008-05-02
AU2007265476B2 (en) 2010-07-15
NO20084735L (no) 2009-01-19
EA013423B1 (ru) 2010-04-30
AU2007265476A1 (en) 2008-01-03
EA200970061A1 (ru) 2009-04-28
US9568242B2 (en) 2017-02-14
CA2662803A1 (en) 2008-01-03

Similar Documents

Publication Publication Date Title
CN101479549B (zh) 乙烷回收方法和配置
JP4599362B2 (ja) 自在nglプロセスおよび方法
US10227273B2 (en) Hydrocarbon gas processing
CA2773211C (en) Hydrocarbon gas processing
CN100498170C (zh) 低压液化天然气设备构造
MX2007015603A (es) Metodos y configuraciones de recuperacion de liquidos del gas natural.
MXPA03009582A (es) Produccion de gnl en plantas criogenicas de procesamiento de gas natural.
RU2002128727A (ru) Система и способ для сжижения природного газа при высоком давлении
WO2012087740A1 (en) Ethane recovery and ethane rejection methods and configurations
CA2912171C (en) Methods for separating hydrocarbon gases
WO2010144186A1 (en) Hydrocarbon gas processing
KR102508738B1 (ko) 탄화수소 가스 처리
WO2014153141A1 (en) Systems and methods for enhanced recovery of ngl hydrocarbons
CA2654998C (en) Propane recovery methods and configurations
CA3159303C (en) Gas processing methodology utilizing reflux and additionally synthesized stream optimization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110810

Termination date: 20170626

CF01 Termination of patent right due to non-payment of annual fee