CN101454931A - 用于燃料电池的含有金属或合金和铂颗粒的纳米金属颗粒的组合物 - Google Patents

用于燃料电池的含有金属或合金和铂颗粒的纳米金属颗粒的组合物 Download PDF

Info

Publication number
CN101454931A
CN101454931A CNA2007800173846A CN200780017384A CN101454931A CN 101454931 A CN101454931 A CN 101454931A CN A2007800173846 A CNA2007800173846 A CN A2007800173846A CN 200780017384 A CN200780017384 A CN 200780017384A CN 101454931 A CN101454931 A CN 101454931A
Authority
CN
China
Prior art keywords
metal
composition
electrode
platinum
china ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007800173846A
Other languages
English (en)
Inventor
金伯利·麦格拉思
道格拉斯·卡彭特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QuantumSphere Inc
Original Assignee
QuantumSphere Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QuantumSphere Inc filed Critical QuantumSphere Inc
Publication of CN101454931A publication Critical patent/CN101454931A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8668Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

金属或合金的纳米颗粒或具有氧化物壳的金属和合金芯的纳米颗粒与铂颗粒混合的组合物用作电极成分。更具体而言,将这样的组合物在直接氧化燃料电池中用作氧还原以及烃或氢燃料氧化的电极墨,所述直接氧化燃料电池诸如,但不限于,直接甲醇燃料电池。这些电极包括含有铂的催化剂墨,所述纳米颗粒,和可以直接应用于导电载体的导电离子交联聚合物,所述载体诸如编织的复写纸或碳布。可以将该电极直接粘附到离子交换膜上。所述纳米颗粒包含纳米大小的过渡金属诸如钴,铁,镍,钌,铬,钯,银,金,和铜。在本发明中,这些催化剂粉末基本上代替铂作为燃料电池电氧化和电还原反应中的催化剂。

Description

用于燃料电池的含有金属或合金和铂颗粒的纳米金属颗粒的组合物
技术领域
[0001]本发明涉及包括金属和/或合金的纳米颗粒或包括由氧化物壳围绕的金属或合金芯的纳米颗粒与铂颗粒混合的组合物。更具体而言,所述组合物可用于制造阳极和阴极所用的墨,其可以在燃料电池中使用。
背景技术
[0002]对于多种燃料电池的气体扩散电极中的烃或氢的氧化和氧的还原,铂是高度催化的。然而,该稀有金属是快速耗尽的不可再生资源并且因此是昂贵的。批量铂黑的当前价格是$75.00/克。铂沉积电极的有关成本,一般地装载约是2-8mg/cm2,被广泛地认为是普遍工业化的障碍。随着消费者对于替代能源的增加的需要,必须发现有效的催化剂,特别是在实际操作温度(室温至60℃),以减轻铂的需求和费用。基于此,正在进行相当大的努力以发现备选的催化剂,其可以匹配或超过铂的电性能。合成金属纳米颗粒的方法已经在前描述在美国专利申请号10/840,409中,以及它们在电池的空气阴极中的用途描述在美国专利申请号10/983,993中,两个申请都具有与本申请相同的专利受让人。这些申请的内容通过参考结合于此。还通过碳上的化学还原制备用于燃料电池电极的铂颗粒。
发明内容
[0003]纳米颗粒催化剂可用于补充用于本发明燃料电池的电极实施方案的铂催化剂。实施方案包括钴,铁,镍,钌,铬,钯,银,金,和铜以及它们的合金的纳米颗粒催化剂,其对于直接氧化燃料电池中的氧的还原或烃燃料的氧化与铂是至少几乎相同活性的。这里所描述的多种实施方案论述了对于直接甲醇燃料电池应用的金属纳米颗粒催化剂,但是同样适用于其它的应用,例如不排除(i)质子交换膜燃料电池(PEMFC’s),和甲酸燃料电池(FAFC’s)。
[0004]第一个实施方案包括纳米颗粒,其可以包含单一金属或两种或多种过渡金属的合金,任意具有与铂颗粒混合或物理共混的围绕所述金属或合金芯的氧化物壳。优选的,这些铂颗粒在尺寸上是在一微米以下,其是精细划分分类的。优选地,所述铂颗粒直径应该低于100nm。
[0005]优选地,纳米颗粒具有小于50nm并且优选在30nm以下的直径。理想地,这些颗粒的直径应该小于15nm以使与铂的表面相互作用最大化。
[0006]在另一个实施方案中,过渡金属钴,铁,镍,钌,铬,钯,银,金和铜或其合金构成所述纳米颗粒或在存在氧化物壳的情况下构成芯。虽然不受限于理论,但是这些元素接收来自铂的电子,其在观察到增强的催化方面是优选的。合金纳米颗粒优选包含两种或多种过渡金属,或具有两种,三种或四种过渡金属。可以以多种比例制备在前指定的过渡金属以产生性能增强。其中使用电极的应用将规定所述合金组成。在一个实施方案中,合金的一种金属可以在所述合金的5-95重量%之间的范围。在一个实施方案中,合金的一种金属大于10重量%,或大于25重量%。在一个实施方案中,一种金属是所述合金的90重量%。
[0007]在所述组合物中,纳米颗粒是组合的纳米颗粒和铂颗粒的5重量%或以上。在另一个实施方案中,纳米颗粒是纳米颗粒和铂颗粒的25重量%或以上,或50重量%或以上。
[0008]优选地,按常规组合物的总金属重量计,将至少50%的铂用金属纳米颗粒或金属合金纳米颗粒替换。所述纳米颗粒还可以是75重量%或以上或90重量%或以上。
[0009]在另一个实施方案中,将铂/纳米颗粒混合物与离子交联聚合物组合,在许多情况下,所述离子交联聚合物是质子导电的离子交联聚合物,以促进离子的电导率并且将所述电极结合到导电膜。该离子交联聚合物可以与铂-纳米金属混合物组合并且可以是多至总铂和纳米金属重量的40重量%。铂,纳米金属颗粒,和离子交联聚合物的组合形成墨。优选地,所述离子交联聚合物是全氟化的树脂,其兼具疏水性和亲水性。更优选所述全氟化树脂是导电聚合物。
[0010]所述墨组合物可以与电子传导载体(electron-conducting support)使用以形成电极。在一个实施方案中,将该墨涂覆到导电的碳基底。所述电子传导的载体也可以是复写纸,碳布,或碳粉末。所述墨组合物可以通过喷涂,丝网印刷或喷雾涂覆到所述电子传导的载体。随后可以将所述电极施加到离子交换膜并且在直接氧化燃料电池中使用。该燃料电池能够将化学能直接转化成电能。
附图简述
[0011]图1是钴金属纳米颗粒的透射电子显微照片。
[0012]图2是钴-镍合金纳米颗粒的透射电子显微照片。
[0013]图3详述了直接氧化燃料电池阳极或阴极电极的横截面。
[0014]图4显示直接甲醇燃料电池的图。
[0015]图5显示阴极电极性能的伏安图。
[0016]图6显示阴极电极性能的伏安图。
实施本发明的方式
[0017]通过增加反应表面积和增强电催化,墨组合物中的金属,合金和/或具有氧化物壳的纳米颗粒的包含用于改善氧化和还原反应的效率。观察到的电催化增强可以由分子轨道理论解释。因为纳米颗粒与铂良好接触,所以它们接收来自铂的电子。随后,铂变成缺电子的,并且将与所述氧化剂和还原剂更快地反应,从而增加反应的效率。
[0018]由于增加的表面积,当纳米颗粒与铂,水,和离子导电聚合物共混以形成墨时,铂的活性增加,原因在于铂和纳米颗粒的增强的接触。该接触提供两个主要功能,a)借助于通过纳米颗粒在Pt上增加d-轨道空位而增强铂与氧化剂或还原剂的电子相互作用,和b)在整个墨中有效分散Pt以便它具有改善的与氧化剂和/或还原剂的接触。另外,金属合金纳米颗粒也提供这些利益。金属合金纳米颗粒是具有以这样一种方式组合的单独金属成分的化合物,以便所述组合在每个单独颗粒中给予所述化合物独特的化学结构和性质。
[0019]在该催化墨配方中,所述铂颗粒应当优选是足够小的以便它们可以与所述纳米颗粒具有强的表面相互作用。优选地,所述铂应该精细划分。当粒度在直径上低于1微米时,优选在低于500nm,诸如1-500nm时,铂被认为是精细划分的。虽然精细划分的铂颗粒是足够的,但是优选所述铂颗粒具有低于100nm的直径以最大化所述铂-纳米颗粒的表面接触。优选铂颗粒的直径是1-100nm,更优选是5-50nm,最优选是5-25nm。
[0020]如这里所用的纳米颗粒指的是金属纳米颗粒、金属合金纳米颗粒、或具有氧化物壳的金属或合金的纳米颗粒或其混合物。另外,单独的纳米颗粒应当优选具有50nm以下,并且优选15nm以下诸如1-15nm的直径。在初始研究中,发现微米水平的颗粒不显示所述纳米颗粒显示的催化增强效果。在墨中使用微米大小的金属和铂的研究中,由于较小的表面积而观察到性能的减少。另外微米颗粒从所述电极脱落,并且最终引起电极失效。因而,高表面积纳米颗粒对于与铂的适当的电子相互作用和分散是必需的。
[0021]另外,优选所述金属或合金纳米颗粒具有氧化物壳或外表面,壳厚度为1-25nm,最优选在1-10nm的范围内。这些颗粒可以在真空室中通过蒸汽冷凝而产生,并且氧化物厚度可以通过将空气或氧引入到所述室中随着形成所述颗粒而控制。
[0022]可以在所述墨中使用的纳米颗粒可以包含多种d-阻滞过渡金属,包括钴,铁,镍,钌,铬,钯,银,金,和铜或其混合物。已知铂将它的电子供给这些元素,从而使铂对于所述燃料是更具反应性的。
[0023]另外,所述纳米颗粒可以包含两种或多种单独金属,其形成金属合金纳米颗粒。所述合金的单独金属可以以5-95%范围内的任何比例组合。在用于所述墨的每个特定合金中使用的金属的比例主要取决于催化应用。这里提供的金属合金纳米颗粒可以是下列过渡金属的两种或多种:钴、铁、镍、钌、铬、钯、银、金、和铜。例如,在室温下操作的燃料电池的电极中使用的镍/钴纳米合金在所述合金中需要更高的钴含量。对于室温直接甲醇燃料电池,50:50,60:40,70:30,和80:20的重量%比例的钴和镍纳米金属合金显示电性能的最大增加,因为它有效接收来自铂的电子。然而,其它比例也与铂一起有效地起作用。对于阴极电极,50:50,60:40,70:30,和80:20重量%的钴和银或钴和金的合金提供优秀的电性能,因为银或金成分提供增加的甲醇耐性,而钴成分改善氧还原动力学。其它比例也与铂一起有效地起作用。当钯是与钴,镍,铁,或银以50:50,60:40,70:30,和80:20重量%比例的铸成合金时,相比于用于氧还原的纯铂,观察到催化增强。在更高温度燃料电池诸如氢PEM燃料电池,20∶80重量%比例的钴对镍是优选的,其由于增加的镍含量给予更大的稳定性。然而,其它比例也与铂一起有效地起作用。作为阳极电极,33:33:34重量百分比的铬:钌:铂起作用以增强甲醇氧化的动力学。另外,以60重量%比率和40重量%比例使用的50:50的铬-钌合金也显示高于传统阳极电极的性能。
[0024]连同铂和纳米颗粒,墨或催化剂墨含有离子交联聚合物,其增强所述电极和所述燃料电池膜之间的物理接触,并且还促进电极-膜界面的离子电导率。最普遍类型的燃料电池膜是质子交换膜,在所述情况下,离子交联聚合物是质子导电的。
[0025]优选地,所述墨含有足够的离子交联聚合物,以便增强对于所述膜的粘附和离子电导率,同样地,优选所述离子交联聚合物不超过总墨的40重量%。优选地,所述离子交联聚合物以总金属装载的5-40重量%存在,更优选以10-30重量%并且最优选以15-25重量%存在。"总金属装载"是所述墨中金属的总量。在高浓度的离子交联聚合物,大的电阻建立在所述电极中,并且阻滞电子有效移动经过所述燃料电池的外部电路。
[0026]铂对于纳米颗粒的比例将主要地取决于燃料电池操作方式。催化剂掺合物对于氧化剂和还原剂浓度和温度是非常敏感的。由于高成本的铂,高纳米颗粒分数是理想的。最小值为总金属含量的5重量%纳米颗粒(即,没有铂)对于观察增加的催化活性是优选的,然而可以用所述纳米颗粒替换常规组合物的超过90重量%的铂。最优选地,50-75%的铂颗粒是由金属和/或合金纳米颗粒替代的。
[0027]在直接氧化燃料电池,诸如甲醇燃料电池中,离子交联聚合物传导质子。用于所述墨的典型离子交联聚合物是Nafion
Figure A200780017384D0009145056QIETU
,一种全氟化的离子交换聚合物。所述聚合物树脂含有亲水域和疏水域两者,因此存在水排斥和水接收性质这两者的平衡。虽然水提供改善的质子传导,但是过量的水将催化剂位点与氧化剂和还原剂阻断,从而降低燃料电池效率。
[0028]所述墨组合物是通过将干铂和干纳米颗粒以任何比例混合而制备的,诸如以上所规定的那些。优选地,将数滴水加入到所述混合物以使着火的风险最小化。最终,添加规定量的离子交联聚合物,并且将得到的墨共混,例如,在涡流混合器上并声波振荡,例如,达数分钟。通过将所述墨沉积在导电载体上而制备所述电极。导电载体从膜-电极界面将电子传导到燃料电池外部电路。
[0029]通过直接喷涂,喷雾,或丝网印刷,通常将所述墨涂覆到电子导电载体。选择的方法对于燃料电池中的电极性能不是关键的,然而所述方法应当优选保证墨在所述电极的整个表面上的均匀涂敷。
[0030]用于电子传导载体的理想材料是碳,然而其它导电材料也可以工作。编织的复写纸或织物用于支持所述墨,传导电子,并且借助于它的多孔属性容许氧化剂和还原剂的流入。
[0031]在直接氧化燃料电池中,可以将所述电极热压到离子导电膜的任一侧。在直接甲醇燃料电池的情况下,可以将所述电极施加到质子导电聚合物上,例如通过热压,并且随后与有效传导电子的双极板接触放置。
[0032]在以下如图1-6中的数据所表示的实验中,使用的纳米颗粒具有如所示的金属芯并且具有氧化物壳。将不涉及氧化物壳的金属名称用于简化。
[0033]图1显示可以在所述墨中使用的纳米大小的钴颗粒的透射电子显微照片图像。这些颗粒的平均尺寸是8nm,并且它们的表面可以与精细划分的铂进行优良的接触。铂和金属纳米颗粒之间的接触水平是通过从电极表面上的氧化剂/还原剂反应观察到的催化增强的增加而直接定量的。
[0034]图2显示可以在所述墨中使用的纳米大小的镍-钴合金纳米颗粒的透射电子显微照片图像。这些颗粒的平均尺寸是12nm,并且它们的表面可以与精细划分的铂进行优良的接触。铂和纳米颗粒之间的接触水平是通过从电极表面上的氧化剂/还原剂反应观察到的催化增强的增加而直接定量的。
[0035]图3描述燃料电池电极(1)的横截面。催化剂墨(3)和电子传导载体(2)组成碳纤维(4)。在墨层中,铂(5)和纳米颗粒(6)是相互密切接触,并且支撑在离子交联聚合物(7)内部。
[0036]图4描述直接甲醇燃料电池(8)。将水性甲醇装到阳极口(9),在那里它经过口(10)循环或保持在电池内部。甲醇在阳极电极(11)(包括墨(12)和电子传导载体(13))反应以产生二氧化碳,质子,和电子。质子经过质子交换膜(14)到达阴极隔室,并且电子流过外部电路(15)并进入阴极。将空气进料到阴极口(16),在那里它与从阴极电极(17)(包括墨(18)和电子传导载体(13))上的阳极产生的电子和质子反应以产生水,将其在另一个阴极口(19)除去。
[0037]作为一个实施例,图5数据显示燃料电池阴极反应的线性扫描伏安图,其描述电流密度j如何随电压V降低而增加。每个墨样品中的总金属装载是8mg/cm2。随着电压降低增加的电流的数量越大,催化剂墨的性能越好。曲线A表示含有精细划分的铂并且不含纳米颗粒的燃料电池阴极催化剂墨。曲线B-D显示通过除去一些铂而用8nm直径的钴金属纳米颗粒替代它而增加的性能。如通过用钴金属纳米颗粒替代总金属重量的至少50%的铂所示,电流数量增加比仅有铂的电极墨更大。虽然取代总金属重量的30%的铂显示最大的电流数量增加,但是更大重量分数的钴金属纳米颗粒也工作良好。在曲线B-D中清楚的是,通过将这些纳米颗粒添加到催化剂墨,氧还原动力学(显示在区域1中)和质量输送(显示在区域2中)都改善。在其它类型的燃料电池电极中,大于50%铂可以用纳米颗粒替换,并且优选按总金属装载重量计多至95%的铂可以用纳米颗粒替换。
[0038]图6也显示阴极燃料电池反应的线性扫描伏安图,显示利用金属合金纳米颗粒电极的性能增加。对于每个样品,总金属装载是8mg/cm2。它图解60%铂40%镍-钴金属合金的改善性能,其具有平均镍-钴金属合金粒度为15nm,电极(曲线B)对精细划分的铂电极(曲线A)。类似于利用金属纳米颗粒的上述实施例,对于金属合金纳米颗粒样品,在动力学活化(区域1)和质量传递方式(区域2)方面,电流数量都随着递增的电压增加得更大。另外,对于含有60重量%铂40重量%的800nm平均直径钴颗粒的电极,观察到性能抑制作用(曲线C)。该数据说明利用纳米颗粒的重要性,因为在微米大小或以上的颗粒显著降低电极性能,原因在于精细划分的铂的不相容的表面积,其在100nm或以下,而微米钴在800-1500nm的尺寸范围内。
[0039]当与铂混合并且制成电极墨时的许多其它纳米颗粒也显示该性能增强。例如,当总金属装载的10至50重量%的精细划分的50:50原子比例的铂:钌用15nm平均直径的铬金属纳米颗粒替换并且在阳极电极墨中使用时,对于甲醇氧化观察到催化增强。优选的,混合物将含有50重量%的铬和50重量%的铂:钌,并且更优选所述混合物将是至少70重量%的铬和30重量%的铂:钌。最优选的是85重量%铬15重量%铂钌混合物。通过添加10nm平均粒度的钯纳米颗粒,还可以在阳极减少总铂:钌装载。优选地,所述混合物将含有50重量%铂:钌和50重量%钯,并且更优选混合物将是至少70重量%钯和30重量%的铂:钌。最优选的是15重量%铂:钌85重量%钯混合物。作为另一个实施例,通过用平均直径为15nm的80:20的镍-铁合金纳米颗粒替换总金属装载的50重量%的铂而增强甲醇氧化速率,优选地,所述混合物将是至少70%的镍-铁合金纳米颗粒和30%铂。最优选的是15重量%铂85重量%铬混合物。在这两个情况下,相比于精细划分的铂:钌的反应,其它纳米颗粒和其它比例的金属合金纳米颗粒作用充分。
[0040]对于本领域技术人员将是显然的是,本发明不局限于上述说明性实施方案的细节,并且在不背离其精神或基本性质的情况下,本发明可以以其它具体形式实施。本发明实施方案因此在全部方面被认为是说明性的而不是限制性的,本发明的范围是由后附的权利要求表示的,而不是由上述描述表示的,并且因此在所述权利要求的等价物的含义和范围内出现的全部改变意欲包括在其中。

Claims (35)

1.适于在至少一个电化学或催化应用中使用的组合物,所述组合物包括包含铂颗粒和金属纳米颗粒的混合物。
2.包括权利要求1的组合物的墨。
3.权利要求2的墨,所述墨还包括能够在整个墨组合物中离子成网的离子导电材料,以便产生基本上结构一致质量(coherent mass)而不显著影响大量的所述纳米颗粒的反应性。
4.权利要求1的组合物,其中至少一些纳米颗粒包含金属,当与所述铂颗粒混合时,所述金属有利地改变所述铂的特性。
5.权利要求4的组合物,其中所述金属选自族3-16中的金属的一种或多种,镧系元素,其组合,和/或其合金。
6.权利要求1的组合物,其中大部分的所述纳米颗粒小于约500nm。
7.权利要求1的组合物,所述组合物还包括导电的,多孔的,与所述纳米颗粒和铂密切接触的基底颗粒。
8.包括权利要求7的墨的催化剂,其中所述催化剂还包括涂覆到导电的基材上的墨。
9.权利要求8的催化剂,其中所述导电的基材包括复写纸或纤维。
10.权利要求3的墨,其中所述离子导电材料基本上由聚合物组成。
11.权利要求10的组合物,其中所述聚合物包括质子导电的,全氟化的树脂。
12.一种包括涂覆到导电材料的墨的电极,所述墨包括适于在至少一个电化学或催化应用中使用的组合物并且包括铂颗粒和金属纳米颗粒的混合物。
13.权利要求12的电极,其中至少一些纳米颗粒包含金属,当与所述铂颗粒混合时,所述金属有利地改变所述铂的特性。
14.权利要求12的电极,其中所述金属选自族3-16中的金属的一种或多种,镧系元素,其组合,和/或其合金。
15.权利要求1的组合物,其中大部分的所述纳米颗粒小于约500nm。
16.权利要求12的电极,其中所述电极是气体扩散电极。
17.权利要求12的电极,其中所述电极是液体扩散电极。
18.权利要求12的电极,所述电极还包括配置在其两个面上的离子交换膜,其中配置所述膜以促进由阳极燃料的电化学反应产生的离子的运输。
19.一种包括权利要求12的电极的燃料电池,其中将所述燃料电池配置成消耗燃料由此可以产生电。
20.一种适于在电化学应用中使用的墨,所述墨包括通过蒸汽冷凝方法制备的金属纳米颗粒和离子导电材料。
21.权利要求20的墨,所述墨还包括与所述金属纳米颗粒混合的铂颗粒。
22.权利要求21的墨,其中至少一些纳米颗粒包含金属,当与所述铂颗粒混合时,所述金属有利地改变所述铂的特性。
23.权利要求22的墨,其中所述金属选自族3-16中的金属的一种或多种,镧系元素,其组合,和/或其合金。
24.权利要求20的组合物,其中大部分的所述纳米颗粒小于约500nm。
25.权利要求20的组合物,所述组合物还包括导电的,多孔的,与所述纳米颗粒和铂密切接触的基底颗粒。
26.包括权利要求20的墨的催化剂,其中所述催化剂还包括涂覆到导电的基材上的墨。
27.权利要求26的催化剂,其中所述导电的基材包括复写纸或纤维。
28.权利要求20的墨,其中所述离子导电材料基本上由能够在整个墨组合物中离子成网的聚合物组成,以便产生基本上结构粘附的质量而不显著影响大量的所述纳米颗粒的反应性。
29.权利要求28的墨,其中所述聚合材料包括质子导电的,全氟化的树脂。
30.权利要求20的组合物,其中至少大部分的所述金属纳米颗粒包括直径小于约100纳米的纳米颗粒。
31.
32.权利要求20的组合物,其中所述金属纳米颗粒包含选自组3-16的金属,镧系元素,其组合,和/或其合金。
33.一种包括权利要求20的组合物的电极。
34.权利要求33的电极,所述电极还包括配置在其两个面上的离子交换膜,其中配置所述膜以促进由阳极燃料的电化学反应产生的离子的运输。
35.一种包括权利要求34的电极的燃料电池,其中将所述燃料电池配置成消耗燃料由此可以产生电。
CNA2007800173846A 2006-03-31 2007-03-30 用于燃料电池的含有金属或合金和铂颗粒的纳米金属颗粒的组合物 Pending CN101454931A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/394,456 2006-03-31
US11/394,456 US20070227300A1 (en) 2006-03-31 2006-03-31 Compositions of nanometal particles containing a metal or alloy and platinum particles for use in fuel cells

Publications (1)

Publication Number Publication Date
CN101454931A true CN101454931A (zh) 2009-06-10

Family

ID=38556926

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007800173846A Pending CN101454931A (zh) 2006-03-31 2007-03-30 用于燃料电池的含有金属或合金和铂颗粒的纳米金属颗粒的组合物

Country Status (7)

Country Link
US (2) US20070227300A1 (zh)
EP (1) EP2008328A2 (zh)
JP (1) JP2009532830A (zh)
KR (1) KR20090026254A (zh)
CN (1) CN101454931A (zh)
CA (1) CA2647174A1 (zh)
WO (1) WO2008018926A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148068A (zh) * 2010-02-04 2011-08-10 罗伯特.博世有限公司 导电材料
CN104998658A (zh) * 2015-07-20 2015-10-28 昆明贵研催化剂有限责任公司 PtNi(Ⅲ)纳米单晶八面体质子交换膜燃料电池氧还原催化剂的制备方法
CN110707330A (zh) * 2018-07-09 2020-01-17 丰田自动车工程及制造北美公司 用于氧还原催化的由离子液体和八面体Pt-Ni-Cu合金纳米颗粒制成的复合物

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7955755B2 (en) 2006-03-31 2011-06-07 Quantumsphere, Inc. Compositions of nanometal particles containing a metal or alloy and platinum particles
JP5181528B2 (ja) * 2007-05-18 2013-04-10 トヨタ自動車株式会社 アルカリ型燃料電池用電極触媒の製造方法、及び、アルカリ型燃料電池の製造方法。
US20090092887A1 (en) * 2007-10-05 2009-04-09 Quantumsphere, Inc. Nanoparticle coated electrode and method of manufacture
US20090261305A1 (en) * 2008-04-21 2009-10-22 Quantumsphere, Inc. Composition of and method of using nanoscale materials in hydrogen storage applications
US8475968B2 (en) * 2008-11-12 2013-07-02 Ramot At Tel-Aviv University Ltd. Direct liquid fuel cell having hydrazine or derivatives thereof as fuel
US20100133097A1 (en) * 2008-12-01 2010-06-03 Hydrogen Technology Applications, Inc. Hydrogen rich gas generator
US20100156353A1 (en) * 2008-12-18 2010-06-24 Quantumsphere, Inc. Lithium nanoparticle compositions for use in electrochemical applications
US20100184588A1 (en) * 2009-01-16 2010-07-22 Quantumsphere, Inc. Methods of making catalytic materials by dispersion of nanoparticles onto support structures
US20100311571A1 (en) * 2009-01-16 2010-12-09 Quantumsphere, Inc. Methods of making catalytic materials by dispersion of nanoparticles onto support structures
US20120015211A1 (en) * 2009-03-16 2012-01-19 Zhiyong Gu Methods for the fabrication of nanostructures
EP2454772B1 (en) 2009-07-17 2013-12-25 Danmarks Tekniske Universitet Platinum and palladium alloys suitable as fuel cell electrodes
US8080495B2 (en) * 2010-04-01 2011-12-20 Cabot Corporation Diesel oxidation catalysts
JP5672752B2 (ja) * 2010-04-07 2015-02-18 トヨタ自動車株式会社 カーボン担持コアシェル型触媒微粒子の製造方法、当該製造方法により得られるコアシェル型触媒微粒子を用いた触媒インクの製造方法
US9186653B2 (en) * 2010-06-17 2015-11-17 Northeastern University Highly stable platinum alloy catalyst for methanol electrooxidation
GB201010173D0 (en) * 2010-06-17 2010-07-21 Cmr Fuel Cells Uk Ltd Improvements in or relating to catalysts for fuel cells
CN101927161B (zh) * 2010-09-15 2012-07-11 天津商业大学 甲醇电氧化催化剂—网络状纳米金准晶的制备方法
CN102443730B (zh) * 2010-10-13 2014-01-08 陈瑞凯 储氢合金
CN102463352B (zh) * 2010-11-11 2013-08-21 西北师范大学 一种合成双金属Pd-Au核-壳六面体的方法
CN102324506A (zh) * 2011-07-27 2012-01-18 北京工业大学 一种碳载纳米CoFe负极材料及合成方法
KR101285357B1 (ko) * 2011-08-16 2013-07-11 주식회사 씨드 극초고분자량 고분자 막을 사용한 전지나 커패시터용 광 경화 잉크젯 잉크의 제조 방법
US8759247B2 (en) 2011-12-27 2014-06-24 King Fahd University Of Petroleum And Minerals Methanol electro-oxidation catalyst and method of making the same
US8778829B2 (en) 2012-01-03 2014-07-15 King Fahd University Of Petroleum And Minerals Methanol electro-oxidation catalyst and method of making the same
KR101307784B1 (ko) * 2012-05-24 2013-10-04 한국과학기술연구원 전기 화학 장치용 촉매 잉크 및 이를 이용한 막전극접합체 제조 방법
KR101926866B1 (ko) 2012-07-17 2018-12-07 현대자동차주식회사 연료전지용 팔라듐-백금 코어-쉘 촉매의 제조방법
CA3021580A1 (en) 2015-06-25 2016-12-29 Barry L. Merriman Biomolecular sensors and methods
EP3408219B1 (en) 2016-01-28 2022-08-17 Roswell Biotechnologies, Inc Massively parallel dna sequencing apparatus
US11624725B2 (en) 2016-01-28 2023-04-11 Roswell Blotechnologies, Inc. Methods and apparatus for measuring analytes using polymerase in large scale molecular electronics sensor arrays
US10737263B2 (en) 2016-02-09 2020-08-11 Roswell Biotechnologies, Inc. Electronic label-free DNA and genome sequencing
US10597767B2 (en) 2016-02-22 2020-03-24 Roswell Biotechnologies, Inc. Nanoparticle fabrication
US9829456B1 (en) 2016-07-26 2017-11-28 Roswell Biotechnologies, Inc. Method of making a multi-electrode structure usable in molecular sensing devices
CN110431148A (zh) 2017-01-10 2019-11-08 罗斯威尔生命技术公司 用于dna数据存储的方法和***
WO2018136148A1 (en) 2017-01-19 2018-07-26 Roswell Biotechnologies, Inc. Solid state sequencing devices comprising two dimensional layer materials
CA3057151A1 (en) 2017-04-25 2018-11-01 Roswell Biotechnologies, Inc. Enzymatic circuits for molecular sensors
US10508296B2 (en) 2017-04-25 2019-12-17 Roswell Biotechnologies, Inc. Enzymatic circuits for molecular sensors
CN110651182B (zh) 2017-05-09 2022-12-30 罗斯威尔生命技术公司 用于分子传感器的结合探针电路
US11131032B2 (en) * 2017-05-26 2021-09-28 The Board Of Trustees Of The University Of Arkansas Metal alloy core-shell nanoparticles and related methods
WO2019046589A1 (en) 2017-08-30 2019-03-07 Roswell Biotechnologies, Inc. PROCESSIVE ENZYME MOLECULAR ELECTRONIC SENSORS FOR STORING DNA DATA
KR20200067871A (ko) 2017-10-10 2020-06-12 로스웰 바이오테크놀로지스 인코포레이티드 무증폭 dna 데이터 저장을 위한 방법, 장치 및 시스템
US11355761B2 (en) * 2019-12-31 2022-06-07 Robert Bosch Gmbh Polyelemental catalyst structures for fuel cells
CN111952601B (zh) * 2020-07-10 2022-08-16 华南理工大学 一种超快速碳热还原制备一体式电催化析氧电极的方法
CN113506880B (zh) * 2021-07-12 2022-04-29 清华大学 燃料电池催化剂层微观结构生成方法、***、设备和介质

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4276144A (en) * 1980-02-20 1981-06-30 The Curators Of The University Of Missouri Oxygen electrode and method for preparation thereof
CA1113802A (en) * 1980-09-02 1981-12-08 William A. Armstrong Mixed oxide oxygen electrode
JPS57105970A (en) * 1980-12-23 1982-07-01 Toshiba Corp Air electrode
EP0241432B1 (en) * 1986-03-07 1993-08-11 Tanaka Kikinzoku Kogyo K.K. Gas permeable electrode
JP2520266B2 (ja) * 1987-10-02 1996-07-31 玲子 能登谷 酸素電極反応用電極
CA2046148C (en) * 1990-08-14 1997-01-07 Dale R. Getz Alkaline cells that are substantially free of mercury
US5308711A (en) * 1993-02-09 1994-05-03 Rayovac Corporation Metal-air cathode and cell having catalytically active manganese compounds of valence state +2
US5773162A (en) * 1993-10-12 1998-06-30 California Institute Of Technology Direct methanol feed fuel cell and system
DE19611510A1 (de) * 1996-03-23 1997-09-25 Degussa Gasdiffusionselektrode für Membranbrennstoffzellen und Verfahren zu ihrer Herstellung
DE19721437A1 (de) * 1997-05-21 1998-11-26 Degussa CO-toleranter Anodenkatalysator für PEM-Brennstoffzellen und Verfahren zu seiner Herstellung
DE19756880A1 (de) * 1997-12-19 1999-07-01 Degussa Anodenkatalysator für Brennstoffzellen mit Polymerelektrolyt-Membranen
US6297185B1 (en) * 1998-02-23 2001-10-02 T/J Technologies, Inc. Catalyst
US6967183B2 (en) * 1998-08-27 2005-11-22 Cabot Corporation Electrocatalyst powders, methods for producing powders and devices fabricated from same
US6753108B1 (en) * 1998-02-24 2004-06-22 Superior Micropowders, Llc Energy devices and methods for the fabrication of energy devices
US6372509B1 (en) * 1998-03-18 2002-04-16 The United States Of America As Represented By The Secretary Of The Navy Situ copper (I)
JP4004675B2 (ja) * 1999-01-29 2007-11-07 株式会社日清製粉グループ本社 酸化物被覆金属微粒子の製造方法
US6528201B1 (en) * 1999-09-27 2003-03-04 Japan Storage Battery Co., Ltd. Electrode for fuel cell and process for producing the same
US6866960B2 (en) * 2000-07-21 2005-03-15 Japan Storage Battery Co., Ltd. Electrodes for fuel cell and processes for producing the same
US6835489B2 (en) * 2002-08-15 2004-12-28 Texaco Ovonic Fuel Cell Llc Double layer oxygen electrode and method of making
US6670301B2 (en) * 2001-03-19 2003-12-30 Brookhaven Science Associates Llc Carbon monoxide tolerant electrocatalyst with low platinum loading and a process for its preparation
KR100439814B1 (ko) * 2001-12-08 2004-07-12 현대자동차주식회사 물의 빙점 이하에서 고분자 전해질 연료전지의 운전방법및 장치
JP2004082007A (ja) * 2002-08-27 2004-03-18 Honda Motor Co Ltd 触媒粒子及びアルコールの脱水素触媒粒子
US7432221B2 (en) * 2003-06-03 2008-10-07 Korea Institute Of Energy Research Electrocatalyst for fuel cells using support body resistant to carbon monoxide poisoning
TWI233233B (en) * 2003-12-31 2005-05-21 You-Jen Jang Manufacturing method of fuel cell part with capability of improving water drainage of electrode
JP3867232B2 (ja) * 2004-03-25 2007-01-10 株式会社 東北テクノアーチ 触媒ナノ粒子
US7838165B2 (en) * 2004-07-02 2010-11-23 Kabushiki Kaisha Toshiba Carbon fiber synthesizing catalyst and method of making thereof
US7629071B2 (en) * 2004-09-29 2009-12-08 Giner Electrochemical Systems, Llc Gas diffusion electrode and method of making the same
KR100550998B1 (ko) * 2004-10-28 2006-02-13 삼성에스디아이 주식회사 연료 전지용 전극 및 이를 포함하는 연료 전지 시스템
US7691780B2 (en) * 2004-12-22 2010-04-06 Brookhaven Science Associates, Llc Platinum- and platinum alloy-coated palladium and palladium alloy particles and uses thereof
US8062552B2 (en) * 2005-05-19 2011-11-22 Brookhaven Science Associates, Llc Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates
US20070092784A1 (en) * 2005-10-20 2007-04-26 Dopp Robert B Gas diffusion cathode using nanometer sized particles of transition metals for catalysis
US20090162715A1 (en) * 2005-10-20 2009-06-25 Henkel Corporation Polyisobutylene compositions with improved reactivity and properties for bonding and sealing fuel cell components
US7601199B2 (en) * 2006-01-19 2009-10-13 Gm Global Technology Operations, Inc. Ni and Ni/NiO core-shell nanoparticles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148068A (zh) * 2010-02-04 2011-08-10 罗伯特.博世有限公司 导电材料
CN102148068B (zh) * 2010-02-04 2016-08-31 罗伯特.博世有限公司 导电材料
CN104998658A (zh) * 2015-07-20 2015-10-28 昆明贵研催化剂有限责任公司 PtNi(Ⅲ)纳米单晶八面体质子交换膜燃料电池氧还原催化剂的制备方法
CN110707330A (zh) * 2018-07-09 2020-01-17 丰田自动车工程及制造北美公司 用于氧还原催化的由离子液体和八面体Pt-Ni-Cu合金纳米颗粒制成的复合物

Also Published As

Publication number Publication date
US20110091787A1 (en) 2011-04-21
WO2008018926A2 (en) 2008-02-14
WO2008018926A8 (en) 2008-11-06
US20070227300A1 (en) 2007-10-04
WO2008018926A3 (en) 2008-07-17
JP2009532830A (ja) 2009-09-10
EP2008328A2 (en) 2008-12-31
KR20090026254A (ko) 2009-03-12
CA2647174A1 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
CN101454931A (zh) 用于燃料电池的含有金属或合金和铂颗粒的纳米金属颗粒的组合物
US7955755B2 (en) Compositions of nanometal particles containing a metal or alloy and platinum particles
CN102593472B (zh) 催化剂、制法、燃料电池、电极及锂空气电池
CN102820475B (zh) 三元铂合金催化剂
US5501915A (en) Porous electrode for electrode assemblies in a fuel cell
US7785498B2 (en) Method of producing conducting polymer-transition metal electro-catalyst composition and electrodes for fuel cells
CN100433426C (zh) 燃料电池的电极基底及其制法以及包括它的膜电极组件
US9318762B2 (en) Conducting polymer-transition metal electro-catalyst compositions for fuel cells
US8512915B2 (en) Catalyst composite material fuel cell, method for preparing the same, membrane-electrode assembly comprising the same, and fuel cell system comprising the same
US20040109816A1 (en) Proton conductive carbon material for fuel cell applications
EP1509930A2 (en) Sulfonated conducting polymer-grafted carbon material for fuel cell applications
CN101416333A (zh) 燃料电池膜电极组合件和其制造方法
US8137859B2 (en) Membrane-electrode assembly for fuel cell, method for manufacturing the same, and fuel cell system including the same
EP1509929A4 (en) CARBON-CONDUCTIVE MATERIAL GRAFTED ON A POLYMER FOR FUEL CELL APPLICATIONS
US20040166401A1 (en) Conducting polymer-grafted carbon material for fuel cell applications
US20040144961A1 (en) Metallized conducting polymer-grafted carbon material and method for making
CN102460792A (zh) 高分子电解质-催化剂复合结构体粒子及其制造方法、电极、膜电极接合体(mea)、以及电化学装置
CN103515621A (zh) 用于燃料电池的载体、电极、膜电极组件和燃料电池***
CN100377396C (zh) 燃料电池的电极及其制备方法以及包含它的膜电极组件和燃料电池***
US8247521B2 (en) Acid-doped polyelectrolyte modified carbon nanotubes and their use in high temperature PEM fuel cell electrodes
US7056615B2 (en) Electrode for polymer electrolyte fuel cells and manufacturing method therefor
WO2004107359A1 (en) Metallized conducting polymer-grafted carbon material and method for making
KR100778437B1 (ko) 연료 전지용 캐소드 촉매, 이를 포함하는 연료 전지용막-전극 어셈블리 및 연료 전지 시스템
Fujigaya et al. Effect of Surface Roughness of Carbon Nanotube-based Catalyst Layer for Polymer Electrolyte Membrane Fuel Cell Performance
Taguchi et al. Oxygen Reduction Activity of Thermally Decomposed Tetraphenylporphyrin as Cathode Catalyst of DMFC

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20090610