CN101444525A - RNAi-mediated inhibition of ocular targets - Google Patents

RNAi-mediated inhibition of ocular targets Download PDF

Info

Publication number
CN101444525A
CN101444525A CNA2008102131399A CN200810213139A CN101444525A CN 101444525 A CN101444525 A CN 101444525A CN A2008102131399 A CNA2008102131399 A CN A2008102131399A CN 200810213139 A CN200810213139 A CN 200810213139A CN 101444525 A CN101444525 A CN 101444525A
Authority
CN
China
Prior art keywords
seq
sequence
nucleotide
mrna
rna interfering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008102131399A
Other languages
Chinese (zh)
Inventor
A·R·谢帕德
J·E·查特尔顿
A·F·克拉克
M·B·瓦克斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Alcon Universal Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcon Universal Ltd filed Critical Alcon Universal Ltd
Publication of CN101444525A publication Critical patent/CN101444525A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention provides a RNA interference for inhibition of ocular hypertension target mRNA expression for lowering elevated intraocular pressure in patients with open-angle glaucoma or ocular hypertension. Ocular hypertension targets include carbonic anhydrase II, IV, and XII; beta1- and beta2 adrenergic receptors; acetylcholinesterase; Na<+>/K<+>-ATPase; and Na-K-2Cl cotransporter. Ocular hypertension is treated by administering interfering RNAs of the present invention.

Description

The inhibition of the ocular hypertension targets of RNAi mediation
The application is to be that on February 1st, 2006, denomination of invention are applied for dividing an application of 200680007300.6 (PCT/US2006/003515) for the China of " inhibition of the ocular hypertension targets of RNAi mediation " applying date.
Invention field
The present invention relates to the field of RNA interfering compositions, said composition is used to suppress the particularly expression of primary open angle glaucoma intraocular pressure target of glaucoma.
Background of invention
Glaucoma is heterogeneousization of the optic nerve colony with certain Clinical symptoms.The forfeiture of glaucoma vision is because the retinal ganglial cells selectivity death in the neural retina causes, and the characteristic that clinical diagnosis shows as the visual field changes, nerve fibre layer is damaged and the carrying out property depression of optic disc (ONH).One of main hazard factor that glaucoma forms be exist high intraocular pressure (intraocular pressure of rising, IOP).Suitable intraocular pressure is necessary for keeping eye shape and providing barometric gradient that aqueous humor is flowed to depletion of blood limb film and crystalline lens.The pathogeny of common intraocular pressure glaucoma (NTG) may also relate to the IOP level, benefits from the patient who falls the IOP medicine and can prove this point.When NTG patient is carried out tonometry,, may will find that many people have high intraocular pressure among these patients in case adjust central corneal thickness.
The elevated IOP relevant with glaucoma is because due to the discharge of the aqueous humor of rising was obstructed in the girder (TM), girder was the small special tissue in iris-cornea angle that is arranged in the anterior chamber of eyeball.The glaucoma of TM change comprise the minimizing of TM cell and comprise protein speckle sample material the extracellular residue deposition and gather.In addition, also change among the glaucomatous ONH.In glaucoma, there is morphologic and ambulant variation in the ONH neurogliocyte.Reply the damage of elevated IOP and/or transient ischemic attack, the ONH extracellular matrix components changes and the form of glial cell and retinal ganglial cells aixs cylinder changes.
It is moving disorderly that primary glaucoma results from the ophthalmic liquid stream with anatomy or physiological Foundations.Secondary glaucoma is because due to ocular injury or ocular injury or the original disease.Primary open angle glaucoma (POAG) is also referred to as chronic or donders' glaucoma, accounts for 90% of all primary glaucomas.POAG is characterised in that the degeneration of girder, causes drain in the eye is produced unusual high resistance.The result of this resistance causes IOP to raise, and it is in order to drive by the normal fluid that produces of eyes to overcome the resistance of increase that IOP raises.
At present, antiglaucomatous treatment comprises by inhibitor that uses aqueous humor formation or reagent reduction IOP, laser trabeculoplasty or the trabeculectomy (it is a filtration surgery of improving drain) that increases uvea sclera external flux.Glaucoma method on the materia medica shows multiple adverse side effect.For example, miotic such as pilocarpine can cause blurred vision and other negative vision side effect.The carbonic anhydrase inhibitors that general is used (CAI) also can cause nausea, dyspepsia, fatigue and metabolic acidosis.In addition, it is relevant with serious pulmonary's side effect that some beta-blocker becomes day by day, and this is owing to they influences to β in the lung tissue-2 receptor.The amine thing of imitative sympathetic nerve effect causes tachycardia, arrhythmia and hypertension.The termination that this negative side effect may cause patient's compliance to reduce or treat.In addition, it is shorter relatively that present IOP reduces the curative effect of therapy, need repeat administration every day, and in some cases, drug effect weakens in time.
In view of high intraocular pressure in glaucoma importance and before the deficiency of Therapeutic Method, need the basic reason that a kind of method for the treatment of ocular hypertensive improvement solves its progress.
Summary of the invention
The present invention be directed to RNA interfering, the reticent ocular hypertension targets mRNA of this RNA interfering expresses, thereby reduces open angle glaucoma and high intraocular pressure patient's intraocular pressure.Ocular hypertension targets comprises: carbonic anhydrase II, IV and XII; β 1 and beta 2-adrenergic receptor; Acetylcholinesterase; Na +/ K +-ATP enzyme and Na-K-2Cl cotransporter.RNA interfering of the present invention helps to treat open angle glaucoma and high intraocular pressure patient.
One embodiment of the invention provide and weakened the method that ocular hypertension targets mRNA expresses in the experimenters, and this ocular hypertension targets mRNA is as carbonic anhydrase II, IV or XII; β 1 or beta 2-adrenergic receptor; Acetylcholinesterase; Na +/ K +-ATP enzyme or Na-K-2Cl cotransporter mRNA.This method comprises to the experimenter uses compositions, and said composition comprises the RNA interfering with 19-49 length of nucleotides and the drug acceptable carrier of effective dose.To experimenter's dosing eyes, to weaken the expression of ocular hypertension targets in the human body.
In one embodiment of the invention, RNA interfering includes the intimate at least continuous complementary zone fully of adopted nucleotide chain, antisensenucleic acids chain and at least 19 nucleotide.In addition, antisense strand is hybridized with the part of mRNA under physiological condition, described mRNA is corresponding to SEQ ID NO:1, SEQID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:101, SEQ ID NO:123, SEQ ID NO:124, SEQID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ IDNO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ IDNO:133 or SEQ ID NO:134, these are that adopted cDNA sequence is arranged, and carbonic anhydrase II and IV encode respectively, β 1 and beta 2-adrenergic receptor, the variant E4-E5 of acetylcholinesterase (ACHE), Na +/ K +-ATP enzyme α 2 polypeptide, Na-K-2Cl cotransporter NKCC2 (SLC12A1), carbonic anhydrase XII variant 1, acetylcholinesterase variant E4-E6, Na +/ K +-ATP enzyme α 1 polypeptide variants 1 and 2, Na +/ K +-ATP enzyme α 3 polypeptide, Na +/ K +-ATP enzyme α 4 polypeptide variants 1 and 2, Na +/ K +-ATP enzyme β 1 polypeptide variants 1 and 2, Na +/ K +-ATP enzyme β 2 polypeptide, Na +/ K +-ATP enzyme β 3 polypeptide, Na-K-2Cl cotransporter NKCC1 (SLC12A2) and carbonic anhydrase XII variant 2.Antisense strand has the continuous complementary zone fully that is close to of at least 19 nucleotide, the hybridization portion of mRNA is contained in this zone, and described mRNA corresponds respectively to SEQ ID NO:1, SEQ IDNO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ IDNO:5, SEQ ID NO:6, SEQID NO:7, SEQ ID NO:101, SEQ ID NO:123, SEQ ID NO:124, SEQ IDNO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ IDNO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ IDNO:133 or SEQ ID NO:134.The expression of using the ocular hypertension targets mRNA that has weakened the experimenter of this compositions.
In one embodiment, ocular hypertension targets mRNA coding carbonic anhydrase II, IV or XII, and antisense strand under physiological condition with part hybridization corresponding to the mRNA of SEQ ID NO:1, SEQ ID NO:2, SEQ IDNO:101 or SEQ ID NO:134, and comprise with the hybridization portion that corresponds respectively to the mRNA of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:101 or SEQ ID NO:134 and have at least 19 nucleotide to be close to complete continuous complementary zone.
In another embodiment, ocular hypertension targets mRNA coding β 1 or beta 2-adrenergic receptor, and antisense strand under physiological condition with part hybridization corresponding to the mRNA of SEQ ID NO:3 or SEQ ID NO:4, and comprise with the hybridization portion that corresponds respectively to the mRNA of SEQ ID NO:3 or SEQ IDNO:4 and have at least 19 nucleotide to be close to complete continuous complementary zone.
In the another one embodiment, the ocular hypertension targets mRNA acetylcholinesterase of encoding, and antisense strand under physiological condition with part hybridization corresponding to the mRNA of SEQ ID NO:5 or SEQ ID NO:123, and comprise with the hybridization portion that corresponds respectively to the mRNA of SEQ ID NO:5 or SEQ ID NO:123 and have at least 19 nucleotide to be close to complete continuous complementary zone.
In another embodiment, ocular hypertension targets mRNA coding Na +/ K +The subunit of-ATP enzyme, and antisense strand (this mRNA is corresponding to SEQ IDNO:6 with the hybridization of the part of mRNA under physiological condition, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131 or SEQ ID NO:132), and comprise hybridization portion with mRNA have at least 19 nucleotide to be close to fully continuous complementary zone (this mRNA corresponds respectively to SEQ ID NO:6, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ IDNO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, or SEQ IDNO:132).
In another embodiment, ocular hypertension targets mRNA coding Na-K-2Cl cotransporter, and antisense strand under physiological condition with part hybridization corresponding to the mRNA of SEQ ID NO:7 or SEQ ID NO:133, and comprise with the hybridization portion that corresponds respectively to the mRNA of SEQ ID NO:7 or SEQ ID NO:133 and have at least 19 nucleotide to be close to complete continuous complementary zone.
In one embodiment of the invention, it is target that RNA interfering is designed to mRNA, this mRNA comprises nucleotide 232 corresponding to SEQ ID NO:1,527,721,728,809,810,855,856,921,1139,506,547,548,740,911,1009,1140,1149,1150,1151,1188,1194,1195,1223,1239,1456,1457,1458,100,158,166,247,286,318,322,328,371,412,482,504,505,541,734,772,777,814,972,998,1232,317 or 401.
In another embodiment of the invention, it is target that RNA interfering is designed to mRNA, this mRNA comprises nucleotide 213,252,258,266,399,457,463,490,595,1064,109,112,125,126,150,261,265,280,398,453,459,462,467,492,534,785,801,825,827,876,1003 or 1012 corresponding to SEQ ID NO:2.
In another embodiment of the invention, it is target that RNA interfering is designed to mRNA, this mRNA comprises nucleotide 191,239,274,275,341,389,412,413,423,687,689,695,710,791,792,794,983,993,994,995,691,1039,1568,2326,2332,2425,2433,2844,2845,2880,2884,2891,2954,2955,2956,2957,2964,2965,3006,3007,3012 or 3026 corresponding to SEQ ID NO:101.
In another embodiment, it is target that RNA interfering is designed to mRNA, this mRNA comprises nucleotide 687,1535,2293,2299,2392,2400,2811,2812,2847,2851,2858,2921,2922,2923,2924,2931,2932,2973,2974,2979 or 2993 corresponding to SEQ ID NO:134.
Another embodiment of the invention provides and is designed to mRNA is the RNA interfering of target, this mRNA comprises nucleotide 468,523,799,1563,1565,1569,1593,1613,1614,1626,310,322,726,769,772,801,802,1501,1576,1577,1579,1580,1581,1586,1590,1592,1594,1615,1616,1632,1633 or 1654 corresponding to SEQ ID NO:3.
Another embodiment of the invention provides and is designed to mRNA is the RNA interfering of target, this mRNA comprises nucleotide 329 corresponding to SEQ ID NO:4,375,1031,1046,1149,1163,1371,1401,1426,1880,283,607,608,609,619,623,722,857,1037,1091,1115,1124,1136,1137,1151,1164,1393,1394,1395,1406,1407,1427,1428,1429,1442,1725,1726,1756,1757,1758,1767,1790,1791,1792,1793,1803,1861,1869,1971,1972 or 1979.
In another embodiment of the invention, it is target that RNA interfering is designed to mRNA, and this mRNA comprises nucleotide 1875,1890,1891,2011,2012,2133 or 2134 corresponding to SEQ ID NO:123.
Another embodiment of the invention provides and is designed to mRNA is the RNA interfering of target, this mRNA comprises nucleotide 366 corresponding to SEQ ID NO:5,370,384,385,525,588,768,1045,1046,1061,1090,1232,1314,1316,1460,1461,1462,1528,1607,1705,1713,382,393,397,622,1131,1459,1530,2251,2885,2886,386,1231,1315,2047,2049,2053,2055,2057,2125,2126,2127,2250,2253,2258,2260,2318,2395,2397,2404,2405,2643,2645 or 2887.
In another embodiment, it is target that RNA interfering is designed to mRNA, this mRNA comprises nucleotide 2208,2275,2307,2526,2538,2592,2628,2979,2985,3093,3474,3504,3505,3506,3518,343,442,700,707,811,907,1059,1363,1594,1662,1758,1760,1896,2037 or 2147 corresponding to SEQ ID NO:124.
In another embodiment, it is target that RNA interfering is designed to mRNA, and this mRNA comprises nucleotide 436,441,443,552,617,701,702,832,2204,2291 or 2495 corresponding to SEQ ID NO:125.
Another embodiment of the invention provides and is designed to mRNA is the RNA interfering of target, this mRNA comprises nucleotide 471 corresponding to SEQ ID NO:6,1990,3080,3797,4037,4093,4225,4323,5213,5285,214,467,470,472,473,632,825,946,1693,1767,1768,2157,2263,2589,2590,2765,2988,3094,3144,3145,3344,3345,3418,3666,3828,3850,4040,4041,4061,4882,4894,4900,5040,5114,5115,5128,5129,5253,5296,5375,5384 or 5385.
In another embodiment of the invention, it is target that RNA interfering is designed to mRNA, this mRNA comprises nucleotide 240,272,362,1836,1851,2103,2137,2138,2139,2157,2158,2160,2425,2580,2601,2646,2650,2794,2803,3116,3124,3126,3129 or 3377 corresponding to SEQ ID NO:126.
In another embodiment of the invention, it is target that RNA interfering is designed to mRNA, this mRNA comprises nucleotide 113,612,702,833,1101,1732,1733,1836,2070,2071,2143,2328,2475,2861,2862,2952,3203,3281,3377,3379,3470,3471,3554,3614,3615,3616,3617,3625,3626,3642,3646,3647,3653,3655,3797,3801,3803,3809 or 3810 corresponding to SEQ ID NO:127.
In another embodiment, it is target that RNA interfering is designed to mRNA, this mRNA comprises nucleotide 126,251,252,253,331,427,429,520,521,530,601,602,603,604,664,665,666,667,675,676,692,696,697,702,703,705,707,847,851,853,859 or 860 corresponding to SEQ ID NO:128.
In another embodiment, it is target that RNA interfering is designed to mRNA, this mRNA comprises nucleotide 1096,1099,1130,1131,1167,1299,1441,1450,1451,1452,1564,1746,1750,1751,1752,1795,203,204,214,222,224,225,226,380,525,591,612,613,615,635,636,663,664,669,699,765,790,839,840,841,900,909,933 or 947 corresponding to SEQ ID NO:129.
In another embodiment, it is target that RNA interfering is designed to mRNA, and this mRNA comprises nucleotide 1063,1102,1106,1107,1108,1109,1111 or 1151 corresponding to SEQ ID NO:130.
In another embodiment, it is target that RNA interfering is designed to mRNA, this mRNA comprises nucleotide 653,654,771,773,841,849,853,917,918,926,927,931,981,983,984,996,998,1022,1023,1160,1214,1355,1356,1381,1394,1425,1474,1550,1620,1707,1740,1753,1825,1956,1965,2598,2599,2608,2828,2829,2888,3012 or 3251 corresponding to SEQ ID NO:131.
In another embodiment of the invention, it is target that RNA interfering is designed to mRNA, this mRNA comprises nucleotide 292,434,438,457,459,488,490,498,499,592,639,723,774,775,788,857,858,910,911,930,931,932,1009,1010,1023,1024,1111,1146,1147,1220,1246,1321,1325,1326,1327,1331,1437,1548,1571,1785,1786 or 1787 corresponding to SEQ ID NO:132.
Another embodiment of the invention provides and is designed to mRNA is the RNA interfering of target, this mRNA comprises nucleotide 675,974,1373,1780,2102,2151,2315,2542,2609,3197,67,71,73,353,405,864,911,912,913,1409,1748,1811,1935,1937,1993,2012,2346,2388,2437,2586,3007,3008,3022,3130,3210,3237 or 3271 corresponding to SEQ ID NO:7.
Another embodiment of the invention provides and is designed to mRNA is the RNA interfering of target, this mRNA comprises nucleotide 748,749,753,1119,1169,1499,1509,1820,2081,2118,2147,2615,2644,2659,2663,2671,2672,2793,2812,2914,2948,3044,3334,3391,3480,3520,3549,3639,3840,3941,3944,4001,4995,4997,5141,5143,5249,5375,5834,5852,5981 or 6678 corresponding to SEQ ID NO:133.
Except that first kind of RNA interfering, the present invention also provides to the experimenter and uses second kind of RNA interfering.This method comprises to the experimenter uses second kind of RNA interfering that length is 19-49 nucleotide, and described second kind of RNA interfering also includes the continuous complementary zone fully that is close to of adopted nucleotide chain, antisensenucleic acids chain and at least 19 nucleotide; Wherein the antisense strand of second kind of RNA interfering is hybridized with the part of mRNA under physiological condition, this mRNA is corresponding to SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ IDNO:7, SEQ ID NO:101, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133 or SEQ ID NO:134, and second hybridization portion of antisense strand and mRNA has the continuous complementary zone fully that is close to of at least 19 nucleotide, and this mRNA corresponds respectively to SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ IDNO:6, SEQ ID NO:7, SEQ ID NO:101, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133 or SEQ ID NO:134.Second RNA interfering may be target with identical mRNA with first RNA interfering or be target with different mRNA.In addition, also can use in a similar manner the third, RNA interfering such as the 4th kind or the 5th kind.
Another embodiment of the invention is to answer the experimenter need treat ocular hypertensive method.This method comprises that to experimenter's ocular administration compositions the length that said composition comprises effective dose is the RNA interfering and the drug acceptable carrier of 19-49 nucleotide.This RNA interfering contains the continuous complementary zone fully that is close to that adopted nucleotide chain, antisense nucleotide chain and at least 19 nucleotide are arranged.This antisense strand is hybridized with the part of mRNA under physiological condition, this mRNA is corresponding to SEQ ID NO:1, SEQ IDNO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQID NO:7, SEQ ID NO:101, SEQ ID NO:123, SEQ ID NO:124, SEQ IDNO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ IDNO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ TD NO:133 or SEQ ID NO:134, and the hybridization portion that comprises with mRNA has at least 19 nucleotide to be close to continuous complementary zone fully, and this mRNA corresponds respectively to SEQ ID NO:1, SEQ IDNO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQID NO:7, SEQ ID NO:101, SEQ ID NO:123, SEQ ID NO:124, SEQ IDNO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ IDNO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ IDNO:133 or SEQ ID NO:134.Treat high intraocular pressure thus.
Another embodiment of the invention is to weaken the method that ocular hypertension targets mRNA expresses in the experimenter, comprises to the experimenter and use compositions that the length that said composition comprises effective dose is the strand RNA interfering and the drug acceptable carrier of 19-49 nucleotide.For weakening the expression of ocular hypertension targets, this strand RNA interfering under physiological condition with part hybridization corresponding to the mRNA of the above-mentioned nucleotide site of sequence identifier and antisense strand.
Another embodiment of the invention is to weaken the method that ocular hypertension targets mRNA expresses in the experimenter, comprise to the experimenter and use compositions, the length that said composition comprises effective dose is the strand RNA interfering and the drug acceptable carrier of 19-49 nucleotide, wherein, RNA interfering comprises the zone of at least 13 continuous nucleotides, penultimate 13 nucleotide of 3 of this continuous nucleotide and following arbitrary sequence ' end have complementary or at least 90% the sequence homogeneity of at least 90% sequence, and described sequence is SEQ ID NO:8, SEQ ID NO:14-SEQ ID NO:100, SEQ ID NO:102-SEQ ID NO:122, SEQ ID NO:135-SEQ ID NO:717, SEQ ID NO:720 and SEQ ID NO:721.
When ocular hypertension targets mRNA coding carbonic anhydrase, RNA interfering comprises the zone of at least 13 continuous nucleotides, penultimate 13 nucleotide of 3 of this continuous nucleotide and following arbitrary sequence ' end have complementary or at least 90% the sequence homogeneity of at least 90% sequence, and described sequence is SEQ ID NO:8, SEQ ID NO:14-SEQ ID NO:32, SEQ IDNO:83-SEQ IDNO:100, SEQ ID NO:102-SEQ ID NO:122, SEQ ID NO:135-SEQ IDNO:219, SEQ ID NO:720 and SEQ ID NO:721.
When ocular hypertension targets mRNA coding B-adrenergic receptor, RNA interfering comprises the zone of at least 13 continuous nucleotides, penultimate 13 nucleotide of 3 of this continuous nucleotide and following arbitrary sequence ' end have complementary or at least 90% the sequence homogeneity of at least 90% sequence, and described sequence is SEQ ID NO:33-SEQ ID NO:52 and SEQ ID NO:220-SEQ IDNO:282.
When ocular hypertension targets mRNA coding ACHE, RNA interfering comprises the zone of at least 13 continuous nucleotides, penultimate 13 nucleotide of 3 of this continuous nucleotide and following arbitrary sequence ' end have complementary or at least 90% the sequence homogeneity of at least 90% sequence, and described sequence is SEQID NO:53-SEQ ID NO:62 and SEQ ID NO:283-333.
When ocular hypertension targets mRNA coding ATP1A1, RNA interfering comprises the zone of at least 13 continuous nucleotides, penultimate 13 nucleotide of 3 of this continuous nucleotide and following arbitrary sequence ' end have complementary or at least 90% the sequence homogeneity of at least 90% sequence, and described sequence is SEQ ID NO:334-SEQ ID NO:374.
When ocular hypertension targets mRNA coding ATP1A2, RNA interfering comprises the zone of at least 13 continuous nucleotides, penultimate 13 nucleotide of 3 of this continuous nucleotide and following arbitrary sequence ' end have complementary or at least 90% the sequence homogeneity of at least 90% sequence, and described sequence is SEQ ID NO:63-SEQ ID NO:72 and SEQ ID NO:375-SEQ ID NO:416.
When ocular hypertension targets mRNA coding ATP1A3, RNA interfering comprises 3 of this continuous nucleotides of zone of at least 13 continuous nucleotides and following arbitrary sequence ' penultimate 13 nucleotide of end and has complementary or at least 90% the sequence homogeneity of at least 90% sequence, and described sequence is SEQIDNO:417-SEQIDNO:440.
When ocular hypertension targets mRNA coding ATP1A4, RNA interfering comprises the zone of at least 13 continuous nucleotides, penultimate 13 nucleotide of 3 of this continuous nucleotide and following arbitrary sequence ' end have complementary or at least 90% the sequence homogeneity of at least 90% sequence, and described sequence is SEQ ID NO:441-SEQ ID NO:511.
When ocular hypertension targets mRNA coding ATP1B1, RNA interfering comprises the zone of at least 13 continuous nucleotides, penultimate 13 nucleotide of 3 of this continuous nucleotide and following arbitrary sequence ' end have complementary or at least 90% the sequence homogeneity of at least 90% sequence, and described sequence is SEQ ID NO:512-SEQ ID NO:563.
When ocular hypertension targets mRNA coding ATP1B2, RNA interfering comprises the zone of at least 13 continuous nucleotides, penultimate 13 nucleotide of 3 of this continuous nucleotide and following arbitrary sequence ' end have complementary or at least 90% the sequence homogeneity of at least 90% sequence, and described sequence is SEQ ID NO:564-SEQ ID NO:606.
When ocular hypertension targets mRNA coding ATP1B3, RNA interfering comprises the zone of at least 13 continuous nucleotides, penultimate 13 nucleotide of 3 of this continuous nucleotide and following arbitrary sequence ' end have complementary or at least 90% the sequence homogeneity of at least 90% sequence, and described sequence is SEQ ID NO:607-SEQ ID NO:648.
When ocular hypertension targets mRNA coding SLC12A1, RNA interfering comprises the zone of at least 13 continuous nucleotides, penultimate 13 nucleotide of 3 of this continuous nucleotide and following arbitrary sequence ' end have complementary or at least 90% the sequence homogeneity of at least 90% sequence, and described sequence is SEQ ID NO:73-SEQ ID NO:82 and SEQ ED NO:649-SEQ ID NO:675.
When ocular hypertension targets mRNA coding SLC12A2, RNA interfering comprises the zone of at least 13 continuous nucleotides, penultimate 13 nucleotide of 3 of this continuous nucleotide and following arbitrary sequence ' end have complementary or at least 90% the sequence homogeneity of at least 90% sequence, and described sequence is SEQ ID NO:676-SEQ ID NO:717.
In another embodiment of the invention, at least 14 continuous nucleotides are contained in the continuous nucleotide zone, and penultimate 14 nucleotide of 3 of the sequence of this continuous nucleotide and sequence identifier ' end have complementary or at least 85% the sequence homogeneity of at least 85% sequence.And in another embodiment of the invention, at least 15,16,17 or 18 continuous nucleotides are contained in the continuous nucleotide zone, have complementary or at least 80% the sequence homogeneity of at least 80% sequence with 3 of the sequence of sequence identifier ' penultimate 15,16,17 or 18 nucleotide of end respectively.
One embodiment of the invention are compositions and the drug acceptable carriers that comprise RNA interfering, and this RNA interfering length is 19-49 nucleotide and has any one nucleotide sequence or its complementary series among SEQ ID NO:8, SEQ IDNO:14-SEQ ID NO:100, SEQ ID NO:102-SEQ ID NO:122, SEQ IDNO:135-SEQ ID NO:717, SEQ ED NO:720 and the SEQ ID NO:721.In one embodiment, RNA interfering is isolating.It is free from its total natural surroundings that term " isolating " means RNA interfering.
Another embodiment of the invention is to answer the experimenter need treat ocular hypertensive method.This method comprises to experimenter's ocular administration compositions, the length that said composition comprises effective dose is the RNA interfering and the drug acceptable carrier of 19-49 nucleotide, this RNA interfering comprises the zone of at least 13 continuous nucleotides, penultimate 13 nucleotide of 3 of this continuous nucleotide and following arbitrary sequence ' end have complementary or at least 90% the sequence homogeneity of at least 90% sequence, described sequence is SEQIDNO:8, SEQ ID NO:14-SEQ ID NO:100, SEQ ID NO:102-SEQ IDNO:122, SEQ ID NO:135-SEQ ID NO:717, SEQ ID NO:720 and SEQ IDNO:721 treat high intraocular pressure thus.
Another embodiment of the invention is to weaken the expression of first kind of variant of experimenter's ocular hypertension targets mRNA and the method that do not weaken the expression of second kind of variant of ocular hypertension targets mRNA.This method comprises to the experimenter uses compositions, the length that said composition comprises effective dose is the RNA interfering and the drug acceptable carrier of 19-49 nucleotide, this RNA interfering comprises the zone of at least 13 continuous nucleotides, penultimate 13 nucleotide of 3 of described continuous nucleotide and first kind of variant ' end have complementary or at least 90% the sequence homogeneity of at least 90% sequence, wherein the expression of first kind of variant mRNA is weakened, and do not weaken the expression of second variant mRNA, and wherein first kind of variant target mRNA is SEQ ID NO:101, SEQ ID NO:5, SEQ ID NO:124, SEQ IDNO:127 or SEQ ID NO:129 and second kind of variant target mRNA are SEQ ID NO:134, SEQ ID NO:123, SEQ ID NO:125, SEQ ID NO:128 or SEQ ID NO:130.
In another embodiment of the above method, first kind of variant target mRNA is SEQID NO:134, SEQ ID NO:123, SEQ ID NO:125, SEQ ID NO:128 or SEQID NO:130, and second kind of variant target mRNA is SEQ ID NO:101, SEQ IDNO:5, SEQ ID NO:124, SEQ ID NO:127 or SEQ ID NO:129.
Any embodiment described herein also is embodiment of the present invention in the purposes that preparation is used for weakening the medicine that high intraocular pressure mRNA expresses.
The accompanying drawing summary
Fig. 1 provides western trace, detects with CA2siRNA#1, #3, #4 and #5, no targeting contrast siRNA and buffer contrast (siRNA) the HeLa cell of transfection with anti-CA2 and actin antibody.SiRNA concentration is 100nM or 1nM.The position of arrow indication~30-kDa CA2 albumen and 42-kDa actin band.
Detailed Description Of The Invention
It is the process of using double-stranded RNA (dsRNA) to come cryptiogene to express that RNA disturbs (RNAi). Although do not expect to be bound by theory, RNAi at first cuts into little RNA interfering (siRNA) by class RNaseIII enzyme-dicer with long dsRNA. SiRNA is that length is generally about 19-28 nucleotides or 20-25 nucleotides or 21-22 nucleotides and usually contains 3 ' jag of 2-nucleotides and the dsRNA of 5 ' phosphoric acid and 3 ' C-terminal. It is in the RNA silencing complex (RISC) of inducing that the chain of siRNA is impregnated in ribonucleoprotein complex. RISC utilizes this siRNA chain to identify mRNA molecule with at least part of complementation of siRNA chain of incorporating into, and then cuts these targets mRNA or suppress their translation. Therefore, the siRNA chain that mixes RISC is called as guiding chain or antisense strand. Another siRNA chain (being called transfer chain or sense strand) is removed from siRNA, and with target RNA Homoeology is arranged at least. Those skilled in the art generally acknowledge that arbitrary the chain of siRNA can both be impregnated among the RISC and as guiding chain and work in principle. Yet siRNA design (the siRNA double helix stability that for example, reduces at 5 of antisense strand ' end) can be conducive to antisense strand and mix among the RISC.
The mRNA cutting with the sequence of at least part of complementation of guiding chain of having of RISC mediation causes this mRNA and is reduced by the steady-state level of the related protein of this mRNA coding. Alternatively, RISC also can reduce the expression of related protein by suppressing translation, and does not cut target mRNA. Other RNA molecules and class RNA molecule also can interact with RISC and cryptiogene is expressed. Can comprise with the example of interactional other RNA molecules of RISC short hairpin RNA (shRNA), strand siRNA, Microrna (miRNA) and dicer-substrate 27 aggressiveness double helixs. Except as otherwise noted, term " siRNA " refers to double-chain interference RNA. Can comprise with the example of the interactional class RNA molecule of RISC and contain the RNA molecule that one or more nucleotides through chemical modification, one or more deoxyribonucleotide and/or one or more non-phosphodiester bond are connected. For the purpose of this discussion, all RNA or class RNA molecules that can interact with RISC and participate in the change of gene expression of RISC mediation are called " RNA interfering ". Therefore, SiRNA, shRNA, miRNA and dicer-substrate 27 aggressiveness double helixs all are the subgroups of " RNA interfering ".
As if with catalytic way cutting target mRNA, namely RNA interfering can play inhibitory action to target mRNA to RNA interfering in the embodiment of the present invention on substoichiometric. Compare with antisense therapy, under such cutting condition, provide the needed RNA interfering of curative effect obviously to reduce.
The present invention relates to the expression that application of interference RNA suppresses ocular hypertension targets mRNA, thereby reduce open-angle glaucoma or high intraocular pressure patient's intraocular pressure. Ocular hypertension targets comprises carbonic anhydrase II, IV and XII; β 1 and beta 2-adrenergic receptor; Acetylcholinesterase; Na+/K +-ATP enzyme subunit and Na-K-2Cl cotransporter. According to the present invention, the RNA interfering of expression that external source provides or endogenous makes ocular hypertension targets mRNA silence in the part tissue of eye.
The reversible hydration of carbonic anhydrase catalysis carbon dioxide and as if secretion of aqueous humor is played regulating action. Carbonic anhydrase inhibitor reduces intraocular pressure by reducing the Fluid Volume that produces. Carbonic anhydrase inhibitor can be used as eye drops (Dorzolamide (dorzolamide), brinzolamide (brinzolamide)) or tablets/capsules (acetazolamide (acetazolamide), methazolamide (methazolamide)) is used. The side effect of eye drops is lacked than tablet or capsule, can be accepted by a lot of patients better.The ophthalmic suspension of (brinzolamide) 1% is typical carbonic anhydrase inhibitor (Alcon Laboratories, Inc., Fort Worth, TX).
The eye beta-blocker reduces intraocular pressure by the Fluid Volume that reduces the intraocular generation. These medicines are divided into two classes: non-selective beta-blocker (Timolol (timolol), levobunolol (levobunolol), metipranolol (metipranolol), carteolol (carteolol)) and β-1 selective receptor retarding agent (betaxolol (betaxolol)). Usually dosage is each one every, one day one to twice, depends on employed medicine. The example of this product is
Figure A200810213139D0024141730QIETU
The ophthalmic suspension (Alcon Laboratories, Inc., Fort Worth, TX) of (betaxolol hydrochloride (betaxolol HCl)) 0.25%.
The inhibitor of acetylcholinesterase causes the enzyme (acetylcholinesterase) of acetylcholine hydrolyzation to make acetylcholine be retained in acceptor site by blocking-up. Acetylcholine accumulates in acceptor, and is by the contraction reduction intraocular pressure of ciliary muscle, similar to direct acting cholinergic agonist effect.
Na +/K +-atpase inhibitor for example unabain, nitric oxide donors and Endothelin reduces Na+/K +The activity of-ATP enzyme reduces the driving force by ciliary process secretion aqueous humor.
The chloride transport inhibitors, for example ethacrynic acid changes the trabecular meshwork cell capacity to increase easily degree of outflow.
Unless otherwise noted, the nucleotide sequence of quoting here all by 5 ' write to 3 ' direction. Term used herein " nucleic acid ", refer to DNA or RNA or its modified forms, comprise the purine or the pyrimidine bases that are present among DNA (adenine " A ", cytimidine " C ", guanine " G ", thymidine " T ") or the RNA (adenine " A ", cytimidine " C ", guanine " G ", uracil " U "). Here the RNA interfering that provides may comprise " T " base, particularly at 3 ' end, although " T " base is not present among the RNA usually. " nucleic acid " comprises term " oligonucleotides " and " polynucleotides " and can refer to single chain molecule or duplex molecule. Duplex molecule forms by the Watson-Crick base pairing between A and T base, C and G base, A and the U base. Can be complementary partly, substantially or completely between the two strands of duplex molecule, and form a double helix crossbred, its bond strength depends on the nature and extent of base sequence complementation.
Be easy to infer the mRNA sequence from corresponding dna sequence dna. For example, SEQ ID NO:1 provides the sense strand sequence corresponding to the DNA of coding carbonic anhydrase II mRNA. The mRNA sequence is the same with DNA sense strand sequence, and wherein, " U " base replaces " T " base.
Therefore, from the SEQ ID NO:1 mRNA sequence of carbonic anhydrase II as can be known; From the SEQ ID NO:2 mRNA sequence of carbonic anhydrase IV as can be known; From the SEQ ID NO:3 mRNA sequence of β 1-adrenergic receptor as can be known; From the SEQID NO:4 mRNA sequence of beta 2-adrenergic receptor as can be known; From the SEQ ID NO:5 mRNA sequence of acetylcholinesterase splice variant E4-E5 as can be known; From SEQ ID NO:6 Na as can be known+/K +The mRNA sequence of-ATP enzyme α 2; From the SEQ ID NO:7 mRNA sequence of Na-K-2Cl cotransporter Al as can be known; From the SEQ ID NO:101 mRNA sequence of carbonic anhydrase XII variant 1 as can be known; From the SEQ ID NO:123 mRNA sequence of acetylcholinesterase splice variant E4-E6 as can be known; From SEQ ID NO:124 Na as can be known+/K +-ATP enzyme α 1, the mRNA sequence of variant 1; From SEQ ID NO:125 Na as can be known+/K +-ATP enzyme α 1, the mRNA sequence of variant 2; From SEQ ID NO:126 Na as can be known+/K +The mRNA sequence of-ATP enzyme α 3; From SEQ ID NO:127 Na as can be known+/K +-ATP enzyme α 4, the mRNA sequence of variant 1; From SEQ ID NO:128 Na as can be known+/K +-ATP enzyme α 4, the mRNA sequence of variant 2; From SEQ ID NO:129 Na as can be known+/K +The mRNA sequence of-ATP enzyme β 1 variant 1; From SEQ ID NO:130 Na as can be known+/K +-ATP enzyme β 1, the mRNA sequence of variant 2; From SEQ ID NO:131 Na as can be known+/K +The mRNA sequence of-ATP enzyme β 2; From SEQ ID NO:132 Na as can be known+/K +The mRNA sequence of-ATP enzyme β 3; From the SEQ ID NO:133 mRNA sequence of Na-K-2Cl cotransporter A2 as can be known; From SEQ ID NO:134 carbonic anhydrase XII as can be known, the mRNA sequence of variant 2.
MRNA (the CA2 of carbonic anhydrase II, IV and XII, CA4 and CA12): the GenBank database as the state-run biotechnology information centre of the U.S. on ncbi.nlm.nih.gov is described, and carbonic anhydrase (CA) II, IV and XII are the zinc metalloenzyme extended familys members of the reversible hydration of catalysis carbon dioxide. Carbonic anhydrase relates to for example CO between metabolizing tissue and the lung of important physiology course2The breathing of/bicarbonate and transportation, pH and CO2Homeostasis, the electrolyte secretion in Various Tissues and organ, biosynthesis reaction (generating and urea generates such as gluconeogenesis, fat), bone absorption, calcification and tumour occur.
Identify 14 kinds of different carbonic anhydrase isodynamic enzymes and had different Subcellular Localization and Tissue distribution. Carbonic anhydrase II is the kytoplasm isoenzymes, and carbonic anhydrase IV and XII are membrane-bound. Two of different subtype that identified coding CA-XII gene transcribe variant; The hypotype that variant 1 coding is long, and variant 2 is compared the extron that lacks coding in variant 1 transcript has lacked 11 amino acid whose sections thereby compare with hypotype 1. Systemic administration carbonic anhydrase inhibitor (CAI) is conducive to reduce the intraocular pressure (IOP) of the rising of glaucoma feature. The isodynamic enzyme inhibitory action (sulfanilamide (SN) susceptible isodynamic enzyme CA II and CA IV) that is present in ciliary process reduces the speed of bicarbonate and secretion of aqueous humor, thereby causes IOP to reduce 25-30%. Yet, an inhibitory action that is present in the multiple CA isoenzymes of the outer tissue of eye has side effects, and comprises that the paralysis of four limbs and tingle, metallic taste, depression, tired, uncomfortable, weight saving, sexual desire minimizing, intestines and stomach stimulation, metabolic acidosis, kidney stone and transience are near-sighted.
The GenBank database provides the dna sequence dna of CA2 with registration number NM_000067, and it is provided as SEQ ID NO:1 in " sequence table ". SEQ ID NO:1 provides the sense strand sequence of DNA, corresponding to the mRNA (except " T " base substitutes " U " base) of coding CAII. The coded sequence of CAII is from nucleotides 66-848.
Suitable with above-described CA2mRNA sequence is Alternative spliceo some, equipotential form, isodynamic enzyme or its homologue. Homologue refer to derive from other mammalian species and with the CA2mRNA (being the ortholog thing) of SEQ ID NO:1 homology. The CA2 nucleotide sequence relevant with SEQ ID NO:1 comprises those sequences of GenBank registration number M77181, X03251, BC011949, BC035424, CR536526, CR541875, J03037, M36532, S69526 and Y00339.
The GenBank database provides with SEQ ID NO:2 in " sequence table " with the dna sequence dna that registration number NM_000717 provides CA4. SEQ ID NO:2 provides the sense strand sequence of DNA, corresponding to the mRNA (except " T " base has substituted " U " base) of coding CAIV. The coded sequence of CAIV is from nucleotides 47-985.
Suitable with above-described CA2mRNA sequence is Alternative spliceo some, equipotential form, isodynamic enzyme or its homologue. Homologue refer to derive from other mammalian species and with the CA2mRNA (being the ortholog thing) of SEQ ID NO:1 homology. The CA4 nucleotide sequence relevant with SEQ ID NO:2 comprises those sequences of GenBank registration number L10955, BC057792, BC069649, BC074768, CR541766 and M83670.
The GenBank database provides with SEQ ID NO:101 in " sequence table " with the dna sequence dna that registration number NM_001218 provides CA12. SEQ ID NO:101 provides the sense strand sequence of DNA, corresponding to the mRNA (except " T " base has substituted " U " base) of coding CAXII variant 1. The coded sequence of CAXII variant 1 is from nucleotides 157-1221.
Suitable with the mRNA sequence of above-described CA12 variant 1 is Alternative spliceo some, equipotential form, isodynamic enzyme or its homologue. Homologue refer to derive from other mammalian species and with the CA12mRNA (being the ortholog thing) of SEQ ID NO:101 homology.
The GenBank database provides with SEQ ID NO:134 in " sequence table " for the DNA sequence of CA12 variant 2 is provided with registration number NM_206925. SEQ ID NO:134 provides the sense strand sequence of DNA, corresponding to the mRNA of coding CAXII variant 2 (except " T " base substituted " U " base). The coded sequence of CAXII variant 2 is from nucleotides 157-1188. Compare with variant 1, variant 2 lacks the extron of interior coding.
Suitable with above-described CA12 variant 2mRNA sequence is Alternative spliceo some, equipotential form, isodynamic enzyme or its homologue. Homologue refer to derive from other mammalian species and with the CA12mRNA (being the ortholog thing) of SEQ ID NO:134 homology.
Adrenergic receptor-β 1 and-β 2mRNA (ADRB1 and ADRB2): the GenBank database as the state-run biotechnology information centre of the U.S. on ncbi.nlm.nih.gov is described, and adrenergic receptor (subtype alpha 1, α 2, β 1 and β 2) is the prototype family of g protein coupled receptor of the physiological effect of mediation hormone adrenaline and neurotransmitter norepinephrine.
The GenBank database provides with SEQ ID NO:3 in " sequence table " with the dna sequence dna that registration number NM_000684 provides ADRB1. SEQ ID NO:3 provides the sense strand sequence of DNA, corresponding to the mRNA of coding β 1-adrenergic receptor (except " T " base substituted " U " base). The coded sequence of β 1-adrenergic receptor is nucleotides 87-1520.
Suitable with above-described ADRB1mRNA sequence is Alternative spliceo some, equipotential form or its homologue. Homologue refer to derive from other mammalian species and with the ADRB1mRNA (being the ortholog thing) of SEQ ID NO:3 homology. The ADRB1 nucleotide sequence relevant with SEQ ID NO:3 comprises those sequences of GenBank registration number AF169006, AF169007, AY567837 and J03019.
The GenBank database provides with SEQ ID NO:4 in " sequence table " with the dna sequence dna that registration number NM_000024 provides ADRB2. SEQ ID NO:4 provides the sense strand sequence of DNA, corresponding to the mRNA of coding beta 2-adrenergic receptor (except " T " base substituted " U " base). The coded sequence of beta 2-adrenergic receptor is nucleotides 220-1461.
Suitable with above-described ADRB2mRNA sequence is Alternative spliceo some, equipotential form or its homologue. Homologue refer to derive from other mammalian species and with the ADRB2mRNA (being the ortholog thing) of SEQ ID NO:4 homology. The ADRB2 nucleotide sequence relevant with SEQ ID NO:4 comprises those sequences of GenBank registration number AF022953, AF022954, AF022955, AF022956, AF169225, AF202305, AF203386, AY011291, J02960, Y00106, AY136741, BC012481, BC063486, BC073856, M15169 and X04827.
Acetylcholinesterase splice variant E4-E6 and E4-E5 (ACHE): the GenBank database as the state-run biotechnology information centre of the U.S. on ncbi.nlm.nih.gov is described, acetylcholinesterase is in neuromuscular junction and brain cholinergic synapse hydrolysis neurotransmitter acetylcholine, thus the termination signal transmission. Simultaneously find that also on erythrocyte membrane, it has consisted of the Yt blood group antigens. Acetylcholinesterase exists with the different kinds of molecules form, and it has similar catalytic performance, but different on the assembling of its oligomer and cell adhesion pattern to cell surface. It is by single ACHE gene code, and associates after the translation of the structure diversity of gene outcome from optionally mRNA montage and catalytic subunit and structure subunit. The principal mode of the acetylcholinesterase of finding in brain, muscle and other tissue is hydrophilic, this hydrophilic and collagen subunit or contain the oligomer that the structure subunit formation disulfide bond of fat is connected. On the other hand, the Alternative spliceo some that mainly is expressed in erythrocytic tissue is terminal different at C-, and contains the hydrophobic peptide that cuts with the GPI-anchored site. It associates with film by the part of the rear phosphoinositide (PI) that adds of translation. Splice variant E4-E6 is main transcript and results from extron 4 to the montage of exon 6. Splice variant E4-E5 results from extron 4 to the alternative splicing of extron 5.
The GenBank database provides with SEQ ID NO:5 in " sequence table " with the dna sequence dna that registration number NM_015831 provides ACHE splice variant E4-E5. SEQ ID NO:5 provides the sense strand sequence of DNA, corresponding to the mRNA of coding acetylcholinesterase E4-E5 (except " T " base substituted " U " base). The coded sequence of acetylcholinesterase E4-E5 is nucleotides 95-1948.
Suitable with above-described ACHE mRNA sequence is Alternative spliceo some, equipotential form or its homologue. Homologue refer to derive from other mammalian species and with the ACHE mRNA (being the ortholog thing) of SEQ ID NO:5 homology. The ACHE nucleotide sequence relevant with SEQ ID NO:5 comprises GenBank registration number AC011895, AF002993, AF312032, AY750146, CH236956, L06484, L42812, S71129, AF334270, BC026315, BC036813, M55040 and those sequences of NM_000665.
The GenBank database provides with SEQ ID NO:123 in " sequence table " with the dna sequence dna that registration number NM_000665 provides ACHE splice variant E4-E6. SEQ ID NO:123 provides the sense strand sequence of DNA, corresponding to the mRNA of coding acetylcholinesterase E4-E6 variant (except " T " base substituted " U " base). The coded sequence of acetylcholinesterase E4-E6 is nucleotides 95-1939.
Suitable with above-described ACHE mRNA sequence is Alternative spliceo some, equipotential form or its homologue. Homologue refer to derive from other mammalian species and with the ACHE mRNA (being the ortholog thing) of SEQ ID NO:123 homology. The ACHE nucleotide sequence relevant with SEQ ID NO:123 comprises GenBank registration number NM_015831, AC011895, AF002993, AF312032, AY750146, CH236956, L06484, L42812, S71129, AF334270, BC026315, BC036813 and those sequences of M55040.
Na +/K +-ATP enzyme α and β mRNA (ATP1-A1 variant 1 ,-A1 variant 2 ,-A2 ,-A3 ,-A4 variant 1 ,-A4 variant 2 ,-B1 variant 1 ,-B1 variant 2 ,-B2 and-B3): as describing at the GenBank database, protein by described gene code belongs to P-type cation transfer ATP enzyme family, and belongs to Na+/K +-ATP enzyme subfamily. Na+/K +-ATP enzyme is the memebrane protein of integrating, the responsible electrochemical gradient of setting up and keeping for sodium ion and potassium ion leap plasma membrane. These gradients are absolutely necessary for the transhipment of the sodium coupling of osmotic adjustment, various organic and inorganic molecule and the electrical excitation of N﹠M. This enzyme is comprised of two subunits, i.e. large catalytic subunit (α or A) and less glycoprotein subunit (β or B). Na+/K +The catalytic subunit of-ATP enzyme is encoded by polygenes.
The GenBank database provides with SEQ ID NO:124 in " sequence table " with the DNA sequence that registration number NM_000701 provides ATP1A1 variant 1. SEQ ID NO:124 provides the sense strand sequence of DNA, corresponding to coding Na+/K +The mRNA of-ATP enzyme subunit A1 variant 1 (except " T " base substituted " U " base). Na+/K +The coded sequence of-ATP enzyme subunit A1 variant 1 is nucleotides 299-3370.
Suitable with above-described ATP1A1 variant 1mRNA sequence is Alternative spliceo some, equipotential form or its homologue. Homologue refer to derive from other mammalian species and with the ATP1A1 variant 1mRNA (being the ortholog thing) of SEQ ID NO:124 homology.
The GenBank database provides with SEQ ID NO:125 in " sequence table " with the dna sequence dna that registration number NM_001001586 provides ATP1A1 variant 2. SEQ ID NO:125 provides the sense strand sequence of DNA, corresponding to coding Na+/K +The mRNA of-ATP enzyme subunit A1 variant 2 (except " T " base substituted " U " base). Na+/K +The coded sequence of-ATP enzyme subunit A1 variant 2 is nucleotides 299-2344.
Suitable with above-described ATP1A1 variant 2mRNA sequence is Alternative spliceo some, equipotential form or its homologue. Homologue refer to derive from other mammalian species and with the ATP1A1 variant 2mRNA (being the ortholog thing) of SEQ ID NO:125 homology.
The GenBank database provides with SEQ ID NO:6 in " sequence table " with the dna sequence dna that registration number NM_000702 provides ATPl A2. SEQ ID NO:6 provides the sense strand sequence of DNA, corresponding to coding Na+/K +The mRNA of-ATP enzyme A2 subunit (except " T " base substituted " U " base). The coded sequence of Na+/K+-ATP enzyme A2 subunit is nucleotides 105-3167.
Suitable with above-described ATP1A2mRNA sequence is Alternative spliceo some, equipotential form or its homologue. Homologue refer to derive from other mammalian species and with the ATP1A2mRNA (being the ortholog thing) of SEQ ID NO:6 homology. The ATP1A2 nucleotide sequence relevant with SEQ ID NO:6 comprises those sequences of GenBank registration number J05096, M27578, AB018321, AK091617, AK124581, AK126573, AL831991, AL831997, BC013680, BC047533, BC052271, M16795 and Y07494.
The GenBank database provides with SEQ ID NO:126 in " sequence table " with the dna sequence dna that registration number NM_152296 provides ATP1A3. SEQ ID NO:126 provides the sense strand sequence of DNA, corresponding to coding Na+/K +The mRNA of-ATP enzyme A3 subunit (except " T " base substituted " U " base). Na+/K +The coded sequence of-ATP enzyme A3 subunit is nucleotides 155-3196.
Suitable with above-described ATP1A3mRNA sequence is Alternative spliceo some, equipotential form or its homologue. Homologue refer to derive from other mammalian species and with the ATP1A3mRNA (being the ortholog thing) of SEQ ID NO:126 homology.
The GenBank database provides with SEQ ID NO:127 in " sequence table " with the DNA sequence that registration number NM_144699 provides ATP1A4 variant 1. SEQ ID NO:127 provides the sense strand sequence of DNA, corresponding to coding Na+/K +The mRNA of-ATP enzyme A4 subunit variant 1 (except " T " base substituted " U " base). Na+/K +The coded sequence of-ATP enzyme A4 subunit variant 1 is nucleotides 469-3558.
Suitable with above-described ATP1A4 variant 1mRNA sequence is Alternative spliceo some, equipotential form or its homologue. Homologue refer to derive from other mammalian species and with the ATP1A4 variant 1mRNA (being the ortholog thing) of SEQ ID NO:127 homology.
The GenBank database provides with SEQ ID NO:128 in " sequence table " with the dna sequence dna that registration number NM_01001734 provides ATP1A4 variant 2. SEQ ID NO:128 provides the sense strand sequence of DNA, corresponding to coding Na+/K +The mRNA of-ATP enzyme A4 subunit variant 2 (except " T " base substituted " U " base). Na+/K +The coded sequence of-ATP enzyme A4 subunit variant 2 is nucleotides 111-608.
Suitable with above-described ATP1A4 variant 2mRNA sequence is Alternative spliceo some, equipotential form or its homologue. Homologue refer to derive from other mammalian species and with the ATP1A4 variant 2mRNA (being the ortholog thing) of SEQ ID NO:128 homology.
The GenBank database provides with SEQ ID NO:129 in " sequence table " with the DNA sequence that registration number NM_001677 provides ATP1B1 variant 1. SEQ ID NO:129 provides the sense strand sequence of DNA, corresponding to coding Na+/K +The mRNA of-ATP enzyme B1 subunit variant 1 (except " T " base substituted " U " base). Na+/K +The coded sequence of-ATP enzyme B1 subunit variant 1 is nucleotides 122-1033.
Suitable with above-described ATP1B1 variant 1mRNA sequence is Alternative spliceo some, equipotential form or its homologue. Homologue refer to derive from other mammalian species and with the ATP1B1 variant 1mRNA (being the ortholog thing) of SEQ ID NO:129 homology.
The GenBank database provides with SEQ ID NO:130 in " sequence table " with the dna sequence dna that registration number NM_001001787 provides ATP1B1 variant 2. SEQ ID NO:130 provides the sense strand sequence of DNA, corresponding to coding Na+/K +The mRNA of-ATP enzyme B1 subunit variant 2 (except " T " base substituted " U " base). Na+/K +The coded sequence of-ATP enzyme B1 subunit variant 2 is nucleotides 122-1027.
Suitable with above-described ATP1B1 variant 2mRNA sequence is Alternative spliceo some, equipotential form or its homologue. Homologue refer to derive from other mammalian species and with the ATP1B1 variant 2mRNA (being the ortholog thing) of SEQ ID NO:130 homology.
The GenBank database provides with SEQ ID NO:131 in " sequence table " with the dna sequence dna that registration number NM_001678 provides ATP1B2. SEQ ID NO:131 provides the sense strand sequence of DNA, corresponding to coding Na+/K +The mRNA of-ATP enzyme B2 subunit (except " T " base substituted " U " base). Na+/K +The coded sequence of-ATP enzyme B2 subunit is nucleotides 584-1456.
Suitable with above-described ATP1B2mRNA sequence is alternative splicing body, equipotential form or its congener.Congener be meant derive from other mammalian species and with the homologous ATP1B2mRNA of SEQ ID NO:131 (being lineal congener).
The GenBank data base provides with SEQ ID NO:132 in " sequence table " with the DNA sequence that registration number NM_001679 provides ATP1B3.SEQ ID NO:132 provides the sense strand sequence of DNA, corresponding to coding Na +/ K +The mRNA of-ATP enzyme B3 subunit (except " T " base substituted " U " base).Na +/ K +The coded sequence of-ATP enzyme B3 subunit is nucleotide 175-1014.
Suitable with above-described ATP1B3mRNA sequence is alternative splicing body, equipotential form or its congener.Congener be meant derive from other mammalian species and with the homologous ATP1B3mRNA of SEQ ID NO:132 (being lineal congener).
Na-K-2Cl cotransporter (SLC12A1 and SLC12A2): sodium-potassium-chloride cotransporter (Na-K-2Cl cotransporter or NKCC) is convenient to Na +, K +Cross over plasma membrane with the ionic coupling co-transport of Cl-.Two kinds of hypotype: NKCC1 and NKCC2 are arranged.NKCC1 expresses in comprising the great majority tissue of eyes.By contrast, NKCC2 mainly expresses in kidney, yet, prove that on evidence this hypotype also has the expression of reduced levels in eyes.NKCC1 by SLC12A2 gene (solute carrier family 12, the member 2) coding and NKCC2 by the SLC12A1 gene code.Trabecular meshwork cell has strong Na-K-2Cl cotransporter.The activity of this cotransporter reduces the co-transport activity by neurotransmitter and hormonal regulation as norepinephrine, or vasopressin strengthens the co-transport activity.
The GenBank data base provides with SEQ ID NO:7 in " sequence table " with the DNA sequence that registration number NM_000338 provides SLC12A1.SEQ ID NO:7 provides the sense strand sequence of DNA, corresponding to the mRNA of coding Na-K-2Cl cotransporter NKCC2 (except " T " base substituted " U " base).The coded sequence of Na-K-2Cl cotransporter NKCC2 is nucleotide 20-3319.
Suitable with above-described Na-K-2Cl NKCC2 cotransporter mRNA sequence is alternative splicing body, equipotential form or its congener.Congener refer to derive from other mammalian species and with the homologous Na-K-2Cl cotransporter of SEQ ID NO:7 NKCC2mRNA (being lineal congener).The SLC12A1 nucleotide sequence relevant with SEQ ID NO:7 comprises those sequences of GenBank registration number AJ005332, AJ005333, AB032525, AB032527, BC040138, BX647067, BX647484 and U58130.
The GenBank data base provides with SEQ ID NO:133 in " sequence table " with the DNA sequence that registration number NM_001046 provides SLC12A2.SEQ ID NO:133 provides the sense strand sequence of DNA, corresponding to the mRNA of coding Na-K-2Cl cotransporter NKCC1 (except " T " base substituted " U " base).The coded sequence of Na-K-2Cl cotransporter NKCC1 is nucleotide 165-3803.
Suitable with above-described Na-K-2Cl NKCC1 cotransporter mRNA sequence is alternative splicing body, equipotential form or its congener.Congener refer to derive from other mammalian species and with the homologous Na-K-2Cl cotransporter of SEQ ID NO:133 NKCC1mRNA (being lineal congener).
MRNA weakens expression: phrase used herein " mRNA weaken expression " means and uses or express a certain amount of RNA interfering (as siRNA), by cutting mRNA or directly suppress translation and reduce target mRNA and translate into protein.The reduction of the expression of target mRNA or respective egg white matter is commonly referred to " knocking out ", and is with respect to using of being reported or the level after expressing no target contrast RNA (contrasting siRNA as no target).The embodiment is here considered and is comprised and the knocking out of the expression between 50%-100%.Yet, for purpose of the present invention, unnecessaryly reach such level that knocks out.In one embodiment, use the independent RNA interfering of one of targeting ocular hypertension targets to reduce IOP.In other embodiments, use two or more RNA interfering of the identical ocular hypertension targets of targeting (as CA2) to reduce IOP.Also have in some embodiments, two or more RNA interfering of using a plurality of ocular hypertension targets of targeting (as CA2 and ADRB2) are to reduce IOP.
Usually knock out by use quantitative polyase chain reaction (qPCR) amplification assay mRNA level, or by utilizing western trace or elisa (ELISA) mensuration protein level to assess.The analysis of protein level provides assessment for mRNA cutting and translation suppress both.Other technology that mensuration knocks out comprises RNA solution hybridization, nuclease protection, northern hybridization, uses the cell analysis of gene expression monitoring, antibodies, radioimmunoassay and the fluorescence-activation of gene chip.
By observing the improvement of glaucoma symptom, for example the inhibitory action that also has target described here in human body or mammal is inferred in the improvement of the improvement of the improvement of intraocular pressure, visual field loss or optic disc variation.
As if with catalytic way cutting target mRNA, promptly RNA interfering can play inhibitory action to target mRNA to RNA interfering in the embodiment of the present invention on substoichiometric.Compare with antisense therapy, under such cutting condition, provide the needed RNA interfering of curative effect obviously to reduce.
RNA interfering: in one embodiment of the invention, RNA interfering (as siRNA) has sense strand and antisense strand, and sense strand and antisense strand comprise at least 19 nucleotide be close to continuous complementary zone fully at least.In another embodiment of the invention, RNA interfering comprises the zone of at least 13,14,15,16,17 or 18 continuous nucleotides, respectively with mRNA in penultimate 13,14,15,16,17 or 18 nucleotide of 3 ' end of corresponding target sequence the sequence complementarity or the sequence homogeneity of certain percentage are arranged.
The length of every chain of RNA interfering comprises 19-49 nucleotide, also may comprise the length of 19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48 or 49 nucleotide.
The antisense strand of siRNA is the active directed agents of siRNA, because antisense strand is impregnated among the RISC, thereby makes RISC identification and antisense siRNA chain have the complementary target mRNA of part at least to be used for cutting or to suppress translation.
In the present invention, by using the RNA interfering target sequence (as the siRNA target sequence) in the obtainable design tool selection target mRNA sequence.Check RNA interfering by the cell of transfection expression target mRNA, assess by knocking out as mentioned above subsequently corresponding to these target sequence.Select to produce the RNA interfering that knocks out of 50%-100% expression as further analyzing.
The technology of target sequence of selecting siRNA is by Tuschl, people such as T., " The siRNA UserGuide ", being revised on May 6th, 2004 provides, and can obtain in Rockefeller university website; Technical Bulletin #506 on also can the Ambion website by Ambion company in " siRNA Design Guidelines " provides; Also can pass through other based on network design tool, for example, Invitrogen, Dharmacon, Integrated DNA Technologies, Genscript or Proligo website are known.Initial search parameter can comprise the siRNA length between the G/C content between the 35%-55% and 19-27 nucleotide.Target sequence can be positioned the coding region of mRNA or be positioned 5 of mRNA ' or 3 ' end untranslated region.
In one embodiment, the DNA target sequence of 19 of carbonic anhydrase II nucleotide is present among the nucleotide 232-250 of SEQ ID NO:1:
5′-CCCTGAGGATCCTCAACAA-3′SEQ ID NO:8。
As the corresponding mRNA sequence of targeting SEQ ID NO:8 and have 21 nucleotide chains and the siRNA of the present invention of 2-nucleotide 3 ' jag is:
5′-CCCUGAGGAUCCUCAACAANN-3′SEQ ID NO:9
3′-NNGGGACUCCUAGGAGUUGUU-5′SEQ ID NO:10。
Each " N " residue can be the nucleotide of any nucleotide (A, C, G, U, T) or modification." N " residue number that 3 ' end can have is between 1,2,3,4,5 and 6 and comprise them." N " residue on arbitrary chain can identical (as UU, AA, CC, GG or TT) also can different (as AC, AG, AU, CA, CG, CU, GA, GC, GU, UA, UC or UG).3 ' jag can be the same or different.In one embodiment, two chains all have 3 ' UU jags.
The corresponding mRNA sequence of targeting SEQ ID NO:8 and have 21 nucleotide chains and on every chain, have the siRNA of the present invention of 3 ' UU jag to be:
5′-CCCUGAGGAUCCUCAACAAUU-3′SEQ ID NO:11
3′-UUGGGACUCCUAGGAGUUGUU-5′SEQ ID NO:12。
RNA interfering also has the jag of 5 ' nucleotide or it has flat terminal.The corresponding mRNA sequence of targeting SEQID NO:8 and have the terminal siRNA of the present invention of 19 nucleotide chains peace and be:
5′-CCCUGAGGAUCCUCAACAA-3′SEQ ID NO:722
3′-GGGACUCCUAGGAGUUGUU-5′SEQ ID NO:723。
The chain of double-chain interference RNA (as siRNA) can link hair clip of formation or loop-stem structure (as shRNA).The corresponding mRNA sequence of targeting SEQ ID NO:8 and have the double-stranded stem zone of 19 base pairs and the shRNA of the present invention of 3 ' UU jag is:
Figure A200810213139D00361
SEQ ID NO:13.
The known N of those of ordinary skills is nucleotide A, T, C, G, U or its modified forms.The number of nucleotide N is between 3-23 or 5-15 or 7-13 or 4-9 or 9-11 and comprise them in the ring, and perhaps the number of nucleotide N is 9.Some nucleotide in the ring may relate to ring in the base pair of other nucleotide interact.The example that can be used to form the oligonucleotide sequence of ring comprises 5 '-UUCAAGAGA-3 ' (Brummelkamp, people such as T.R., (2002) Science296:550) and 5 '-UUUGUGUAG-3 ' (Castanotto, people such as D., (2002) RNA8:1454).The single stranded oligonucleotide that those skilled in the art generally acknowledge to produce forms stem ring or hairpin structure, this structure comprise can with the double-stranded region of RNAi system interaction.
The siRNA target sequence of Que Dinging can be beneficial to the double-helical design of dicer substrate 27 aggressiveness 3 ' terminal the extension above.The extension of the DNA target sequence (SEQ ID NO:8) of 19 nucleotide in carbonic anhydrase II DNA sequence (SEQ ID NO:1), discerning by 6 nucleotide, obtain the DNA target sequence of 25 nucleotide, it is present in the nucleotide 232-256 among the SEQ ID NO:1:
5′-CCCTGAGGATCCTCAACAATGGTCA-3′SEQ ID NO:724。The dicer substrate of the present invention 27 aggressiveness Double helixs of the corresponding mRNA sequence of targeting SEQ ID NO:724 are:
5′-CCCUGAGGAUCCUAACAAUGGUCA-3′SEQ ID NO:718
3′-UUGGGACUCCUAGGAGUUGUUACCAGU-5′SEQ ID NO:719。
Two nucleotide of sense strand 3 ' end (being the CA nucleotide of SEQ ID NO:718) may be the Deoxydization nucleotides of the processing that is used to improve.As what here provide, from the double-helical design of dicer substrate 27 aggressiveness of 19-21 nucleotide target sequence at dna integration technology (IDT) website and Kim, people such as D.-H. (February, 2005) Nature Biotechnology 23:2; Further discussion is arranged among the 222-226.
When producing RNA interfering by chemosynthesis, phosphorylation in 5 ' terminal nucleotide, the 5 ' position of or two chains (if existence) can strengthen the siRNA effectiveness and the specificity of bonded RISC complex, but because phosphorylation can take place in cell, so do not need to carry out phosphorylation.
Table 1 is listed the example of the siRNA target sequence in the DNA sequence (being respectively SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:101 and SEQ ID NO:134) of CA2, CA4 and CA12 variant 1 and variant 2, designs siRNA of the present invention in the mode of as above illustrating from it.CA2, CA4 and CA12 variant 1 and variant 2 encode respectively carbonic anhydrase II, IV and XII variant 1 and 2.
The siRNA target sequence of table 1.CA2, CA4 and CA12
The CA2 target sequence Initial nucleotide position is with reference to SEQ ID NO:1 SEQ ID NO:
CCCTGAGGATCCTCAACAA 232 8
GGGCCTTCAGAAAGTTGTT 527 14
GCGAGCAGGTGTTGAAATT 721 15
GGTGTTGAAATTCCGTAAA 728 16
GCCACTGAAGAACAGGCAA 809 17
CCACTGAAGAACAGGCAAA 810 18
CCCATAGTCTGTATCCAAA 855 19
CCATAGTCTGTATCCAAAT 856 20
GGTGATTTGGACCCTGGTT 921 21
GGGTGATGAGCACTCACAA 1139 22
GAAGGTTGGCAGCGCTAAA 506 83
ATGTGCTGGATTCCATTAA 547 84
TGTGCTGGATTCCATTAAA 548 85
CCGTAAACTTAACTTCAAT 740 86
GATCTACCTTGGTGATTTG 911 87
GACCAATTGTCATGCTTGA 1009 88
GGTGATGAGCACTCACAAT 1140 89
CACTCACAATTGTTGACTA 1149 90
ACTCACAATTGTTGACTAA 1150 91
CTCACAATTGTTGACTAAA 1151 92
AGGAAAGTAGAATGGTTGA 1188 93
GTAGAATGGTTGAGTGCAA 1194 94
TAGAATGGTTGAGTGCAAA 1195 95
CAAGATAAATTGAGCTAGT 1223 96
AGTTAAGGCAAATCAGGTA 1239 97
GAGTTGTGATACAGAGTAT 1456 98
AGTTGTGATACAGAGTATA 1457 99
GTTGTGATACAGAGTATAT 1458 100
GACCTGAGCACTGGCATAA 100 135
TGACATCGACACTCATACA 158 136
ACACTCATACAGCCAAGTA 166 137
ACAATGGTCATGCTTTCAA 247 138
AGGACAAAGCAGTGCTCAA 286 139
GATGGCACTTACAGATTGA 318 140
GCACTTACAGATTGATTCA 322 141
ACAGATTGATTCAGTTTCA 328 142
ACAAGGTTCAGAGCATACT 371 143
CAGAACTTCACTTGGTTCA 412 144
ACTGGCCGTTCTAGGTATT 482 145
TTGAAGGTTGGCAGCGCTA 504 146
TGAAGGTTGGCAGCGCTAA 505 147
TTGTTGATGTGCTGGATTC 541 148
GAAATTCCGTAAACTTAAC 734 149
CCGAAGAACTGATGGTGGA 772 150
GAACTGATGGTGGACAACT 777 151
TGAAGAACAGGCAAATCAA 814 152
CTTACTTGATAGACTTACT 972 153
TGTGAAGACTAGACCAATT 998 154
TTGAGCTAGTTAAGGCAAA 1232 155
GGATGGCACTTACAGATTG 317 720
GAAATATGCTGCAGAACTT 401 721
The CA4 target sequence Initial nucleotide position is with reference to SEQ ID NO:2 SEQ ID NO:
TCGTCACCACCAAGGCAAA 213 23
GCTTCTTCTTCTCTGGCTA 252 24
TCTTCTCTGGCTACGATAA 258 25
GGCTACGATAAGAAGCAAA 266 26
GGTCCGACTTGCCATATAA 399 27
GGAGATGCACATAGTACAT 457 28
GCACATAGTACATGAGAAA 463 29
GACATCGAGGAATGTGAAA 490 30
GGTGGAGGCACTGTCTAAT 595 31
GGGACTTTAGGCATGATTA 1064 32
ACACTGGTGCTACGAGGTT 109 156
CTGGTGCTACGAGGTTCAA 112 157
GTTCAAGCCGAGTCCTCCA 125 158
TTCAAGCCGAGTCCTCCAA 126 159
CCTGCTTGGTGCCAGTCAA 150 160
TCTCTGGCTACGATAAGAA 261 161
TGGCTACGATAAGAAGCAA 265 162
GCAAACGTGGACTGTCCAA 280 163
TGGTCCGACTTGCCATATA 398 164
CCATGGAGATGCACATAGT 453 165
AGATGCACATAGTACATGA 459 166
TGCACATAGTACATGAGAA 462 167
ATAGTACATGAGAAAGAGA 467 168
CATCGAGGAATGTGAAAGA 492 169
TTGCGGTGCTGGCCTTTCT 534 170
GAACAGATCCTGGCATTCT 785 171
TCTCTCAGAAGCTGTACTA 801 172
AGGAACAGACAGTGAGCAT 825 173
GAACAGACAGTGAGCATGA 827 174
GGCAGCGCACGGTGATAAA 876 175
CAGCCTCTCTGTTGCCTCA 1003 176
TGTTGCCTCAGCTCTCCAA 1012 177
CA12, variant 1 and 2 total target sequence Initial nucleotide position is with reference to SEQ ID NO:101 SEQ ID NO:
TCCTGCTGGTGATCTTAAA 191 102
ACGGTTCCAAGTGGACTTA 239 103
GAGAATAGCTGGTCCAAGA 274 104
AGAATAGCTGGTCCAAGAA 275 105
GTGACATCCTCCAGTATGA 341 106
GCTACAATCTGTCTGCCAA 389 107
CAGTTTCTCCTGACCAACA 412 108
AGTTTCTCCTGACCAACAA 413 109
GACCAACAATGGCCATTCA 423 110
CTCCTTCAATCCGTCCTAT 687 111
CCTTCAATCCGTCCTATGA 689 112
ATCCGTCCTATGACAAGAT 695 113
AGATCTTCAGTCACCTTCA 710 114
CGGAGAGGACCGCTGAATA 791 115
GGAGAGGACCGCTGAATAT 792 116
AGAGGACCGCTGAATATTA 794 117
AGGTCCAGAAGTTCGATGA 983 118
GTTCGATGAGAGGCTGGTA 993 119
TTCGATGAGAGGCTGGTAT 994 120
TCGATGAGAGGCTGGTATA 995 121
TTCAATCCGTCCTATGACA 691 178
CA12, variant 1 target sequence Initial nucleotide position is with reference to SEQ ID NO:101 SEQ ID NO:
TGTACTGCGGCAGGACTGA 1039 122
AGAGCGTGCTTTCAAGTGT 1568 179
GATGTCAAATCGTGGTTTA 2326 180
AAATCGTGGTTTAGATCAA 2332 181
ATGGAATGCTACTAAGATA 2425 182
CTACTAAGATACTCCATAT 2433 183
ACAACGATGGCAAGCCTTA 2844 184
CAACGATGGCAAGCCTTAT 2845 185
TTGCTAGGCAAAGTTACAA 2880 186
TAGGCAAAGTTACAAGTGA 2884 187
AGTTACAAGTGACCTAATG 2891 188
TGTGCACTCAAGACCTCTA 2954 189
GTGCACTCAAGACCTCTAA 2955 190
TGCACTCAAGACCTCTAAC 2956 191
GCACTCAAGACCTCTAACA 2957 192
AGACCTCTAACAGCCTCGA 2964 193
GACCTCTAACAGCCTCGAA 2965 194
TGCCATTAGCATGCCTCAT 3006 195
GCCATTAGCATGCCTCATG 3007 196
TAGCATGCCTCATGCATCA 3012 197
CATCATCAGATGACAAGGA 3026 198
CA12, variant 2 target sequence Initial nucleotide position is with reference to SEQ ID NO:134 SEQ ID NO:
CTCCTTCAATCCGTCCTAT 687 199
AGAGCGTGCTTTCAAGTGT 1535 200
GATGTCAAATCGTGGTTTA 2293 201
AAATCGTGGTTTAGATCAA 2299 202
ATGGAATGCTACTAAGATA 2392 203
CTACTAAGATACTCCATAT 2400 204
ACAACGATGGCAAGCCTTA 2811 205
CAACGATGGCAAGCCTTAT 2812 206
TTGCTAGGCAAAGTTACAA 2847 207
TAGGCAAAGTTACAAGTGA 2851 208
AGTTACAAGTGACCTAATG 2858 209
TGTGCACTCAAGACCTCTA 2921 210
GTGCACTCAAGACCTCTAA 2922 211
TGCACTCAAGACCTCTAAC 2923 212
GCACTCAAGACCTCTAACA 2924 213
AGACCTCTAACAGCCTCGA 2931 214
GACCTCTAACAGCCTCGAA 2932 215
TGCCATTAGCATGCCTCAT 2973 216
GCCATTAGCATGCCTCATG 2974 217
TAGCATGCCTCATGCATCA 2979 218
CATCATCAGATGACAAGGA 2993 219
Table 2 is listed the example of the siRNA target sequence in ADRB1 and the ADRB2DNA sequence (being respectively SEQ ID NO:3 and SEQ IDNO:4), by the mode of as above illustrating from wherein designing siRNA of the present invention.As mentioned above, encode respectively β 1-and beta 2-adrenergic receptor of ADRB1 and ADRB2.
The siRNA target sequence of table 2.ADRB1 and ADRB2
The ADRB1 target sequence Initial nucleotide position is with reference to SEQ ID NO:3 SEQ ID NO:
TCCTTCTTCTGCGAGCTGT 468 33
TCGAGACCCTGTGTGTCAT 523 34
GCATCATGGCCTTCGTGTA 799 35
GAACGAGGAGATCTGTGTT 1563 36
ACGAGGAGATCTGTGTTTA 1565 37
GGAGATCTGTGTTTACTTA 1569 38
GATAGCAGGTGAACTCGAA 1593 39
CCCACAATCCTCGTCTGAA 1613 40
CCACAATCCTCGTCTGAAT 1614 41
TCTGAATCATCCGAGGCAA 1626 42
GCAATGTGCTGGTGATCGT 310 220
TGATCGTGGCCATCGCCAA 322 221
AAGTGCTGCGACTTCGTCA 726 222
CGTCCGTAGTCTCCTTCTA 769 223
CCGTAGTCTCCTTCTACGT 772 224
ATCATGGCCTTCGTGTACC 801 225
TCATGGCCTTCGTGTACCT 802 226
CCTCGGAATCCAAGGTGTA 1501 227
TGTGTTTACTTAAGACCGA 1576 228
GTGTTTACTTAAGACCGAT 1577 229
GTTTACTTAAGACCGATAG 1579 230
TTTACTTAAGACCGATAGC 1580 231
TTACTTAAGACCGATAGCA 1581 232
TAAGACCGATAGCAGGTGA 1586 233
ACCGATAGCAGGTGAACTC 1590 234
CGATAGCAGGTGAACTCGA 1592 235
ATAGCAGGTGAACTCGAAG 1594 236
CACAATCCTCGTCTGAATC 1615 237
ACAATCCTCGTCTGAATCA 1616 238
TCATCCGAGGCAAAGAGAA 1632 239
CATCCGAGGCAAAGAGAAA 1633 240
CCACGGACCGTTGCACAAA 1654 241
The ADRB2 target sequence Initial nucleotide position is with reference to SEQ ID NO:4 SEQ ID NO:
GCATCGTCATGTCTCTCAT 329 43
GCTGGTCATCACAGCCATT 375 44
CCCTCAAGACGTTAGGCAT 1031 45
GCATCATCATGGGCACTTT 1046 46
CCTAAATTGGATAGGCTAT 1149 47
GCTATGTCAATTCTGGTTT 1163 48
GGAAGACTTTGTGGGCCAT 1371 49
GCCTAGCGATAACATTGAT 1401 50
GGGAGGAATTGTAGTACAA 1426 51
GCTGTGAACATGGACTCTT 1880 52
CACGACGTCACGCAGCAAA 283 242
GATCGCTACTTTGCCATTA 607 243
ATCGCTACTTTGCCATTAC 608 244
TCGCTACTTTGCCATTACT 609 245
GCCATTACTTCACCTTTCA 619 246
TTACTTCACCTTTCAAGTA 623 247
CCATTCAGATGCACTGGTA 722 248
TGATCATGGTCTTCGTCTA 857 249
AGACGTTAGGCATCATCAT 1037 250
TCGTTAACATTGTGCATGT 1091 251
AGGATAACCTCATCCGTAA 1115 252
TCATCCGTAAGGAAGTTTA 1124 253
AAGTTTACATCCTCCTAAA 1136 254
AGTTTACATCCTCCTAAAT 1137 255
TAAATTGGATAGGCTATGT 1151 256
CTATGTCAATTCTGGTTTC 1164 257
GGTACTGTGCCTAGCGATA 1393 258
GTACTGTGCCTAGCGATAA 1394 259
TACTGTGCCTAGCGATAAC 1395 260
GCGATAACATTGATTCACA 1406 261
CGATAACATTGATTCACAA 1407 262
GGAGGAATTGTAGTACAAA 1427 263
GAGGAATTGTAGTACAAAT 1428 264
AGGAATTGTAGTACAAATG 1429 265
CAAATGACTCACTGCTGTA 1442 266
GACCTGAGTCTGCTATATT 1725 267
ACCTGAGTCTGCTATATTT 1726 268
CCATGTATCTACCTCACTA 1756 269
CATGTATCTACCTCACTAT 1757 270
ATGTATCTACCTCACTATT 1758 271
CCTCACTATTCAAGTATTA 1767 272
TAATATATTGCTGCTGGTA 1790 273
AATATATTGCTGCTGGTAA 1791 274
ATATATTGCTGCTGGTAAT 1792 275
TATATTGCTGCTGGTAATT 1793 276
CTGGTAATTTGTATCTGAA 1803 277
GAGTATCTCGGACCTTTCA 1861 278
CGGACCTTTCAGCTGTGAA 1869 279
CGAGCAAAGGTCTAAAGTT 1971 280
GAGCAAAGGTCTAAAGTTT 1972 281
GGTCTAAAGTTTACAGTAA 1979 282
Table 3 is listed the example of siRNA target sequence in the ACHE DNA sequence (being respectively SEQ IDNO:5 and SEQ ID NO:123) of splice variant E4-E5 and E4-E6, by the mode of as above illustrating from wherein designing siRNA of the present invention.As mentioned above, ACHE coding acetylcholinesterase.
The siRNA target sequence of table 3.ACHE
ACHE E4-E5 target sequence Initial nucleotide position is with reference to SEQ ID NO:5 SEQ ID NO:
CCAGAGTGTCTGCTACCAA 382 53
GCTACCAATATGTGGACAC 393 54
CCAATATGTGGACACCCTA 397 55
GCTGGTGTCCATGAACTAC 622 56
TCATCAACGCGGGAGACTT 1131 57
GGTCTACGCCTACGTCTTT 1459 58
GCTACGAGATCGAGTTCAT 1530 59
GCTATAACGGTCAACCATT 2251 60
GGCTGCAAATAAACTGTTA 2885 61
GCTGCAAATAAACTGTTAC 2886 62
AGTGTCTGCTACCAATATG 386 283
AGACAACGAGTCTCTCATC 1231 284
GGCTGTGGTCCTGCATTAC 1315 285
CTTCCTCCTCAAACCGAGA 2047 286
TCCTCCTCAAACCGAGAGA 2049 287
CCTCAAACCGAGAGACTCA 2053 288
TCAAACCGAGAGACTCACA 2055 289
AAACCGAGAGACTCACACT 2057 290
CCACGCCTTTGTTGTTTGA 2125 291
CACGCCTTTGTTGTTTGAA 2126 292
ACGCCTTTGTTGTTTGAAT 2127 293
GGCTATAACGGTCAACCAT 2250 294
TATAACGGTCAACCATTTC 2253 295
CGGTCAACCATTTCTGTCT 2258 296
GTCAACCATTTCTGTCTCT 2260 297
CCGTCTTCCGGTCATTCTT 2318 298
CCTCTCGTCTTTCGCACAT 2395 299
TCTCGTCTTTCGCACATTC 2397 300
TTTCGCACATTCTCCTGAT 2404 301
TTCGCACATTCTCCTGATC 2405 302
AGAACCAGTTCGACCACTA 2643 303
AACCAGTTCGACCACTACA 2645 304
CTGCAAATAAACTGTTACA 2887 305
ACHE E4-E5 and E4-E6 target sequence Initial nucleotide position is with reference to SEQ ID NO:5 SEQ ID NO:
TAGACGCTACAACCTTCCA 366 306
CGCTACAACCTTCCAGAGT 370 307
AGAGTGTCTGCTACCAATA 384 308
GAGTGTCTGCTACCAATAT 385 309
CTGTCCTCGTCTGGATCTA 525 310
ATGGCCGCTTCTTGGTACA 588 311
CGACATCAGTGACGCTGTT 768 312
GCACGTGCTGCCTCAAGAA 1045 313
CACGTGCTGCCTCAAGAAA 1046 314
GAAAGCGTCTTCCGGTTCT 1061 315
TGTGGTAGATGGAGACTTC 1090 316
GACAACGAGTCTCTCATCA 1232 317
AGGCTGTGGTCCTGCATTA 1314 318
GCTGTGGTCCTGCATTACA 1316 319
GTCTACGCCTACGTCTTTG 1460 320
TCTACGCCTACGTCTTTGA 1461 321
CTACGCCTACGTCTTTGAA 1462 322
CGGCTACGAGATCGAGTTC 1528 323
CAGCGACTGATGCGATACT 1607 324
GGCTCAGCAGTACGTTAGT 1705 325
AGTACGTTAGTCTGGACCT 1713 326
ACHE E4-E6 target sequence Initial nucleotide position is with reference to SEQ ID NO:123 SEQ ID NO:
ACATGGTGCACTGGAAGAA 1875 327
AGAACCAGTTCGACCACTA 1890 328
GAACCAGTTCGACCACTAC 1891 329
GGCTATAACACAGACGAGC 2011 330
GCTATAACACAGACGAGCC 2012 331
GCTGCAAATAAACTGTTAC 2133 332
CTGCAAATAAACTGTTACA 2134 333
Table 4 is listed Na +/ K +-ATP enzyme A and B subunit DNA sequence (ATP1A1 variant 1, SEQID NO:124; ATP1A1 variant 2, SEQ ID NO:125; ATP1A2, SEQ ID NO:6; ATP1A3, SEQ ID NO:126; ATP1A4 variant 1, SEQ ID NO:127; ATP1A4 variant 2, SEQ ID NO:128; ATP1B1 variant 1, SEQ ID NO:129; ATP1B1 variant 2, SEQ ID NO:130; ATP1B2, SEQ ID NO:131 and ATP1B3, SEQ IDNO:132) in the example of siRNA target sequence, by the mode of as above illustrating from wherein designing siRNA of the present invention.
The siRNA target sequence of table 4.ATP1A and ATP1B
ATP1A1 variant 1 target sequence Initial nucleotide position is with reference to SEQ ID NO:124 SEQ ID NO:
GCAATGAGACCGTGGAAGA 2208 334
TGCCAAGGCCTGCGTAGTA 2275 335
TAAAGGACATGACCTCCGA 2307 336
AGCAAGCTGCTGACATGAT 2526 337
ACATGATTCTTCTGGATGA 2538 338
GTCGTCTGATCTTTGATAA 2592 339
CTTATACCTTAACCAGTAA 2628 340
GGATCAACGATGTGGAAGA 2979 341
ACGATGTGGAAGACAGCTA 2985 342
CCGACTTGGTCATCTGTAA 3093 343
TAGGAAAGCACCGCAGCAT 3474 344
AGACGTCCTGGAATGAAGC 3504 345
GACGTCCTGGAATGAAGCA 3505 346
ACGTCCTGGAATGAAGCAT 3506 347
GAAGCATGTAGCTCTATGG 3518 348
The total target sequence of ATP1A1 variant 1 and variant 2 Initial nucleotide position is with reference to SEQ ID NO:124 SEQ ID NO:
TTCAGAACAAGGTGATAAA 343 349
TGATGAACTTCATCGTAAA 442 350
GGTGCTATCAGCCGTTGTA 700 351
TCAGCCGTTGTAATCATAA 707 352
GATTCGAAATGGTGAGAAA 811 353
CAGAATCATATCTGCAAAT 907 354
CACGTGGTATTGTTGTCTA 1059 355
CTGCTTAGTGAAGAACTTA 1363 356
GTTTCAGGCTAACCAGGAA 1594 357
CACTCTTAAAGTGCATAGA 1662 358
AGTACCAGTTGTCTATTCA 1758 359
TACCAGTTGTCTATTCATA 1760 360
AGCTGAAAGACGCCTTTCA 1896 361
TCGATAATCTGTGCTTTGT 2037 362
ACAGGAGACCATCCAATCA 2147 363
ATP1A1 variant 2 target sequence Initial nucleotide position is with reference to SEQ ID NO:125 SEQ ID NO:
TAGCCTTGATGAACTTCAT 436 364
TTGATGAACTTCATCGTAA 441 365
GATGAACTTCATCGTAAAT 443 366
CTACTCCTGAATGGATCAA 552 367
GGAGCGATTCTTTGTTTCT 617 368
GTGCTATCAGCCGTTGTAA 701 369
TGCTATCAGCCGTTGTAAT 702 370
GAGCATAAATGCGGAGGAA 832 371
GAAGGCAATGGACCTATGA 2204 372
CCGACTTGGTCATCTGTAA 2291 373
TATATGACGAAGTCAGAAA 2495 374
The ATP1A2 target sequence Initial nucleotide position is with reference to SEQ ID NO:6 SEQ ID NO:
CCATCCAACGACAATCTAT 471 63
GCATCATATCAGAGGGTAA 1990 64
CCTCCTCATCTTCATCTAT 3080 65
GGAAGTGAGGTAGTGCCAA 3797 66
GGATGTCACTCATGTACTT 4037 67
GCTCCATGCTGTTCTGAAA 4093 68
GCTGGCCATTGGCTAGAAT 4225 69
GGTCAGAACCTTTGGACAA 4323 70
GCTAGAGGTGGCATGTTTA 5213 71
GCGAGTGCATGGGCTAATT 5285 72
TGGCAATGGATGACCACAA 214 375
TGAACCATCCAACGACAAT 467 376
ACCATCCAACGACAATCTA 470 377
CATCCAACGACAATCTATA 472 378
ATCCAACGACAATCTATAT 473 379
GCAGATCAACGCAGAGGAA 632 380
TGTTTCTTCTCCACCAACT 825 381
CCATAGCAATGGAGATTGA 946 382
AGATGCAAGATGCCTTTCA 1693 383
CTGAATCTGCCATCTGGAA 1767 384
TGAATCTGCCATCTGGAAA 1768 385
ATCGTCTTTGCTCGAACGT 2157 386
CTGCATTGAAGAAGGCTGA 2263 387
ATGAAGCGGCAGCCACGAA 2589 388
TGAAGCGGCAGCCACGAAA 2590 389
GGATGACCGGACCATGAAT 2765 390
GCTGCCTTTCTCTCTTACT 2988 391
TCTATGATGAGGTCCGAAA 3094 392
GTGGAGAAGGAGACATACT 3144 393
TGGAGAAGGAGACATACTA 3145 394
TAGACCTAACTGTGAACAA 3344 395
AGACCTAACTGTGAACAAT 3345 396
TCCACTATGTTGTCTATTT 3418 397
TGAGTGCAAGAGCCTGAGA 3666 398
TGACATGAGTCTCCAGATA 3828 399
GTCGTGGACTCCAGCTCTA 3850 400
TGTCACTCATGTACTTAAT 4040 401
GTCACTCATGTACTTAATA 4041 402
CACTTCACCTTCTGTAATA 4061 403
GTAGAGAGAGACCTAGATA 4882 404
CTAGATAGGTCATGCAAGT 4894 405
AGGTCATGCAAGTGAGAAA 4900 406
TATCAGAAGCAAGGAAGTA 5040 407
TCCGATTAATTGGAGATTA 5114 408
CCGATTAATTGGAGATTAC 5115 409
GATTACTAACTGTGGACAA 5128 410
ATTACTAACTGTGGACAAA 5129 411
TCAGGCACTTTAGAAATAT 5253 412
GGCTAATTATCATCAATCT 5296 413
AGTTTGAGGTACTACCTAT 5375 414
TACTACCTATGTACTTGAA 5384 415
ACTACCTATGTACTTGAAA 5385 416
The ATP1A3 target sequence Initial nucleotide position is with reference to SEQ ID NO:126 SEQ ID NO:
TGGCTATGACAGAGCACAA 240 417
GAGGTCTGCCGGAAATACA 272 418
CTCACGCCACCGCCTACCA 362 419
TCGACTGTGATGACGTGAA 1836 420
TGAACTTCACCACGGACAA 1851 421
CCAAGGCCTGCGTGATCCA 2103 422
GGACTTCACCTCCGAGCAA 2137 423
GACTTCACCTCCGAGCAAA 2138 424
ACTTCACCTCCGAGCAAAT 2139 425
TCGACGAGATCCTGCAGAA 2157 426
CGACGAGATCCTGCAGAAT 2158 427
ACGAGATCCTGCAGAATCA 2160 428
GATCTTCGACAACCTAAAG 2425 429
CCATCTCACTGGCGTACGA 2580 430
CTGCCGAAAGCGACATCAT 2601 431
CGGACAAATTGGTCAATGA 2646 432
CAAATTGGTCAATGAGAGA 2650 433
GGATGACCGCACCGTCAAT 2794 434
CACCGTCAATGACCTGGAA 2803 435
ATCTTCGTCTACGACGAAA 3116 436
CTACGACGAAATCCGCAAA 3124 437
ACGACGAAATCCGCAAACT 3126 438
ACGAAATCCGCAAACTCAT 3129 439
CCAAACCTCTCTCCTCTCT 3377 440
ATP1A4 variant 1 target sequence Initial nucleotide position is with reference to SEQ ID NO:127 SEQ ID NO:
GGCACCTGGTTACGCTTCA 113 441
CATGGATGATCACAAATTA 612 442
AATCCTGACTCGAGATGGA 702 443
CCTACAGCATCCAGATATA 833 444
CCGGCTTATCTCTGCACAA 1101 445
AGCTCTGATACCTGGTTTA 1732 446
GCTCTGATACCTGGTTTAT 1733 447
AGGTGATGCTTCCGAGTCA 1836 448
GTACTCAATGAACGATGAA 2070 449
TACTCAATGAACGATGAAA 2071 450
GTGCTAGGCTTCTGCTTCT 2143 451
CATGGTAACAGGAGATCAT 2328 452
TGTGGTGCATGGTGCAGAA 2475 453
TGTTCATCATCCTCGGTAT 2861 454
GTTCATCATCCTCGGTATA 2862 455
GGCTTATGAGTCAGCTGAA 2952 456
GGACCTATGAGCAACGAAA 3203 457
CGGATCTCATCATCTCCAA 3281 458
TGGCTGCATTTCTGTCCTA 3377 459
GCTGCATTTCTGTCCTACA 3379 460
GTATTCTCATCTTCGTCTA 3470 461
TATTCTCATCTTCGTCTAT 3471 462
ACTAAACTCAGCAGATGAA 3554 463
GGCCAGAGATTATAAGTTT 3614 464
GCCAGAGATTATAAGTTTG 3615 465
CCAGAGATTATAAGTTTGA 3616 466
CAGAGATTATAAGTTTGAC 3617 467
ATAAGTTTGACACAACATC 3625 468
TAAGTTTGACACAACATCT 3626 469
TCTGAGACACTAGGATGAA 3642 470
AGACACTAGGATGAATTAT 3646 471
GACACTAGGATGAATTATC 3647 472
AGGATGAATTATCTTGGAT 3653 473
GATGAATTATCTTGGATGA 3655 474
CGTAGCCAGTCTAGACAGT 3797 475
GCCAGTCTAGACAGTAAAT 3801 476
CAGTCTAGACAGTAAATGT 3803 477
AGACAGTAAATGTCTGGAA 3809 478
GACAGTAAATGTCTGGAAA 3810 479
ATP1A4 variant 2 target sequence Initial nucleotide position is with reference to SEQ ID NO:128 SEQ ID NO:
GCTGGATTCTTTACCTACT 126 480
GTGGACCTATGAGCAACGA 251 481
TGGACCTATGAGCAACGAA 252 482
GGACCTATGAGCAACGAAA 253 483
CGGATCTCATCATCTCCAA 331 484
TGGCTGCATTTCTGTCCTA 427 485
GCTGCATTTCTGTCCTACA 429 486
GTATTCTCATCTTCGTCTA 520 487
TATTCTCATCTTCGTCTAT 521 488
CTTCGTCTATGATGAAATC 530 489
ACTACTAAACTCAGCAGAT 601 490
CTACTAAACTCAGCAGATG 602 491
TACTAAACTCAGCAGATGA 603 492
ACTAAACTCAGCAGATGAA 604 493
GGCCAGAGATTATAAGTTT 664 494
GCCAGAGATTATAAGTTTG 665 495
CCAGAGATTATAAGTTTGA 666 496
CAGAGATTATAAGTTTGAC 667 497
ATAAGTTTGACACAACATC 675 498
TAAGTTTGACACAACATCT 676 499
TCTGAGACACTAGGATGAA 692 500
AGACACTAGGATGAATTAT 696 501
GACACTAGGATGAATTATC 697 502
TAGGATGAATTATCTTGGA 702 503
AGGATGAATTATCTTGGAT 703 504
GATGAATTATCTTGGATGA 705 505
TGAATTATCTTGGATGAGA 707 506
CGTAGCCAGTCTAGACAGT 847 507
GCCAGTCTAGACAGTAAAT 851 508
CAGTCTAGACAGTAAATGT 853 509
AGACAGTAAATGTCTGGAA 859 510
GACAGTAAATGTCTGGAAA 860 511
ATP1B1 variant 1 target sequence Initial nucleotide position is with reference to SEQ ID NO:129 SEQ ID NO:
ACCTACTAGTCTTGAACAA 1096 512
TACTAGTCTTGAACAAACT 1099 513
GGACCTACACTTAATCTAT 1130 514
GACCTACACTTAATCTATA 1131 515
CTGCATTTAATAGGTTAGA 1167 516
CGTAACTGACTTGTAGTAA 1299 517
AGCAAGGTTTGCTGTCCAA 1441 518
TGCTGTCCAAGGTGTAAAT 1450 519
GCTGTCCAAGGTGTAAATA 1451 520
CTGTCCAAGGTGTAAATAT 1452 521
TTAACATACTCCATAGTCT 1564 522
GCCTTGTCCTCCGGTATGT 1746 523
TGTCCTCCGGTATGTTCTA 1750 524
GTCCTCCGGTATGTTCTAA 1751 525
TCCTCCGGTATGTTCTAAA 1752 526
CCATCACTTTGGCTAGTGA 1795 527
ATP1B1 variant 1 and variant 2 total target sequence Initial nucleotide position is with reference to SEQ ID NO:129 SEQ ID NO:
ACCGGTGGCAGTTGGTTTA 203 528
CCGGTGGCAGTTGGTTTAA 204 529
TTGGTTTAAGATCCTTCTA 214 530
AGATCCTTCTATTCTACGT 222 531
ATCCTTCTATTCTACGTAA 224 532
TCCTTCTATTCTACGTAAT 225 533
CCTTCTATTCTACGTAATA 226 534
GAAATTTCCTTTCGTCCTA 380 535
AACGAGGAGACTTTAATCA 525 536
GAAATTGCTCTGGATTAAA 591 537
ATGAAACTTATGGCTACAA 612 538
TGAAACTTATGGCTACAAA 613 539
AAACTTATGGCTACAAAGA 615 540
GGCAAACCGTGCATTATTA 635 541
GCAAACCGTGCATTATTAT 636 542
ACCGAGTTCTAGGCTTCAA 663 543
CCGAGTTCTAGGCTTCAAA 664 544
TTCTAGGCTTCAAACCTAA 669 545
ATGAGTCCTTGGAGACTTA 699 546
GCAAGCGAGATGAAGATAA 765 547
AGTTGGAAATGTGGAGTAT 790 548
CTGCAGTATTATCCGTACT 839 549
TGCAGTATTATCCGTACTA 840 550
GCAGTATTATCCGTACTAT 841 551
CCGTACAGTTCACCAATCT 900 552
TCACCAATCTTACCATGGA 909 553
AAATTCGCATAGAGTGTAA 933 554
TGTAAGGCGTACGGTGAGA 947 555
ATP1B1 variant 2 target sequence Initial nucleotide position is with reference to SEQ ID NO:130 SEQ ID NO:
TGTGTTATGCTTGTATTGA 1063 556
GCCTTGTCCTCCGGTATGT 1102 557
TGTCCTCCGGTATGTTCTA 1106 558
GTCCTCCGGTATGTTCTAA 1107 559
TCCTCCGGTATGTTCTAAA 1108 560
CCTCCGGTATGTTCTAAAG 1109 561
TCCGGTATGTTCTAAAGCT 1111 562
CCATCACTTTGGCTAGTGA 1151 563
The ATP1B2 target sequence Initial nucleotide position is with reference to SEQ ID NO:131 SEQ ID NO:
CCGAGGACGCACCAGTTTA 653 564
CGAGGACGCACCAGTTTAT 654 565
TGCAGACTGTCTCCGACCA 771 566
CAGACTGTCTCCGACCATA 773 567
CAAGACTGAGAACCTTGAT 841 568
AGAACCTTGATGTCATTGT 849 569
CCTTGATGTCATTGTCAAT 853 570
AAGTTCTTGGAGCCTTACA 917 571
AGTTCTTGGAGCCTTACAA 918 572
GAGCCTTACAACGACTCTA 926 573
AGCCTTACAACGACTCTAT 927 574
TTACAACGACTCTATCCAA 931 575
GCTATTACGAACAGCCAGA 981 576
TATTACGAACAGCCAGATA 983 577
ATTACGAACAGCCAGATAA 984 578
CAGATAATGGAGTCCTCAA 996 579
GATAATGGAGTCCTCAACT 998 580
AAACGTGCCTGCCAATTCA 1022 581
AACGTGCCTGCCAATTCAA 1023 582
AACCAGAGCATGAATGTTA 1160 583
CTCGGCAACTTCGTCATGT 1214 584
AATGTAGAATGTCGCATCA 1355 585
ATGTAGAATGTCGCATCAA 1356 586
CAACATCGCCACAGACGAT 1381 587
GACGATGAGCGAGACAAGT 1394 588
TGGCCTTCAAACTCCGCAT 1425 589
CCATCTCTCTCCTGTGGAT 1474 590
TTTGATAACAGAGCTATGA 1550 591
CCATTGCGGTTCCGTCACT 1620 592
AGGAGTTAGGAGCCTTTCT 1707 593
TGTGAGAGCTATCCACTCT 1740 594
CACTCTCCTGCCTGCATAT 1753 595
CGCCACACACACACACAAA 1825 596
TCTACACAGTCGCCATCTT 1956 597
TCGCCATCTTGGTGACTTT 1965 598
GGTTGACCTAGGCTGAATA 2598 599
GTTGACCTAGGCTGAATAT 2599 600
GGCTGAATATCCACTTTGT 2608 601
AGCAAGTTATCAACTAATC 2828 602
GCAAGTTATCAACTAATCA 2829 603
CCAAATCTAGCCTCTGAAT 2888 604
CTCCTGCTCTGAATATTCT 3012 605
TGTGTCAGATCTACTGTAA 3251 606
The ATP1B3 target sequence Initial nucleotide position is with reference to SEQ ID NO:132 SEQ ID NO:
TTGCTCTTCTACCTAGTTT 292 607
CAGTGACCGCATTGGAATA 434 608
GACCGCATTGGAATATACA 438 609
TTCAGTAGGTCTGATCCAA 457 610
CAGTAGGTCTGATCCAACT 459 611
GGTACATTGAAGACCTTAA 488 612
TACATTGAAGACCTTAAGA 490 613
AGACCTTAAGAAGTTTCTA 498 614
GACCTTAAGAAGTTTCTAA 499 615
GTTTATGTTGCATGTCAGT 592 616
TGGTATGAATGATCCTGAT 639 617
TGAAGGAGTGCCAAGGATA 723 618
TGTAGCAGTTTATCCTCAT 774 619
GTAGCAGTTTATCCTCATA 775 620
CTCATAATGGAATGATAGA 788 621
AGCCATTGGTTGCTGTTCA 857 622
GCCATTGGTTGCTGTTCAG 858 623
GTAACAGTTGAGTGCAAGA 910 624
TAACAGTTGAGTGCAAGAT 911 625
TGATGGATCAGCCAACCTA 930 626
GATGGATCAGCCAACCTAA 931 627
ATGGATCAGCCAACCTAAA 932 628
GCATAGTATGAGTAGGATA 1009 629
CATAGTATGAGTAGGATAT 1010 630
GGATATCTCCACAGAGTAA 1023 631
GATATCTCCACAGAGTAAA 1024 632
AGAAAGGTGTGTGGTACAT 1111 633
ATAACGTGCTTCCAGATCA 1146 634
TAACGTGCTTCCAGATCAT 1147 635
AGTGTACAGTCGCCAGATA 1220 636
GTGAACACCTGATTCCAAA 1246 637
AGCTTAATATGCCGTGCTA 1321 638
TAATATGCCGTGCTATGTA 1325 639
AATATGCCGTGCTATGTAA 1326 640
ATATGCCGTGCTATGTAAA 1327 641
GCCGTGCTATGTAAATATT 1331 642
TGCAAGAAATGTGGTATGT 1437 643
ATGCTGAATTAGCCTCGAT 1548 644
TTGATTAAGAGCACAAACT 1571 645
AGCAGACTGTGGACTGTAA 1785 646
GCAGACTGTGGACTGTAAT 1786 647
CAGACTGTGGACTGTAATA 1787 648
Table 5 is listed the example of siRNA target sequence in the DNA sequence (being respectively SEQ ID NO:7 and SEQ ID NO:133) of SLC12A1 and SLC12A2, by the mode of as above illustrating from wherein designing siRNA of the present invention.As described above, SLC12A1 and SLC12A2 encode respectively Na-K-2Cl cotransporter NKCC2 and NKCC1.
The siRNA target sequence of table 5.SLC12A1
The SLC12A1 target sequence Initial nucleotide position is with reference to SEQ ID NO:7 SEQ ID NO:
CCACCATAGTAACGACAAT 675 73
GGAATGGAATGGGAGGCAA 974 74
GGGATGAACTGCAATGGTT 1373 75
CCATGCCTCTTATGCCAAA 1780 76
CCTGCTCTCCTGGACATAA 2102 77
GCATCTGCTGTGAAGTCTT 2151 78
GCCTCAGGCTTAGGAAGAA 2315 79
GGAAGCGACTATCAAAGAT 2542 80
GCTGGCAAGTTGAACATTA 2609 81
GCAAGAAAGGGATCCATAT 3197 82
TAATACCAATCGCTTTCAA 67 649
ACCAATCGCTTTCAAGTTA 71 650
CAATCGCTTTCAAGTTAGT 73 651
ATAGAGTACTATCGTAACA 353 652
CCAGCCTGCTTGAGATTCA 405 653
CTGTAGTAGATCTACTTAA 864 654
ACCAATGACATCCGGATTA 911 655
CCAATGACATCCGGATTAT 912 656
CAATGACATCCGGATTATA 913 657
GGCTATGACTTCTCAAGAT 1409 658
GCCTCATATGCACTTATTA 1748 659
AGACCTGCGTATGGAATTT 1811 660
ACGTCTATGTGACTTGTAA 1935 661
GTCTATGTGACTTGTAAGA 1937 662
TTCCTACGTGAGTGCTTTA 1993 663
GACAATGCTCTGGAATTAA 2012 664
CTCTGGTGATTGGATATAA 2346 665
TGACAGAGATTGAGAACTA 2388 666
TGAGATTGGCGTGGTTATA 2437 667
GCATCCGAGGCTTGTTTAA 2586 668
ACCATATCGTCTCCATGAA 3007 669
CCATATCGTCTCCATGAAA 3008 670
TGAAAGCTGCAAAGATTTA 3022 671
TCGACTGAATGAACTCTTA 3130 672
CCATATCGGATTTGTTGTA 3210 673
GGTTGGAAATCCTCACAAA 3237 674
CTTACTAGTTAGAGGAAAT 3271 675
The SLC12A2 target sequence Initial nucleotide position is with reference to SEQ ID NO:133 SEQ ID NO:
ACCACCAGCACTACTATTA 748 676
CCACCAGCACTACTATTAT 749 677
CAGCACTACTATTATGATA 753 678
CTATCAGTCCTTGTAATAA 1119 679
ATTGTCTACTTCAGCAATA 1169 680
TATTGGTGATTTCGTCATA 1499 681
TTCGTCATAGGAACATTTA 1509 682
TAATGACACTATCGTAACA 1820 683
GATGTTTGCTAAAGGTTAT 2081 684
CTTCGTGGCTACATCTTAA 2118 685
TGCACTTGGATTCATCTTA 2147 686
GATGATCTGTGGCCATGTA 2615 687
CTCGAAGACAAGCCATGAA 2644 688
TGAAAGAGATGTCCATCGA 2659 689
AGAGATGTCCATCGATCAA 2663 690
CCATCGATCAAGCCAAATA 2671 691
CATCGATCAAGCCAAATAT 2672 692
GGTCGTATGAAGCCAAACA 2793 693
CACTTGTCCTTGGATTTAA 2812 694
TAGTGGTTATTCGCCTAAA 2914 695
ATCTCATCTTCAAGGACAA 2948 696
CGATTTAGATACTTCCAAA 3044 697
TCATTGGTGGAAAGATAAA 3334 698
TTAGCAAGTTCCGGATAGA 3391 699
GAAATCATTGAGCCATACA 3480 700
AGCAAGATATTGCAGATAA 3520 701
GATGAACCATGGCGAATAA 3549 702
CATTCAAGCACAGCTAATA 3639 703
TTCAGTGCCTAGTGTAGTA 3840 704
AGGAAAGTTGCTCCATTGA 3941 705
AAAGTTGCTCCATTGATAA 3944 706
CAATCTTAATGGTGATTCT 4001 707
TTGACATCATAGTCTAGTA 4995 708
GACATCATAGTCTAGTAAA 4997 709
GTGTGTGTGTGTGTATATA 5141 710
GTGTGTGTGTGTATATATA 5143 711
TAGGCAAACTTTGGTTTAA 5249 712
GGAGAATACTTCGCCTAAA 5375 713
TGAGTATGACCTAGGTATA 5834 714
AGAGATCTGATAACTTGAA 5852 715
GGTAAAGACAGTAGAAATA 5981 716
TTTAAGCTCTGGTGGATGA 6678 717
As described in top example, the target sequence information that one of ordinary skill in the art in provides in can use table 1-5 designs RNA interfering, shorter or the longer length of sequence that provides than among the table 1-5 is provided this RNA interfering, by with reference at SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ IDNO:101, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ IDNO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ IDNO:130, SEQ ID NO:131, SEQ ID NO:132, sequence location among SEQ ID NO:133 or the SEQ IDNO:134, and to respectively with SEQ ID NO:1, SEQ ID NO:2, SEQID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:101, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, the increase of the complementary or approximate complementary nucleotide of SEQ ID NO:133 or SEQ ID NO:134 or disappearance and realize.
Target RNA cleavage reaction by siRNA and the guiding of other forms of RNA interfering is highly sequence-specific.Usually, described here is siRNA as the siRNA embodiment that suppresses mRNA, its be included on the sequence part with target mRNA consistent have adopted nucleotide chain and with the complete complementary antisense nucleotide chain of the part of target mRNA.Yet, do not need between antisense siRNA chain and the target mRNA or antisense siRNA chain and 100% sequence complementation is arranged between the adopted siRNA chain for implementing the present invention.Therefore, for example, the sequence variation that the present invention's permission can be estimated owing to gene mutation, bacterial strain polymorphism or evolutionary divergence.
In one embodiment of the invention, it is complementary that the antisense strand of siRNA and target mRNA have being close at least fully continuously of at least 19 nucleotide." be close to fully " used herein mean the antisense strand of siRNA and target mRNA to small part be " complementary substantially ", and the sense strand of siRNA and target mRNA to small part be " basically identical ".Known as all those of ordinary skill of this area, " homogeneity " is meant by the order of nucleotide between the matching sequence and feature and comes serial correlation degree between the definite kernel nucleotide sequence.In one embodiment, the antisense strand of siRNA and target mRNA sequence have 80% and 80%-100% between complementation, for example, 85%, 90% or 95% complementation, this is considered to be close to complementary completely and can uses in the present invention." completely " continuous complementation is meant the standard Watson-Crick base pairing of adjacent base pair." be close to completely " complementation continuously at least and be included in " completely " complementation of using here.Be designed for and measure homogeneity or maximum match degree that complementary computer approach comes the definite kernel nucleotide sequence, for example BLASTN (Altschul, people such as S.F. (1990) J.MoI.Biol.215:403-410).
The percentage ratio of continuous nucleotide in first nucleic acid molecules described in term " homogeneity percent ", and continuous nucleotide shared percentage ratio in second nucleic acid molecules of series of identical length also described in this term.The percentage ratio of continuous nucleotide in first nucleic acid molecules described in term " complementary percent ", and this nucleic acid molecules can carry out base pairing by a series of continuous nucleotides in Watson-Crick principle and second nucleic acid molecules.
Relation between the chain (sense strand) among target mRNA (sense strand) and the siRNA is exactly a homogeneity.The sense strand of siRNA if exist, is also referred to as transfer chain.Relation between another chain (antisense strand) of target mRNA (sense strand) and siRNA is exactly complementary.The antisense strand of siRNA is also referred to as the guiding chain.
With 5 ' the inferior terminal bases of the nucleotide sequence write to the direction of 3 ' is the penult base, i.e. the adjacent base of 3 ' end base.With 5 ' to 3 ' time terminal 13 bases of the nucleotide sequence write of direction be adjacent last 13 base sequences of 3 ' end base, and do not comprise 3 ' end base.Similarly, with 5 ' to 3 ' time terminal 14,15,16,17 or 18 bases of the nucleotide sequence write of direction be respectively adjacent last 14,15,16,17 or 18 base sequences of 3 ' end base, and do not comprise 3 ' end base.
Phrase " has the zone of containing 13 continuous nucleotides at least of at least 90% sequence complementarity or at least 90% sequence homogeneity with 3 ' terminal penultimate 13 nucleotide of any one (sequence identifier) " and allows a nucleotide to replace.The replacement of two nucleotide (being 11/13=85% homogeneity/complementarity) is not included in such phrase.
In one embodiment of the invention, the continuous nucleotide zone is the zone of at least 14 continuous nucleotides, and penultimate 14 nucleotide of sequence 3 ' end of this zone and the identification of each sequence identifier have the complementary or at least 85% sequence homogeneity of at least 85% sequence.The replacement of two nucleotide (being 12/14=86% homogeneity/complementarity) is not included in such phrase.
In another embodiment of the invention, the zone of continuous nucleotide is the zone of at least 15,16,17 or 18 continuous nucleotides, and terminal penultimate 14 nucleotide of sequence 3 ' of this zone and sequence identifier have the complementary or at least 80% sequence homogeneity of at least 80% sequence.The replacement of three nucleotide is not included in such phrase.
Among the mRNA corresponding to SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:101, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, the target sequence of SEQ ID NO:133 or SEQ ID NO:134 may be at 5 of mRNA ' or 3 ' end untranslated region and in the coding region of mRNA.
One of double-chain interference RNA or two chains may contain 3 ' jag of 1 to 6 nucleotide, and this 3 ' jag may be ribonucleotide or deoxyribonucleotide or its mixture.The nucleotide of jag is not base pairing.In one embodiment of the invention, RNA interfering comprises 3 ' jag of TT or UU.In another embodiment of the invention, RNA interfering comprises that at least one is flat terminal.This end contains 5 ' phosphate or 3 ' hydroxyl usually, and in other embodiments, antisense strand has 5 ' phosphate, and sense strand contains 5 ' hydroxyl.In the other embodiment, this end adds other molecules or functional group by covalency and is further modified.
The sense strand of double-stranded siRNA and the Double helix form that antisense strand may be aforesaid two strands also may be independent molecules, and wherein complementary region is base pairing and covalently bound to form independent chain by hairpin loop.Generally believe that the protein that is called dicer cuts the RNA interfering of hair clip with the RNA molecule that forms two independent base pairings in cell.
By adding, delete, replace or modifying one or more nucleotide, RNA interfering can be different from the RNA that nature forms.The non-nucleotide material can be incorporated into 5 of RNA interfering ' end or 3 ' end or it is inner.The such modification of common design increases the nuclease resistance of RNA interfering, the absorption that improves cell, the targeting that strengthens cell, assistance tracking RNA interfering, the further activation potential that improves stability or minimizing interferon path.For example, RNA interfering may comprise purine nucleotides at the jag end.For example, cholesterol also provides stability to siRNA by 3 ' end that the pyrrolidine joint is connected to siRNA molecule sense strand.
Further modify and comprise for example 3 ' terminal biotin molecule, known peptide, nano-particle, plan peptide class, fluorescent dye or dendrimer with cell-penetrating performance.
Can also play a role in embodiments of the invention at base portion, glycosyl part or the phosphoric acid part modified nucleotide of molecule.Modification comprises with replacing as alkyl, alkoxyl, amino, denitrogenation, halogen, hydroxyl, sulfydryl or its compositions.Can use more stable analog substituted nucleotide, as replacing ribonucleotide, or have glycosyl modified 2 ' amino, 2 ' O-methyl, 2 ' methoxy ethyl or the 2 '-O of for example using with deoxyribonucleotide, 4 '-the C methylene bridge replaces 2 '-hydroxyl.The nucleotide of modifying with N-that the purine of nucleotide or the example of pyrimidine analogue comprise that xanthine, hypoxanthine, azapurine, methyl mercapto adenine, 7-denitrogenation adenosine and O-modify.The phosphate of nucleotide can be modified by the one or more oxygen that replace in the phosphate with nitrogen or sulfur (D2EHDTPA).Be modified with and be beneficial to, for example, enhancement function improves stability or permeability or instructs location or targeting.
Antisense RNA interfering chain can have one or more zones and SEQ ID NO:1, SEQ IDNO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQID NO:7, SEQ ID NO:101, SEQ ID NO:123, SEQ ID NO:124, SEQ IDNO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO.128, SEQ IDNO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, the part of SEQ IDNO:133 or SEQ ID NO:134 is not complementary.The incomplementarity zone may be complementary region or two complementary regions between 3 ' end, 5 ' end or these two simultaneously terminal.
Can perhaps use dicer or other to have the similar active suitable long double-stranded RNA of nuclease cutting and exogenous generation RNA interfering by chemosynthesis, in vitro transcription.Can be from commercial supplier such as Ambion Inc. (Austin; TX), Invitrogen (Carlsbad; CA) or Dharmacon (Lafayette; CO) locate to obtain the RNA interfering of chemosynthesis, this RNA interfering is to use conventional DNA/RNA synthesizer, makes from the ribonucleotide phosphoramidite of protection.Can be by for example utilizing the extraction of solvent or resin, the combination of precipitation, electrophoresis, chromatography or these methods comes the purification RNA interfering.Alternatively, can use the loss of RNA interfering that does not have purification or the few purification of process to avoid causing because of the sample processed.
RNA interfering also can be carried out endogenous expression from plasmid or virus expression carrier or from minimum expression cassette (for example the fragment that is produced by PCR, it comprises the one or more suitable template of one or more promoteres and RNA interfering).The example of commercial shRNA based on the expression vector of plasmid comprise the pSilencer series of products (Ambion, Austin, TX) and pCpG-siRNA (InvivoGen, SanDiego, CA).The viral vector of expressing RNA interfering may derive from multiple virus, comprises adenovirus, adeno-associated virus, slow virus (as HIV, FIV and EIAV) and herpesvirus.The example of the viral vector of commercial expression ShRNA comprise pSilencer adeno (Ambion, Austin, TX) and pLenti6/BLOCK-iT TM-DEST (Invitrogen, Carlsbad, CA).The selection of viral vector, from the method for vector expression RNA interfering and the method for transmitting viral vector all within those of ordinary skills' limit of power.As the example of the test kit of producing the shRNA expression cassette that PCR produces comprise Silencer Express (Ambion, Austin, TX) and siXpress (Mirus, Madison, WT).
Can comprise from the known multiple eukaryotic promoter of those of ordinary skills and express RNA interfering pol III promoter (as U6 or H1 promoter) or the polII promoter (as cytomegalovirus promoter).Those skilled in the art admit that these promoteres also are applicable to the abduction delivering that allows RNA interfering.
Under physiological condition, hybridize: in certain embodiments of the invention, the antisense strand of RNA interfering with in vivo as the mRNA hybridization of RISC complex part.
" hybridization " refers to wherein single-chain nucleic acid and complementation or is close to complementary base sequence interaction is called the bond complexes of crossbred with formation process.Hybridization has susceptiveness and selectivity.External, the specificity of hybridization (being stringency) is by the concentration and the hybridization temperature control of for example salt in prehybridization and hybridization solution or Methanamide, and these operations are known in the art.Especially, stringency strengthens by reducing salinity, increase Methanamide concentration or rising hybridization temperature.
For example, at about 50% Methanamide, produce high stringency condition 37 ℃-42 ℃ the time.Produce the stringency condition that reduces at about 35%-25% Methanamide, 30 ℃-35 ℃ the time.The example of the stringency condition that is used to hybridize is provided at Sambrook, J., and 1989, Molecular Cloning:ALaboratory Manual, Cold Spring Harbor Laboratory Press, Cold SpringHarbor is among the N.Y..Other example of stringency hybridization conditions comprises 400mM NaCl, 40mMPIPES, and pH6.4,1mM EDTA, 50 ℃ or 70 ℃ are washing again after following 12-16 hour; Perhaps in 70 ℃, 1 * SSC or 50 ℃, 1 * SSC and 50% Methanamide after the hybridization, in 70 ℃, 0.3 * SSC, wash; Perhaps in 70 ℃, 4 * SSC or 50 ℃, 4 * SSC and 50% Methanamide after the hybridization, in 67 ℃, 1 * SSC, wash.Hybridization temperature is than the fusing point (T of crossbred m) approximately low 5-10 ℃, the computational methods below using are determined the fusing point T of the crossbred of 19-49 base pair length m: T m℃=81.5+16.6 (log 10[Na +])+0.41 (%G+C)-(600/N), wherein N is a base number in the crossbred, and [Na +] be the concentration of sodium ion in the hybridization buffer.
Above-mentioned external hybridization assays provides the combination of prediction between candidate siRNA and target whether to have specific method.Yet, in the RISC complex systems, use the antisense strand of the high stringency that can not prove external hybridization also can carry out specific cutting to target.
The strand RNA interfering: as mentioned above, RNA interfering finally works as strand.Found that strand (ss) RNA interfering can influence the mRNA silence, but lower than double-stranded RNA efficient.Therefore, embodiment of the present invention also provide uses the ss RNA interfering, its under physiological condition with SEQ IDNO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQID NO:6, SEQ ID NO:7, SEQ ID NO:101, SEQ ID NO:123, SEQ IDNO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ IDNO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ IDNO:132, the part hybridization of SEQ ID NO:133 or SEQ ID NO:134, and at least 19 nucleotide are arranged be close to continuous complementary zone fully at least, hybridization portion corresponds respectively to SEQ IDNO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQID NO:6, SEQ ID NO:7, SEQ ID NO:101, SEQ ID NO:123, SEQ IDNO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ IDNO:128, SEQ IDNO:129, SEQ IDNO:130, SEQ IDNO:131, SEQ IDNO:132, SEQ ID NO:133 or SEQ ID NO:134.The same with above-mentioned ds RNA interfering, ss RNA interfering length is 19-49 nucleotide.The ss RNA interfering contains 5 ' end phosphoric acid or in position or intravital 5 ' end position by phosphorylation.Term " 5 ' phosphorylation " is used for describing, for example, polynucleotide or oligonucleotide with phosphate group, this phosphate group is connected to via ester bond on the C5 hydroxyl of sugar (for example ribose, deoxyribose or identical analog) at 5 of described polynucleotide or oligonucleotide ' end.
The same with the ds RNA interfering, obtain the ss RNA interfering by chemosynthesis or in vitro transcription or from carrier or expression cassette endogenous expression.Can add 5 ' end phosphate by kinases, or 5 ' end phosphoric acid can be generated by the nuclease cutting of RNA.Use the same with the ds RNA interfering.In one embodiment, use the ss RNA interfering that end with protection and nuclease resistance modify and realize silence.The ss RNA interfering can dry storage or is dissolved in the aqueous solution.In order to suppress annealing or for stable, this solution can comprise buffer or salt.
The hair clip RNA interfering: the hair clip RNA interfering is individual molecule (as a single oligonucleotide chain), comprises the sense strand and the antisense strand (as shRNA) of the RNA interfering in stem ring or the hairpin structure.For example, shRNA can express from dna vector, and wherein coding has the DNA oligonucleotide of adopted RNA interfering chain to be connected by the DNA oligonucleotide of short spacer with the antisense RNA interfering chain of coding reverse complemental.If for the needs of selected expression vector, can add the nucleotide of 3 ' terminal T ' s and formation restriction site.The rna transcription thing that obtains self is folded to form loop-stem structure.
Mode of administration: can be by ocular tissue injection as near the eyes, the injection of (intracanalicular) in the conjunctiva, fascial bursa (subtenon), anterior chamber in (intracameral), the vitreous body under (intravitreal), ophthalmic, the retina, under the conjunctiva, behind the eyeball or in the tear stains; Or directly apply to eyes by using conduit or other apparatus for placing such as retina pill, ophthalmic insertion, suppository or comprising implant porous, non-porous or spawn; By topical ophthalmic drop or ointment; By in the blind pipe or adjacent sclera (sclera corpus ciliare (transcleral)) or the slow releasing device within the eye implanted RNA interfering directly is delivered to eye.Intracameral injection can enter the anterior chamber by cornea, allows medicament arrive girder.Injection can enter vein collecting pipe drain Schlemm's canal or enter Schlemm's canal in the tear stains.Expection can be carried out whole body or intestinal is used outward, includes but not limited to intravenous, subcutaneous and oral administration.
Experimenter: need the high intraocular pressure of treatment or have the experimenter who develops into high intraocular pressure danger to suffer from high intraocular pressure or have people or the mammal that develops into high intraocular pressure danger, described high intraocular pressure does not need or unsuitable expression or active relevant with target described here, and described target is carbonic anhydrase II, IV or XII; β 1-or beta 2-adrenergic receptor; Acetylcholinesterase; Na +/ K +-ATP enzyme or Na-K-2Cl cotransporter.The eye structure relevant with this class disease may comprise for example eye, retina, choroid, crystalline lens, cornea, girder, iris, optic nerve, optic disc, sclera, the eye-chamber, vitreous chamber or corpus ciliare.The experimenter also may be eye cell, cell culture, organ or (ex vivo) organ or tissue in vitro.
Preparation and dosage: pharmaceutical preparation comprises that weight ratio can be up to 99% RNA interfering of the present invention or its salt, and it mixes with the acceptable eye vector medium of physiology such as water, buffer, normal saline, glycine, hyaluronic acid, mannitol or the like.
RNA interfering of the present invention is used with the form of solution, suspension or Emulsion.Be the examples of formulations that the present invention may implement below.
Weight content % RNA interfering reaches 99; 0.1-99; 0.1-50; 0.5-10.0 hydroxypropyl emthylcellulose 0.5 sodium chloride 0.8 benzalkonium chloride 0.01EDTA 0.01NaOH/HCl qs pH7.4 pure water (not containing the RNA enzyme) qs 100mL
Weight content % RNA interfering reaches 99; 0.1-99; 0.1-50; 0.5-10.0 phosphate buffer 1 .0 benzalkonium chloride 0.01 Spheron MD 30/70 0.5 pure water (not containing the RNA enzyme) q.s. reaches 100%
Weight content % RNA interfering reaches 99; 0.1-99; 0.1-50; 0.5-10.0 sodium dihydrogen phosphate 0.05 sodium hydrogen phosphate 0.15 (anhydrous)
Sodium chloride 0.75EDTA disodium salt 0.05 polyoxyethylene castor oil, 0.1 benzalkonium chloride 0.01HCl and/or NaOH pH7.3-7.4 pure water (not containing the RNA enzyme) q.s. reach 100%
In general, the EC that the RNA interfering of effective dose produces on target cell surface in the embodiment of the present invention is from 100pM to 100nM, or from 1nM to 50nM, or about 25nM from 5nM to about 10nM or extremely.Reach the required dosage of this local concentration and depend on many factors, comprise that medication, administration site, the cell number of plies, topical between administration site and target cell or tissue still are whole body administration or the like.Concentration ratio on the administration site may exceed much in the concentration of target cell or tissue surface.Compositions is locally applied to ocular surface, every day one to four time, or according to clinicist's routine judge by wider administration time table such as every day, weekly, two week, every month or longer time use.The pH of preparation approximately is pH4-9 or pH4.5-pH7.4.
By the persistent period of increase effect, thereby allow to reduce administration number of times and strengthen experimenter's compliance, use at the siRNA of ocular hypertension targets mRNA experimenter's treatment than being supposed to more favourable with micromolecule part medicament for the eyes drop.
Though correct dosage regimen depends on clinicist's decision, RNA interfering can instruct the method for dripping in every eye to use by the clinicist.The effective dose of preparation may depend on many factors, for example experimenter's age, race and sex other, ratio, RNA interfering usefulness and the RNA interfering stability of ocular hypertensive seriousness, target gene transcript/protein conversion.In one embodiment, RNA interfering is locally applied to eyes by therapeutic dose and arrives girder, retina or optic disc, thereby improve the disease relevant with high intraocular pressure.
Acceptable carrier: the ophthalmology acceptable carrier refers to that those cause at the most and seldom arrives the carrier that anophthalmia stimulates, and provides suitable anticorrosion if desired, and carries one or more RNA interfering of the present invention with uniform dose.The carrier accepted as the RNA interfering of using embodiment of the present invention comprises cationic-liposome-mediated transfection reagent TKO (Minis Corporation, Madison, WI), LIPOFECTIN
Figure A200810213139D0064143311QIETU
, Lipofectamine, OLIGOFECTAMINE TM(Invitrogen, Carlsbad, CA) or DHARMAFECT TM(Dharmacon, Lafayette, CO); Polycation such as polymine; Cationic peptide such as Tat, poly arginine or wear film peptide (Antp peptide); Or liposome.The vesicle that liposome is formed at standard forms lipid and sterin, as cholesterol, and can comprise that target molecules for example has the monoclonal antibody of binding affinity to surface endothelial cell antigens.In addition, liposome can be the liposome that adds PEG.
Can or in the doser of bioerodable or abiotic corrosion, transmit RNA interfering at solution, suspension.RNA interfering can be used separately, also be can be used as the constituent of covalent conjugates, with cationic-liposome, cationic polypeptide or cationic polymer complexation or be wrapped in nano-particle targeting or non-targeting and use.
For dosing eyes, the acceptable antiseptic of RNA interfering and ophthalmology, cosolvent, surfactant, viscosifier, penetration enhancer, buffer, sodium chloride or water can be combined, to form water-soluble aseptic ophthalmic suspension or solution.Can prepare the ophthalmic solution preparation by RNA interfering being dissolved in the molten buffer of physiologically acceptable isotonic water.In addition, ophthalmic solution may comprise that ophthalmologic acceptable surfactant assists dissolution inhibitor.Viscosifier such as hydroxy methocel, hydroxyethyl-cellulose, methylcellulose, polyvinylpyrrolidone or analog can be added in the compositions of the present invention, to improve the delay of chemical compound.
In order to prepare aseptic spongaion preparation, RNA interfering is combined on suitable carrier (as mineral oil, liquid lanolin or white vaseline) with antiseptic.According to the method that is used to prepare other ophthalmic preparation known in the art, by RNA interfering being suspended in by for example
Figure A200810213139D0065143335QIETU
-940 (BFGoodrich, Charlotte NC) or in the hydrophilic substrate of the combined preparation of its homologue can prepare aseptic eye-gel preparation.For example
Figure A200810213139D0065143346QIETU
(Fort Worth TX) can be used as intraocular injection for Alcon Laboratories, Inc..Other compositionss of the present invention may comprise infiltration promote medicament such as cremephor and
Figure A200810213139D0065143359QIETU
80 (polyoxyethylene sorbitan monolaurate, Sigma Aldrich, St.Louis, MO), wherein the less infiltration of RNA interfering pleasing to the eye in.
Test kit: embodiment of the present invention provide test kit, and it comprises and is used for weakening the reagent of described mRNA in the expression of cell here.Test kit comprises siRNA or shRNA expression vector.For the shRNA expression vector of siRNA and non-virus, this test kit also may comprise transfection reagent or other suitable transmission carriers.For the shRNA expression vector of virus, this test kit also may comprise viral vector and/or be used to produce the essential component of viral vector (for example, package cell line and the carrier that comprises viral vector template and extra assistant carrier that is used to pack).This test kit also may comprise positive and negative control siRNA or shRNA expression vector (for example, the siRNA of no targeting contrast siRNA or the irrelevant mRNA of targeting).This test kit also may comprise the reagent that knocks out (for example, be used to detect the primer of quantitative PCR of target mRNA and probe and/or at the antibody of the respective egg white matter of western trace) of specifying target gene as assessment.Alternatively, this test kit may comprise siRNA sequence or shRNA sequence and operation instruction and be used for producing siRNA or making up the essential material of shRNA expression vector by in vitro transcription.
The drug regimen of kit form also is provided, and it comprises that (in the combination of packing) is suitable for accepting the carrier arrangement of hermetic container device therewith and comprises the RNA interfering compositions and ophthalmology can be accepted first kind of case of carrier.If desired, this test kit can also comprise the materia medica reagent constituents that one or more are conventional, for example contains the container of one or more drug acceptable carriers, extra container or the like, and this is conspicuous to those skilled in the art.This test kit also can comprise as plug-in unit or as operation instruction, the guide that is used to use of the printing that is used to indicate the group component of using of label and/or be used for the guide of blending ingredients.
RNA interfering is for example knocking out the ability of endogenous target gene expression in external assessment in the following manner in human body girder (TM) cell.With the people TM cell that transforms, for example specified cell line GTM-3 or HTM-3 (see Pang, I.H. wait the people, 1994.Curr.Eye Res.13:51-63), in bed board cultivation in standard growth culture medium (as the DMEM that augments with 10% fetal bovine serum) in 24 hours before the transfection.According to the description of manufacturer, (Dharmacon, Lafayette CO) carry out transfection in RNA interfering concentration in 0.1nM to 100nM scope to use Dharmafect 1.No targeting contrast RNA interfering and the fine fibroin A/C RNA interfering of nuclear (Dharmacon) are in contrast.After transfection 24 hours, for example use
Figure A200810213139D0066143431QIETU
(Applied Biosystems, Foster City CA), assess target mRNA level by quantitative PCR with the probe series that comprises target site for forward and reverse primer.Can be after transfection about 72 hours (depending on proteinic turnover rate actual time) for example by western trace assessment target proteins matter level.Isolation of RNA and/or proteinic standard technique are well-known to those skilled in the art from cultured cell.The probability of, miss the target effect non-specific for reducing should use can produce the possible least concentration RNA interfering of the expression of target gene level that knocks out of expectation.
The ability that RNA interfering of the present invention knocks out the CA2 protein expression level is able to further illustration in following embodiment 1.
Embodiment 1
Be used for RNA interfering at the reticent CA2 of HeLa cell specificity
This research detects the CA2-RNA interfering knocks out endogenous CA2 expression in the Hela cell of cultivating ability.
The transfection of HeLa cell is to use the standard body extracellular concentration (100nM and 1nM) of CA2siRNA or does not have targeting contrast siRNA and DharmaFECT TM(Dharmacon, Lafayette CO) finish 1 transfection reagent.All siRNA are dissolved in 1 * siRNA buffer, and this buffer is to contain 20mM KCl, 6mM HEPES (pH7.5), 0.2mM MgCl 2Aqueous solution.After transfection 72 hours, assess CA2 protein expression and actin protein expression (going up the sample contrast) by the western engram analysis.CA2siRNA is a double-chain interference RNA, and it has specificity to following target sequence: siCA2#1 targeting SEQ ID NO:721; SiCA2#3 targeting SEQ IDNO:15; SiCA2#4 targeting SEQ ID NO:720; SiCA2#5 targeting SEQ ID NO:141.As western trace data show among Fig. 1, with respect to non-targeting contrast siRNA, each among four CA2siRNA all significantly reduces CA2 at 100nM and 1nM and expresses.The siCA2#5 of the SiCA2#4 of targeting SEQ IDNO:720 and targeting SEQ ID NO:141 seems effective especially.
Here the list of references of quoting is incorporated herein by reference especially, and it provides exemplary operation or other details as replenishing those contents of illustrating at this.
Under guidance of the present disclosure, those of ordinary skills will approve, can significantly modify embodiment disclosed herein and do not deviate from the spirit or scope of the present invention.Under guidance of the present disclosure, disclosed here all embodiments can both accomplishedly need not over-drastic experiment with carrying out.In the disclosure and equivalent embodiments thereof, announce four corner of the present invention.Description should be by the too narrow claimed four corner of the present invention that is interpreted as.
Except as otherwise noted, term " a " and " an " that here uses means " one ", " at least one " or " one or more ".
Sequence table
<110〉Alcon Universal Ltd.
<120〉ocular hypertension targets of RNAi mediation suppresses
<130>45263P008WO2
<140〉do not specify as yet
<141>2006-02-01
<150>US60/648,926
<151>2005-02-01
<150>US60/753,364
<151>2005-12-22
<160>724
<170>PatentIn version3.3
<210>1
<211>1551
<212>DNA
<213〉homo sapiens (Homo sapiens)
<400>1
Figure A200810213139D00681
<210>2
<211>1104
<212>DNA
<213〉homo sapiens
<400>2
Figure A200810213139D00691
<210>3
<211>1723
<212>DNA
<213〉homo sapiens
<400>3
Figure A200810213139D00692
<210>4
<211>2015
<212>DNA
<213〉homo sapiens
<400>4
Figure A200810213139D00701
<210>5
<211>2909
<212>DNA
<213〉homo sapiens
<400>5
Figure A200810213139D00702
Figure A200810213139D00711
<210>6
<211>5468
<212>DNA
<213〉homo sapiens
<400>6
Figure A200810213139D00712
Figure A200810213139D00721
Figure A200810213139D00731
<210>7
<211>3362
<212>DNA
<213〉homo sapiens
<400>7
Figure A200810213139D00732
Figure A200810213139D00741
<210>8
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>8
Figure A200810213139D00742
<210>9
<211>21
<212>DNA
<213〉artificial sequence
<220>
<223〉sense strand
<220>
<221>misc_feature
<222>(20)..(21)
<223〉any A, T/U, C, G
<400>9
Figure A200810213139D00743
<210>10
<211>21
<212>DNA
<213〉artificial sequence
<220>
<223〉antisense strand
<220>
<221>misc_feature
<222>(20)..(21)
<223〉any A, T/U, C, G
<400>10
Figure A200810213139D00751
<210>11
<211>21
<212>RNA
<213〉artificial sequence
<220>
<223〉sense strand
<400>11
Figure A200810213139D00752
<210>12
<211>21
<212>RNA
<213〉artificial sequence
<220>
<223〉antisense strand
<400>12
<210>13
<211>48
<212>DNA
<213〉artificial sequence
<220>
<223>HAIRPIN DUPLEX WITH LOOP
<220>
<221>misc_RNA
<222>(1)..(19)
<223〉ribonucleotide
<220>
<221>misc_feature
<222>(20)..(27)
<223〉any A, T/U, C, G
<220>
<221>misc_feature
<222>(28)..(48)
<223〉ribonucleotide
<400>13
<210>14
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>14
Figure A200810213139D00761
<210>15
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>15
Figure A200810213139D00762
<210>16
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>16
Figure A200810213139D00763
<210>17
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>17
Figure A200810213139D00764
<210>18
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>18
Figure A200810213139D00765
<210>19
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>19
Figure A200810213139D00771
<210>20
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>20
Figure A200810213139D00772
<210>21
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>21
Figure A200810213139D00773
<210>22
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>22
Figure A200810213139D00774
<210>23
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>23
Figure A200810213139D00775
<210>24
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>24
Figure A200810213139D00776
<210>25
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>25
<210>26
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>26
Figure A200810213139D00782
<210>27
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>27
Figure A200810213139D00783
<210>28
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>28
Figure A200810213139D00784
<210>29
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>29
Figure A200810213139D00785
<210>30
<211>19
<212>DNA
<213〉artificial
<220>
<223〉target sequence
<400>30
Figure A200810213139D00791
<210>31
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>31
Figure A200810213139D00792
<210>32
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>32
Figure A200810213139D00793
<210>33
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>33
Figure A200810213139D00794
<210>34
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>34
Figure A200810213139D00795
<210>35
<211>19
<212>DNA
<213〉artificial
<220>
<223〉target sequence
<400>35
Figure A200810213139D00796
<210>36
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>36
Figure A200810213139D00801
<210>37
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>37
Figure A200810213139D00802
<210>38
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>38
Figure A200810213139D00803
<210>39
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>39
Figure A200810213139D00804
<210>40
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>40
Figure A200810213139D00805
<210>41
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>41
Figure A200810213139D00811
<210>42
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>42
Figure A200810213139D00812
<210>43
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>43
Figure A200810213139D00813
<210>44
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>44
<210>45
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>45
<210>46
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>46
Figure A200810213139D00821
<210>47
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>47
<210>48
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>48
Figure A200810213139D00823
<210>49
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>49
<210>50
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>50
Figure A200810213139D00825
<210>51
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>51
Figure A200810213139D00826
<210>52
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>52
Figure A200810213139D00831
<210>53
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>53
Figure A200810213139D00832
<210>54
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>54
Figure A200810213139D00833
<210>55
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>55
Figure A200810213139D00834
<210>56
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>56
Figure A200810213139D00835
<210>57
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>57
Figure A200810213139D00841
<210>58
<211>19
<212>DNA
<213〉artificial
<220>
<223〉target sequence
<400>58
<210>59
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>59
Figure A200810213139D00843
<210>60
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>60
<210>61
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>61
Figure A200810213139D00845
<210>62
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>62
Figure A200810213139D00851
<210>63
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>63
Figure A200810213139D00852
<210>64
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>64
<210>65
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>65
Figure A200810213139D00854
<210>66
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>66
Figure A200810213139D00855
<210>67
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>67
Figure A200810213139D00856
<210>68
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>68
Figure A200810213139D00861
<210>69
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>69
Figure A200810213139D00862
<210>70
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>70
<210>71
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>71
Figure A200810213139D00864
<210>72
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>72
Figure A200810213139D00865
<210>73
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>73
Figure A200810213139D00871
<210>74
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>74
<210>75
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>75
Figure A200810213139D00873
<210>76
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>76
Figure A200810213139D00874
<210>77
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>77
<210>78
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>78
<210>79
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>79
Figure A200810213139D00882
<210>80
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>80
Figure A200810213139D00883
<210>81
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>81
Figure A200810213139D00884
<210>82
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>82
Figure A200810213139D00885
<210>83
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>83
Figure A200810213139D00886
<210>84
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>84
Figure A200810213139D00891
<210>85
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>85
Figure A200810213139D00892
<210>86
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>86
Figure A200810213139D00893
<210>87
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>87
Figure A200810213139D00894
<210>88
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>88
Figure A200810213139D00895
<210>89
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>89
<210>90
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>90
Figure A200810213139D00902
<210>91
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>91
<210>92
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>92
<210>93
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>93
Figure A200810213139D00905
<210>94
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>94
<210>95
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>95
Figure A200810213139D00911
<210>96
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>96
Figure A200810213139D00912
<210>97
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>97
Figure A200810213139D00913
<210>98
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>98
Figure A200810213139D00914
<210>99
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>99
<210>100
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>100
Figure A200810213139D00921
<210>101
<211>3992
<212>DNA
<213〉homo sapiens
<400>101
Figure A200810213139D00922
Figure A200810213139D00931
<210>102
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>102
<210>103
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>103
Figure A200810213139D00933
<210>104
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>104
Figure A200810213139D00934
<210>105
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>105
Figure A200810213139D00941
<210>106
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>106
Figure A200810213139D00942
<210>107
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>107
Figure A200810213139D00943
<210>108
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>108
Figure A200810213139D00944
<210>109
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>109
Figure A200810213139D00945
<210>110
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>110
Figure A200810213139D00951
<210>111
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>111
Figure A200810213139D00952
<210>112
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>112
Figure A200810213139D00953
<210>113
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>113
Figure A200810213139D00954
<210>114
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>114
Figure A200810213139D00955
<210>115
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>115
Figure A200810213139D00956
<210>116
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>116
Figure A200810213139D00961
<210>117
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>117
Figure A200810213139D00962
<210>118
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>118
Figure A200810213139D00963
<210>119
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>119
Figure A200810213139D00964
<210>120
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>120
Figure A200810213139D00965
<210>121
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>121
<210>122
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>122
<210>123
<211>2156
<212>DNA
<213〉homo sapiens
<400>123
Figure A200810213139D00973
Figure A200810213139D00981
<210>124
<211>3713
<212>DNA
<213〉homo sapiens
<400>124
Figure A200810213139D00982
Figure A200810213139D00991
<210>125
<211>2911
<212>DNA
<213〉homo sapiens
<400>125
Figure A200810213139D00992
Figure A200810213139D01001
<210>126
<211>3587
<212>DNA
<213〉homo sapiens
<400>126
Figure A200810213139D01002
Figure A200810213139D01011
<210>127
<211>3873
<212>DNA
<213〉homo sapiens
<400>127
Figure A200810213139D01021
<210>128
<211>951
<212>DNA
<213〉homo sapiens
<400>128
Figure A200810213139D01022
<210>129
<211>2212
<212>DNA
<213〉homo sapiens
<400>129
<210>130
<211>1568
<212>DNA
<213〉homo sapiens
<400>130
Figure A200810213139D01032
Figure A200810213139D01041
<210>131
<211>3350
<212>DNA
<213〉homo sapiens
<400>131
Figure A200810213139D01042
Figure A200810213139D01051
<210>132
<211>1853
<212>DNA
<213〉homo sapiens
<400>132
Figure A200810213139D01052
<210>133
<211>6891
<212>DNA
<213〉homo sapiens
<400>133
Figure A200810213139D01061
Figure A200810213139D01071
<210>134
<211>3959
<212>DNA
<213〉homo sapiens
<400>134
Figure A200810213139D01081
Figure A200810213139D01091
<210>135
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>135
Figure A200810213139D01092
<210>136
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>136
Figure A200810213139D01093
<210>137
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>137
Figure A200810213139D01094
<210>138
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>138
<210>139
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>139
Figure A200810213139D01101
<210>140
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>140
Figure A200810213139D01102
<210>141
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>141
Figure A200810213139D01103
<210>142
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>142
Figure A200810213139D01104
<210>143
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>143
Figure A200810213139D01105
<210>144
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>144
<210>145
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>145
Figure A200810213139D01112
<210>146
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>146
Figure A200810213139D01113
<210>147
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>147
Figure A200810213139D01114
<210>148
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>148
Figure A200810213139D01115
<210>149
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>149
Figure A200810213139D01121
<210>150
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>150
Figure A200810213139D01122
<210>151
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>151
Figure A200810213139D01123
<210>152
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>152
Figure A200810213139D01124
<210>153
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>153
Figure A200810213139D01125
<210>154
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>154
<210>155
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>155
Figure A200810213139D01131
<210>156
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>156
Figure A200810213139D01132
<210>157
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>157
Figure A200810213139D01133
<210>158
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>158
Figure A200810213139D01134
<210>159
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>159
Figure A200810213139D01135
<210>160
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>160
Figure A200810213139D01141
<210>161
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>161
Figure A200810213139D01142
<210>162
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>162
Figure A200810213139D01143
<210>163
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>163
<210>164
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>164
Figure A200810213139D01145
<210>165
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>165
Figure A200810213139D01146
<210>166
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>166
Figure A200810213139D01151
<210>167
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>167
Figure A200810213139D01152
<210>168
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>168
Figure A200810213139D01153
<210>169
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>169
Figure A200810213139D01154
<210>170
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>170
Figure A200810213139D01155
<210>171
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>171
Figure A200810213139D01161
<210>172
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>172
Figure A200810213139D01162
<210>173
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>173
Figure A200810213139D01163
<210>174
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>174
Figure A200810213139D01164
<210>175
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>175
<210>176
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>176
Figure A200810213139D01171
<210>177
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>177
Figure A200810213139D01172
<210>178
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>178
Figure A200810213139D01173
<210>179
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>179
<210>180
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>180
<210>181
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>181
Figure A200810213139D01176
<210>182
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>182
Figure A200810213139D01181
<210>183
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>183
Figure A200810213139D01182
<210>184
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>184
<210>185
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>185
Figure A200810213139D01184
<210>186
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>186
Figure A200810213139D01185
<210>187
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>187
Figure A200810213139D01191
<210>188
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>188
<210>189
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>189
Figure A200810213139D01193
<210>190
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>190
Figure A200810213139D01194
<210>191
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>191
Figure A200810213139D01195
<210>192
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>192
Figure A200810213139D01201
<210>193
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>193
Figure A200810213139D01202
<210>194
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>194
Figure A200810213139D01203
<210>195
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>195
Figure A200810213139D01204
<210>196
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>196
Figure A200810213139D01205
<210>197
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>197
Figure A200810213139D01206
<210>198
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>198
<210>199
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>199
Figure A200810213139D01212
<210>200
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>200
Figure A200810213139D01213
<210>201
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>201
Figure A200810213139D01214
<210>202
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>202
Figure A200810213139D01215
<210>203
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>203
Figure A200810213139D01221
<210>204
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>204
<210>205
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>205
Figure A200810213139D01223
<210>206
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>206
<210>207
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>207
Figure A200810213139D01225
<210>208
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>208
Figure A200810213139D01231
<210>209
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>209
<210>210
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>210
Figure A200810213139D01232
<210>211
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>211
<210>212
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>212
Figure A200810213139D01234
<210>213
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>213
Figure A200810213139D01235
<210>214
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>214
Figure A200810213139D01241
<210>215
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>215
Figure A200810213139D01242
<210>216
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>216
<210>217
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>217
Figure A200810213139D01244
<210>218
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>218
<210>219
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>219
Figure A200810213139D01251
<210>220
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>220
Figure A200810213139D01252
<210>221
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>221
Figure A200810213139D01253
<210>222
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>222
Figure A200810213139D01254
<210>223
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>223
Figure A200810213139D01255
<210>224
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>224
<210>225
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>225
Figure A200810213139D01261
<210>226
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>226
Figure A200810213139D01262
<210>227
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>227
Figure A200810213139D01263
<210>228
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>228
Figure A200810213139D01264
<210>229
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>229
Figure A200810213139D01265
<210>230
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>230
<210>231
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>231
Figure A200810213139D01272
<210>232
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>232
Figure A200810213139D01273
<210>233
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>233
Figure A200810213139D01274
<210>234
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>234
Figure A200810213139D01275
<210>235
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>235
Figure A200810213139D01281
<210>236
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>236
Figure A200810213139D01282
<210>237
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>237
Figure A200810213139D01283
<210>238
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>238
Figure A200810213139D01284
<210>239
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>239
Figure A200810213139D01285
<210>240
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>240
Figure A200810213139D01286
<210>241
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>241
Figure A200810213139D01291
<210>242
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>242
Figure A200810213139D01292
<210>243
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>243
Figure A200810213139D01293
<210>244
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>244
<210>245
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>245
Figure A200810213139D01295
<210>246
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>246
<210>247
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>247
<210>248
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>248
<210>249
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>249
Figure A200810213139D01304
<210>250
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>250
Figure A200810213139D01305
<210>251
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>251
Figure A200810213139D01311
<210>252
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>252
Figure A200810213139D01312
<210>253
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>253
Figure A200810213139D01313
<210>254
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>254
Figure A200810213139D01314
<210>255
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>255
Figure A200810213139D01315
<210>256
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>256
Figure A200810213139D01316
<210>257
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>257
Figure A200810213139D01321
<210>258
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>258
Figure A200810213139D01322
<210>259
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>259
<210>260
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>260
<210>261
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>261
<210>262
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>262
Figure A200810213139D01331
<210>263
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>263
Figure A200810213139D01332
<210>264
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>264
Figure A200810213139D01333
<210>265
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>265
<210>266
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>266
Figure A200810213139D01335
<210>267
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>267
Figure A200810213139D01341
<210>268
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>268
Figure A200810213139D01342
<210>269
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>269
<210>270
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>270
<210>271
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>271
<210>272
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>272
Figure A200810213139D01346
<210>273
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>273
<210>274
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>274
Figure A200810213139D01352
<210>275
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>275
Figure A200810213139D01353
<210>276
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>276
Figure A200810213139D01354
<210>277
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>277
Figure A200810213139D01355
<210>278
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>278
<210>279
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>279
Figure A200810213139D01362
<210>280
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>280
<210>281
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>281
Figure A200810213139D01364
<210>282
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>282
Figure A200810213139D01365
<210>283
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>283
Figure A200810213139D01371
<210>284
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>284
Figure A200810213139D01372
<210>285
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>285
Figure A200810213139D01373
<210>286
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>286
Figure A200810213139D01374
<210>287
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>287
Figure A200810213139D01375
<210>288
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>288
Figure A200810213139D01376
<210>289
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>289
Figure A200810213139D01381
<210>290
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>290
Figure A200810213139D01382
<210>291
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>291
Figure A200810213139D01383
<210>292
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>292
<210>293
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>293
Figure A200810213139D01385
<210>294
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>294
Figure A200810213139D01391
<210>295
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>295
Figure A200810213139D01392
<210>296
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>296
Figure A200810213139D01393
<210>297
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>297
Figure A200810213139D01394
<210>298
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>298
Figure A200810213139D01395
<210>299
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>299
Figure A200810213139D01401
<210>300
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>300
<210>301
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>301
Figure A200810213139D01403
<210>302
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>302
Figure A200810213139D01404
<210>303
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>303
Figure A200810213139D01405
<210>304
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>304
<210>305
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>305
Figure A200810213139D01411
<210>306
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>306
<210>307
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>307
Figure A200810213139D01413
<210>308
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>308
Figure A200810213139D01414
<210>309
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>309
Figure A200810213139D01415
<210>310
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>310
Figure A200810213139D01421
<210>311
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>311
Figure A200810213139D01422
<210>312
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>312
Figure A200810213139D01423
<210>313
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>313
Figure A200810213139D01424
<210>314
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>314
Figure A200810213139D01425
<210>315
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>315
<210>316
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>316
Figure A200810213139D01431
<210>317
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>317
Figure A200810213139D01432
<210>318
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>318
Figure A200810213139D01433
<210>319
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>319
Figure A200810213139D01434
<210>320
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>320
Figure A200810213139D01435
<210>321
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>321
Figure A200810213139D01441
<210>322
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>322
Figure A200810213139D01442
<210>323
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>323
<210>324
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>324
Figure A200810213139D01444
<210>325
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>325
<210>326
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>326
Figure A200810213139D01451
<210>327
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>327
Figure A200810213139D01452
<210>328
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>328
Figure A200810213139D01453
<210>329
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>329
Figure A200810213139D01454
<210>330
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>330
Figure A200810213139D01455
<210>331
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>331
Figure A200810213139D01456
<210>332
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>332
Figure A200810213139D01461
<210>333
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>333
Figure A200810213139D01462
<210>334
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>334
Figure A200810213139D01463
<210>335
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>335
Figure A200810213139D01464
<210>336
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>336
Figure A200810213139D01465
<210>337
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>337
<210>338
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>338
<210>339
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>339
Figure A200810213139D01473
<210>340
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>340
Figure A200810213139D01474
<210>341
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>341
<210>342
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>342
Figure A200810213139D01481
<210>343
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>343
Figure A200810213139D01482
<210>344
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>344
<210>345
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>345
<210>346
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>346
Figure A200810213139D01485
<210>347
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>347
Figure A200810213139D01486
<210>348
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>348
Figure A200810213139D01491
<210>349
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>349
Figure A200810213139D01492
<210>350
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>350
Figure A200810213139D01493
<210>351
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>351
Figure A200810213139D01494
<210>352
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>352
Figure A200810213139D01495
<210>353
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>353
Figure A200810213139D01501
<210>354
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>354
Figure A200810213139D01502
<210>355
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>355
Figure A200810213139D01503
<210>356
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>356
<210>357
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>357
Figure A200810213139D01505
<210>358
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>358
Figure A200810213139D01511
<210>359
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>359
<210>360
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>360
Figure A200810213139D01513
<210>361
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>361
<210>362
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>362
Figure A200810213139D01515
<210>363
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>363
Figure A200810213139D01516
<210>364
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>364
Figure A200810213139D01521
<210>365
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>365
Figure A200810213139D01522
<210>366
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>366
Figure A200810213139D01523
<210>367
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>367
Figure A200810213139D01524
<210>368
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>368
Figure A200810213139D01525
<210>369
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>369
Figure A200810213139D01531
<210>370
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>370
Figure A200810213139D01532
<210>371
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>371
Figure A200810213139D01533
<210>372
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>372
Figure A200810213139D01534
<210>373
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>373
Figure A200810213139D01535
<210>374
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>374
<210>375
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>375
Figure A200810213139D01542
<210>376
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>376
Figure A200810213139D01543
<210>377
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>377
Figure A200810213139D01544
<210>378
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>378
Figure A200810213139D01545
<210>379
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>379
Figure A200810213139D01546
<210>380
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>380
Figure A200810213139D01551
<210>381
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>381
Figure A200810213139D01552
<210>382
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>382
Figure A200810213139D01553
<210>383
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>383
Figure A200810213139D01554
<210>384
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>384
<210>385
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>385
Figure A200810213139D01561
<210>386
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>386
Figure A200810213139D01562
<210>387
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>387
Figure A200810213139D01563
<210>388
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>388
<210>389
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>389
Figure A200810213139D01565
<210>390
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>390
Figure A200810213139D01566
<210>391
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>391
Figure A200810213139D01571
<210>392
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>392
<210>393
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>393
Figure A200810213139D01573
<210>394
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>394
Figure A200810213139D01574
<210>395
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>395
Figure A200810213139D01575
<210>396
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>396
Figure A200810213139D01581
<210>397
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>397
Figure A200810213139D01582
<210>398
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>398
Figure A200810213139D01583
<210>399
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>399
Figure A200810213139D01584
<210>400
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>400
Figure A200810213139D01585
<210>401
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>401
Figure A200810213139D01591
<210>402
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>402
Figure A200810213139D01592
<210>403
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>403
Figure A200810213139D01593
<210>404
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>404
<210>405
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>405
Figure A200810213139D01595
<210>406
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>406
Figure A200810213139D01596
<210>407
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>407
Figure A200810213139D01601
<210>408
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>408
<210>409
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>409
Figure A200810213139D01603
<210>410
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>410
Figure A200810213139D01604
<210>411
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>411
<210>412
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>412
Figure A200810213139D01611
<210>413
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>413
Figure A200810213139D01612
<210>414
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>414
Figure A200810213139D01613
<210>415
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>415
Figure A200810213139D01614
<210>416
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>416
Figure A200810213139D01615
<210>417
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>417
Figure A200810213139D01621
<210>418
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>418
Figure A200810213139D01622
<210>419
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>419
Figure A200810213139D01623
<210>420
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>420
Figure A200810213139D01624
<210>421
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>421
Figure A200810213139D01625
<210>422
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>422
Figure A200810213139D01626
<210>423
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>423
Figure A200810213139D01631
<210>424
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>424
Figure A200810213139D01632
<210>425
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>425
Figure A200810213139D01633
<210>426
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>426
Figure A200810213139D01634
<210>427
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>427
Figure A200810213139D01635
<210>428
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>428
Figure A200810213139D01641
<210>429
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>429
Figure A200810213139D01642
<210>430
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>430
<210>431
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>431
<210>432
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>432
Figure A200810213139D01645
<210>433
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>433
Figure A200810213139D01651
<210>434
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>434
Figure A200810213139D01652
<210>435
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>435
Figure A200810213139D01653
<210>436
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>436
Figure A200810213139D01654
<210>437
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>437
Figure A200810213139D01655
<210>438
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>438
Figure A200810213139D01656
<210>439
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>439
Figure A200810213139D01661
<210>440
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>440
Figure A200810213139D01662
<210>441
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>441
Figure A200810213139D01663
<210>442
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>442
Figure A200810213139D01664
<210>443
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>443
Figure A200810213139D01665
<210>444
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>444
Figure A200810213139D01671
<210>445
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>445
<210>446
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>446
<210>447
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>447
Figure A200810213139D01674
<210>448
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>448
Figure A200810213139D01675
<210>449
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>449
<210>450
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>450
<210>451
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>451
Figure A200810213139D01683
<210>452
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>452
Figure A200810213139D01684
<210>453
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>453
Figure A200810213139D01685
<210>454
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>454
Figure A200810213139D01686
<210>455
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>455
<210>456
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>456
Figure A200810213139D01692
<210>457
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>457
Figure A200810213139D01693
<210>458
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>458
<210>459
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>459
<210>460
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>460
Figure A200810213139D01701
<210>461
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>461
Figure A200810213139D01702
<210>462
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>462
Figure A200810213139D01703
<210>463
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>463
Figure A200810213139D01704
<210>464
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>464
<210>465
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>465
Figure A200810213139D01706
<210>466
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>466
Figure A200810213139D01711
<210>467
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>467
Figure A200810213139D01712
<210>468
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>468
Figure A200810213139D01713
<210>469
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>469
Figure A200810213139D01714
<210>470
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>470
Figure A200810213139D01715
<210>471
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>471
Figure A200810213139D01721
<210>472
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>472
Figure A200810213139D01722
<210>473
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>473
Figure A200810213139D01723
<210>474
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>474
<210>475
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>475
Figure A200810213139D01725
<210>476
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>476
Figure A200810213139D01731
<210>477
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>477
<210>478
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>478
<210>479
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>479
Figure A200810213139D01734
<210>480
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>480
Figure A200810213139D01735
<210>481
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>481
<210>482
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>482
Figure A200810213139D01741
<210>483
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>483
Figure A200810213139D01742
<210>484
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>484
Figure A200810213139D01743
<210>485
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>485
Figure A200810213139D01744
<210>486
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>486
Figure A200810213139D01745
<210>487
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>487
Figure A200810213139D01751
<210>488
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>488
Figure A200810213139D01752
<210>489
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>489
Figure A200810213139D01753
<210>490
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>490
Figure A200810213139D01754
<210>491
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>491
Figure A200810213139D01755
<210>492
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>492
<210>493
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>493
Figure A200810213139D01762
<210>494
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>494
Figure A200810213139D01763
<210>495
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>495
Figure A200810213139D01764
<210>496
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>496
Figure A200810213139D01765
<210>497
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>497
Figure A200810213139D01766
<210>498
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>498
Figure A200810213139D01771
<210>499
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>499
Figure A200810213139D01772
<210>500
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>500
Figure A200810213139D01773
<210>501
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>501
<210>502
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>502
Figure A200810213139D01775
<210>503
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>503
Figure A200810213139D01781
<210>504
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>504
Figure A200810213139D01782
<210>505
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>505
Figure A200810213139D01783
<210>506
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>506
Figure A200810213139D01784
<210>507
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>507
Figure A200810213139D01785
<210>508
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>508
Figure A200810213139D01791
<210>509
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>509
<210>510
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>510
Figure A200810213139D01793
<210>511
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>511
Figure A200810213139D01794
<210>512
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>512
Figure A200810213139D01795
<210>513
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>513
Figure A200810213139D01796
<210>514
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>514
Figure A200810213139D01801
<210>515
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>515
Figure A200810213139D01802
<210>516
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>516
<210>517
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>517
Figure A200810213139D01804
<210>518
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>518
Figure A200810213139D01805
<210>519
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>519
Figure A200810213139D01811
<210>520
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>520
<210>521
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>521
Figure A200810213139D01813
<210>522
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>522
Figure A200810213139D01814
<210>523
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>523
Figure A200810213139D01815
<210>524
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>524
Figure A200810213139D01821
<210>525
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>525
<210>526
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>526
Figure A200810213139D01823
<210>527
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>527
Figure A200810213139D01824
<210>528
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>528
<210>529
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>529
<210>530
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>530
Figure A200810213139D01831
<210>531
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>531
Figure A200810213139D01832
<210>532
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>532
Figure A200810213139D01833
<210>533
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>533
Figure A200810213139D01834
<210>534
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>534
Figure A200810213139D01835
<210>535
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>535
Figure A200810213139D01841
<210>536
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>536
<210>537
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>537
Figure A200810213139D01843
<210>538
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>538
Figure A200810213139D01844
<210>539
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>539
Figure A200810213139D01845
<210>540
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>540
Figure A200810213139D01846
<210>541
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>541
Figure A200810213139D01851
<210>542
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>542
Figure A200810213139D01852
<210>543
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>543
Figure A200810213139D01853
<210>544
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>544
Figure A200810213139D01854
<210>545
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>545
Figure A200810213139D01855
<210>546
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>546
Figure A200810213139D01861
<210>547
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>547
Figure A200810213139D01862
<210>548
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>548
Figure A200810213139D01863
<210>549
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>549
Figure A200810213139D01864
<210>550
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>550
Figure A200810213139D01865
<210>551
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>551
Figure A200810213139D01871
<210>552
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>552
Figure A200810213139D01872
<210>553
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>553
Figure A200810213139D01873
<210>554
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>554
Figure A200810213139D01874
<210>555
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>555
Figure A200810213139D01875
<210>556
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>556
Figure A200810213139D01876
<210>557
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>557
Figure A200810213139D01881
<210>558
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>558
Figure A200810213139D01883
<210>559
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>559
Figure A200810213139D01884
<210>560
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>560
Figure A200810213139D01885
<210>561
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>561
Figure A200810213139D01886
<210>562
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>562
Figure A200810213139D01891
<210>563
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>563
Figure A200810213139D01892
<210>564
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>564
Figure A200810213139D01893
<210>565
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>565
Figure A200810213139D01894
<210>566
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>566
Figure A200810213139D01895
<210>567
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>567
Figure A200810213139D01901
<210>568
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>568
Figure A200810213139D01902
<210>569
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>569
Figure A200810213139D01903
<210>570
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>570
<210>571
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>571
Figure A200810213139D01905
<210>572
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>572
<210>573
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>573
<210>574
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>574
Figure A200810213139D01912
<210>575
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>575
Figure A200810213139D01913
<210>576
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>576
<210>577
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>577
<210>578
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>578
<210>579
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>579
Figure A200810213139D01922
<210>580
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>580
Figure A200810213139D01923
<210>581
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>581
Figure A200810213139D01924
<210>582
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>582
Figure A200810213139D01925
<210>583
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>583
Figure A200810213139D01931
<210>584
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>584
Figure A200810213139D01932
<210>585
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>585
<210>586
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>586
Figure A200810213139D01934
<210>587
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>587
Figure A200810213139D01935
<210>588
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>588
Figure A200810213139D01936
<210>589
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>589
<210>590
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>590
Figure A200810213139D01942
<210>591
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>591
Figure A200810213139D01943
<210>592
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>592
Figure A200810213139D01944
<210>593
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>593
Figure A200810213139D01945
<210>594
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>594
Figure A200810213139D01951
<210>595
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>595
Figure A200810213139D01952
<210>596
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>596
Figure A200810213139D01953
<210>597
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>597
Figure A200810213139D01954
<210>598
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>598
Figure A200810213139D01955
<210>599
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>599
Figure A200810213139D01961
<210>600
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>600
Figure A200810213139D01962
<210>601
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>601
Figure A200810213139D01963
<210>602
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>602
<210>603
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>603
Figure A200810213139D01965
<210>604
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>604
Figure A200810213139D01966
<210>605
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>605
<210>606
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>606
Figure A200810213139D01972
<210>607
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>607
Figure A200810213139D01973
<210>608
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>608
Figure A200810213139D01974
<210>609
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>609
Figure A200810213139D01975
<210>610
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>610
Figure A200810213139D01981
<210>611
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>611
Figure A200810213139D01982
<210>612
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>612
Figure A200810213139D01983
<210>613
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>613
Figure A200810213139D01984
<210>614
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>614
Figure A200810213139D01985
<210>615
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>615
<210>616
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>616
Figure A200810213139D01991
<210>617
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>617
<210>618
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>618
Figure A200810213139D01993
<210>619
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>619
Figure A200810213139D01994
<210>620
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>620
Figure A200810213139D01995
<210>621
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>621
Figure A200810213139D02001
<210>622
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>622
Figure A200810213139D02002
<210>623
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>623
Figure A200810213139D02003
<210>624
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>624
Figure A200810213139D02004
<210>625
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>625
Figure A200810213139D02005
<210>626
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>626
Figure A200810213139D02011
<210>627
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>627
Figure A200810213139D02012
<210>628
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>628
Figure A200810213139D02013
<210>629
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>629
Figure A200810213139D02014
<210>630
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>630
Figure A200810213139D02015
<210>631
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>631
Figure A200810213139D02016
<210>632
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>632
Figure A200810213139D02021
<210>633
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>633
Figure A200810213139D02022
<210>634
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>634
Figure A200810213139D02023
<210>635
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>635
<210>636
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>636
<210>637
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>637
Figure A200810213139D02031
<210>638
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>638
<210>639
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>639
Figure A200810213139D02033
<210>640
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>640
<210>641
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>641
Figure A200810213139D02035
<210>642
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>642
Figure A200810213139D02041
<210>643
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>643
Figure A200810213139D02042
<210>644
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>644
Figure A200810213139D02043
<210>645
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>645
Figure A200810213139D02044
<210>646
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>646
Figure A200810213139D02045
<210>647
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>647
Figure A200810213139D02046
<210>648
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>648
Figure A200810213139D02051
<210>649
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>649
Figure A200810213139D02052
<210>650
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>650
Figure A200810213139D02053
<210>651
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>651
Figure A200810213139D02054
<210>652
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>652
<210>653
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>653
Figure A200810213139D02061
<210>654
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>654
Figure A200810213139D02062
<210>655
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>655
Figure A200810213139D02063
<210>656
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>656
Figure A200810213139D02064
<210>657
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>657
Figure A200810213139D02065
<210>658
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>658
Figure A200810213139D02071
<210>659
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>659
Figure A200810213139D02072
<210>660
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>660
Figure A200810213139D02073
<210>661
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>661
Figure A200810213139D02074
<210>662
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>662
Figure A200810213139D02075
<210>663
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>663
Figure A200810213139D02076
<210>664
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>664
Figure A200810213139D02081
<210>665
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>665
Figure A200810213139D02082
<210>666
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>666
<210>667
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>667
<210>668
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>668
Figure A200810213139D02085
<210>669
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>669
Figure A200810213139D02091
<210>670
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>670
Figure A200810213139D02092
<210>671
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>671
Figure A200810213139D02093
<210>672
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>672
Figure A200810213139D02094
<210>673
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>673
Figure A200810213139D02095
<210>674
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>674
Figure A200810213139D02101
<210>675
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>675
Figure A200810213139D02102
<210>676
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>676
<210>677
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>677
<210>678
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>678
Figure A200810213139D02105
<210>679
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>679
Figure A200810213139D02106
<210>680
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>680
Figure A200810213139D02111
<210>681
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>681
Figure A200810213139D02112
<210>682
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>682
<210>683
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>683
<210>684
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>684
Figure A200810213139D02115
<210>685
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>685
Figure A200810213139D02121
<210>686
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>686
Figure A200810213139D02122
<210>687
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>687
Figure A200810213139D02123
<210>688
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>688
Figure A200810213139D02124
<210>689
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>689
Figure A200810213139D02125
<210>690
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>690
Figure A200810213139D02131
<210>691
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>691
Figure A200810213139D02132
<210>692
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>692
Figure A200810213139D02133
<210>693
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>693
Figure A200810213139D02134
<210>694
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>694
Figure A200810213139D02135
<210>695
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>695
Figure A200810213139D02136
<210>696
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>696
Figure A200810213139D02141
<210>697
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>697
Figure A200810213139D02142
<210>698
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>698
Figure A200810213139D02143
<210>699
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>699
Figure A200810213139D02144
<210>700
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>700
Figure A200810213139D02145
<210>701
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>701
Figure A200810213139D02151
<210>702
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>702
<210>703
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>703
Figure A200810213139D02153
<210>704
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>704
Figure A200810213139D02154
<210>705
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>705
Figure A200810213139D02155
<210>706
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>706
Figure A200810213139D02156
<210>707
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>707
Figure A200810213139D02161
<210>708
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>708
Figure A200810213139D02162
<210>709
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>709
Figure A200810213139D02163
<210>710
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>710
<210>711
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>711
Figure A200810213139D02165
<210>712
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>712
Figure A200810213139D02171
<210>713
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>713
Figure A200810213139D02172
<210>714
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>714
Figure A200810213139D02173
<210>715
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>715
Figure A200810213139D02174
<210>716
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>716
Figure A200810213139D02175
<210>717
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>717
<210>718
<211>25
<212>RNA
<213〉artificial sequence
<220>
<223〉sense strand
<400>718
Figure A200810213139D02182
<210>719
<211>27
<212>RNA
<213〉artificial sequence
<220>
<223〉antisense strand
<400>719
Figure A200810213139D02183
<210>720
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>720
Figure A200810213139D02184
<210>721
<211>19
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>721
Figure A200810213139D02185
<210>722
<211>19
<212>RNA
<213〉artificial sequence
<220>
<223〉sense strand
<400>722
Figure A200810213139D02191
<210>723
<211>19
<212>RNA
<213〉artificial sequence
<220>
<223〉antisense strand
<400>723
Figure A200810213139D02192
<210>724
<211>25
<212>DNA
<213〉artificial sequence
<220>
<223〉target sequence
<400>724

Claims (41)

1. weaken the method that ocular hypertension targets mRNA expresses in the experimenter, this method comprises: using the length that comprises effective dose to the experimenter is the RNA interfering of 19-49 nucleotide and the compositions of drug acceptable carrier, and this RNA interfering comprises:
The zone of at least 13 continuous nucleotides, penultimate 13 nucleotide of 3 of this continuous nucleotide and following arbitrary sequence ' end have complementary or at least 90% the sequence homogeneity of at least 90% sequence, and described sequence is SEQ ID NO:8, SEQID NO:14-SEQ ID NO:32, SEQ ID NO:83-SEQ IDNO:100, SEQ ID NO:102-SEQ ID NO:122, SEQ IDNO:135-SEQ ID NO:219, SEQ ID NO:720 and SEQ IDNO:721.
2. the process of claim 1 wherein ocular hypertension targets mRNA coding carbonic anhydrase II, and described RNA interfering comprises:
The zone of at least 13 continuous nucleotides, penultimate 13 nucleotide of 3 of this continuous nucleotide and following arbitrary sequence ' end have complementary or at least 90% the sequence homogeneity of at least 90% sequence, and described sequence is SEQ ID NO:8, SEQ ID NO:14-SEQID NO:22, SEQ IDNO:83-SEQ ID NO:100, SEQ ID NO:135-SEQ ID NO:155, SEQ ID NO:720 and SEQ ID NO:721.
3. the process of claim 1 wherein ocular hypertension targets mRNA coding carbonic anhydrase IV, and described RNA interfering comprises:
The zone of at least 13 continuous nucleotides, penultimate 13 nucleotide of 3 of this continuous nucleotide and following arbitrary sequence ' end have complementary or at least 90% the sequence homogeneity of at least 90% sequence, and described sequence is SEQ ID NO:23-SEQ ID NO:32 and SEQ ID NO:156-SEQ ID NO:177.
4. the process of claim 1 wherein ocular hypertension targets mRNA coding carbonic anhydrase XII, and described RNA interfering comprises:
The zone of at least 13 continuous nucleotides, penultimate 13 nucleotide of 3 of this continuous nucleotide and following arbitrary sequence ' end have complementary or at least 90% the sequence homogeneity of at least 90% sequence, and described sequence is SEQ ID NO:102-SEQ ED NO:122 and SEQ ID NO:178-SEQ ID NO:219.
5. the method for claim 1, wherein the zone of continuous nucleotide is the zone of at least 14 continuous nucleotides, and terminal 14 nucleotide of 3 of the sequence of this zone and sequence identifier ' end time have complementary or at least 85% the sequence homogeneity of at least 85% sequence.
6. the method for claim 1, wherein the zone of continuous nucleotide is the zone of at least 15,16,17 or 18 continuous nucleotides, and this zone has complementary or at least 80% the sequence homogeneity of at least 80% sequence with 3 of the sequence of sequence identifier ' end time terminal 15,16,17 or 18 nucleotide respectively.
7. the process of claim 1 wherein that RNA interfering is shRNA.
8. the process of claim 1 wherein that RNA interfering is miRNA.
9. the process of claim 1 wherein that RNA interfering is siRNA.
10. compositions is used for the treatment of purposes in the ocular hypertensive medicine of experimenter in preparation, and the length that said composition comprises effective dose is the RNA interfering and the drug acceptable carrier of 19-49 nucleotide, and this RNA interfering comprises:
The zone of at least 13 continuous nucleotides, penultimate 13 nucleotide of 3 of this continuous nucleotide and following arbitrary sequence ' end have complementary or at least 90% the sequence homogeneity of at least 90% sequence, and described sequence is SEQ ID NO:8, SEQ ID NO:14-SEQID NO:32, SEQ ID NO:83-SEQ ID NO:100, SEQ ID NO:102-SEQ ID NO:122, SEQ ID NO:135-SEQ ID NO:219, SEQ IDNO:720 and SEQ ID NO:721.
11. the purposes of claim 10, wherein RNA interfering comprises the zone of at least 13 continuous nucleotides, penultimate 13 nucleotide of 3 of this continuous nucleotide and following arbitrary sequence ' end have complementary or at least 90% the sequence homogeneity of at least 90% sequence, and described sequence is SEQ IDNO:8, SEQ ID NO:14-SEQ ID NO:22, SEQ ID NO:83-SEQ IDNO:100, SEQ ID NO:135-SEQ ID NO:155, SEQ ID NO:720 and SEQ IDNO:721.
12. the purposes of claim 10, wherein this RNA interfering comprises the zone of at least 13 continuous nucleotides, penultimate 13 nucleotide of 3 of this continuous nucleotide and following arbitrary sequence ' end have complementary or at least 90% the sequence homogeneity of at least 90% sequence, and described sequence is SEQ IDNO:23-SEQ ID NO:32 and SEQ ID NO:156-SEQ ID NO:177.
13. the purposes of claim 10, wherein RNA interfering comprises the zone of at least 13 continuous nucleotides, penultimate 13 nucleotide of 3 of this continuous nucleotide and following arbitrary sequence ' end have complementary or at least 90% the sequence homogeneity of at least 90% sequence, and described sequence is SEQ IDNO:102-SEQ ID NO:122 and SEQ ID NO:178-SEQ ID NO:219.
14. the purposes of claim 10, wherein RNA interfering is shRNA.
15. the purposes of claim 10, prepare wherein that compositions is used in the part, vitreous body, the sclera corpus ciliare, near the eyes, in the conjunctiva, fascial bursa, anterior chamber, using under the retina, under the conjunctiva, behind the eyeball or in the tear stains.
16. the purposes of claim 10, the wherein compositions that is used to use via the expression in vivo preparation from the expression vector that can express RNA interfering.
17. the purposes of claim 10, wherein RNA interfering is miRNA.
18. the purposes of claim 10, wherein RNA interfering is siRNA.
19. weaken the method that second kind of variant expression of ocular hypertension targets mRNA expressed and do not weakened to first kind of variant of experimenter's ocular hypertension targets mRNA, it comprises:
The experimenter is used compositions, and the length that said composition comprises effective dose is the RNA interfering and the drug acceptable carrier of 19-49 nucleotide, and this RNA interfering comprises
The zone of at least 13 continuous nucleotides, penultimate 13 nucleotide of 3 of this continuous nucleotide and first kind of variant ' end have complementary or at least 90% the sequence homogeneity of at least 90% sequence,
Wherein the expression of first kind of variant mRNA is weakened, and does not weaken the expression of second kind of variant mRNA, and wherein first kind of variant target mRNA is that SEQ ID NO:101 and second kind of variant target mRNA are SEQ ID NO:134.
20. weaken the method that second kind of variant expression of ocular hypertension targets mRNA expressed and do not weakened to first kind of variant of experimenter's ocular hypertension targets mRNA, it comprises:
The experimenter is used compositions, and the length that said composition comprises effective dose is the RNA interfering and the drug acceptable carrier of 19-49 nucleotide, and this RNA interfering comprises
The zone of at least 13 continuous nucleotides, penultimate 13 nucleotide of 3 of this continuous nucleotide and first kind of variant ' end have complementary or at least 90% the sequence homogeneity of at least 90% sequence,
Wherein the expression of first kind of variant mRNA is weakened, and does not weaken the expression of second kind of variant mRNA, and wherein first kind of variant target mRNA is that SEQ ID NO:134 and second kind of variant target mRNA are SEQ ID NO:101.
21. weaken the method that experimenter's ocular hypertension targets mRNA expresses, it comprises:
The experimenter is used compositions, and the length that said composition comprises effective dose is the RNA interfering and the drug acceptable carrier of 19-49 nucleotide, and this RNA interfering comprises:
The intimate at least continuous complementary zone fully that adopted nucleotide chain, antisense nucleotide chain and at least 19 nucleotide are arranged;
Wherein antisense strand under physiological condition with part hybridization corresponding to the mRNA of SEQ ID NO:1, SEQ IDNO:2, SEQ ID NO:101 or SEQ ID NO:134, and have at least 19 nucleotide, be close to continuous complementary zone fully at least with hybridization portion respectively corresponding to the mRNA of SEQ IDNO:1, SEQ ID NO:2, SEQ ID NO:101 or SEQ ID NO:134
Wherein the expression of ocular hypertension targets mRNA is weakened.
22. the method for claim 21, ocular hypertension targets mRNA coding carbonic anhydrase II wherein, and antisense strand under physiological condition with part hybridization corresponding to the mRNA of SEQ ID NO:1, and contain at least 19 nucleotide, be close to continuous complementary zone fully at least with hybridization portion corresponding to the mRNA of SEQ ID NO:1.
23. the method for claim 21, ocular hypertension targets mRNA coding carbonic anhydrase IV wherein, and antisense strand under physiological condition with part hybridization corresponding to the mRNA of SEQ ID NO:2, and contain at least 19 nucleotide, be close to continuous complementary zone fully at least with hybridization portion corresponding to the mRNA of SEQ ID NO:2.
24. the method for claim 21, ocular hypertension targets mRNA coding carbonic anhydrase XII wherein, and antisense strand under physiological condition with part hybridization corresponding to the mRNA of SEQ ID NO:101 or SEQ ID NO:134, and contain at least 19 nucleotide, be close to continuous complementary zone fully at least with hybridization portion corresponding to the mRNA of SEQ ID NO:101 or SEQ ID NO:134.
25. the method for claim 21, wherein antisense strand is designed to the mRNA of targeting corresponding to SEQ IDNO:1, described mRNA comprises nucleotide 232,527,721,728,809,810,855,856,921,1139,506,547,548,740,911,1009,1140,1149,1150,1151,1188,1194,1195,1223,1239,1456,1457,1458,100,158,166,247,286,318,322,328,371,412,482,504,505,541,734,772,777,814,972,998,1232,317 or 401.
26. the method for claim 21, wherein antisense strand is designed to the mRNA of targeting corresponding to SEQ IDNO:2, described mRNA comprises nucleotide 213,252,258,266,399,457,463,490,595,1064,109,112,125,126,150,261,265,280,398,453,459,462,467,492,534,785,801,825,827,876,1003 or 1012.
27. the method for claim 21, wherein antisense strand is designed to the mRNA of targeting corresponding to SEQ ID NO:101, described mRNA comprises nucleotide 191,239,274,275,341,389,412,413,423,687,689,695,710,791,792,794,983,993,994,995,691,1039,1568,2326,2332,2425,2433,2844,2845,2880,2884,2891,2954,2955,2956,2957,2964,2965,3006,3007,3012 or 3026.
28. the method for claim 21, wherein antisense strand is designed to the mRNA of targeting corresponding to SEQ ID NO:134, described mRNA comprises nucleotide 687,1535,2293,2299,2392,2400,2811,2812,2847,2851,2858,2921,2922,2923,2924,2931,2932,2973,2974,2979 or 2993.
29. the method for claim 21, it also comprises to the experimenter uses second kind of RNA interfering that length is 19-49 nucleotide, and described second kind of RNA interfering comprises
The intimate at least complete complementary zone that adopted nucleotide chain, antisense nucleotide chain and at least 19 nucleotide are arranged;
Wherein the antisense strand of second kind of RNA interfering under physiological condition with second portion hybridization corresponding to the mRNA of SEQ IDNO:1, SEQ ID NO:2, SEQ ID NO:101 or SEQ ID NO:134, and antisense strand contain at least 19 nucleotide, be close to continuous complementary zone fully at least with second hybridization portion of the mRNA that corresponds respectively to SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:101 or SEQID NO:134.
30. the method for claim 21, wherein linking by the ringed nucleus nucleotide sequence has adopted nucleotide chain and antisense nucleotide chain.
31. compositions is used for the treatment of purposes in the ocular hypertensive medicine of experimenter in preparation, the length that said composition comprises effective dose is the RNA interfering and the drug acceptable carrier of 19-49 nucleotide, and this RNA interfering comprises:
The intimate at least complete complementary zone that adopted nucleotide chain, antisense nucleotide chain and at least 19 nucleotide are arranged;
Wherein antisense strand under physiological condition with part hybridization corresponding to the mRNA of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:101 or SEQ ID NO:134, and have at least 19 nucleotide, be close to continuous complementary zone fully at least with the hybridization portion of the mRNA that corresponds respectively to SEQ ID NO:1, SEQ IDNO:2, SEQ ID NO:101 or SEQ ID NO:134.
32. the purposes of claim 31, wherein linking by the ringed nucleus nucleotide sequence has adopted nucleotide chain and antisense nucleotide chain.
33. the purposes of claim 31, prepare wherein that compositions is used in the part, vitreous body, the sclera corpus ciliare, near the eyes, in the conjunctiva, fascial bursa, anterior chamber, using under the retina, under the conjunctiva, behind the eyeball or in the tear stains.
34. the purposes of claim 31, the wherein compositions that is used to use via the expression in vivo preparation from the expression vector that can express RNA interfering.
35. weaken the method for the expression of experimenter's ocular hypertension targets mRNA, it comprises:
Use compositions to the experimenter, the length that said composition comprises effective dose is the RNA interfering and the drug acceptable carrier of 19-49 nucleotide,
Wherein the strand RNA interfering under physiological condition with part hybridization corresponding to the mRNA of SEQ ID NO:1, described part comprises nucleotide 232,527,721,728,809,810,855,856,921,1139,506,547,548,740,911,1009,1140,1149,1150,1151,1188,1194,1195,1223,1239,1456,1457,1458,100,158,166,247,286,318,322,328,371,412,482,504,505,541,734,772,777,814,972,998,1232,317 or 401, and this RNA interfering contains with hybridization portion corresponding to the mRNA of SEQ ID NO:1 and is close to continuous complementary zone fully at least;
Or
Wherein the strand RNA interfering under physiological condition with part hybridization corresponding to the mRNA of SEQ ID NO:2, described part comprises nucleotide 213,252,258,266,399,457,463,490,595,1064,109,112,125,126,150,261,265,280,398,453,459,462,467,492,534,785,801,825,827,876,1003 or 1012, and this RNA interfering contain at least 19 nucleotide, be close to continuous complementary zone fully at least with hybridization portion corresponding to the mRNA of SEQ ID NO:2;
Or
Wherein the strand RNA interfering under physiological condition with part hybridization corresponding to the mRNA of SEQ ID NO:101, described part comprises nucleotide 191,239,274,275,341,389,412,413,423,687,689,695,710,791,792,794,983,993,994,995,691,1039,1568,2326,2332,2425,2433,2844,2845,2880,2884,2891,2954,2955,2956,2957,2964,2965,3006,3007,3012 or 3026, and this RNA interfering contains at least 19 nucleotide, at least be close to continuous complementary zone fully with hybridization portion corresponding to the mRNA of SEQ ID NO:101;
Or
Wherein the strand RNA interfering under physiological condition with part hybridization corresponding to the mRNA of SEQ ID NO:134, described part comprises nucleotide 687,1535,2293,2299,2392,2400,2811,2812,2847,2851,2858,2921,2922,2923,2924,2931,2932,2973,2974,2979 or 2993, and this RNA interfering contain at least 19 nucleotide, be close to continuous complementary zone fully at least with hybridization portion corresponding to the mRNA of SEQ ID NO:134;
Wherein the expression of ocular hypertension targets mRNA is weakened thus.
36. the method for claim 35, wherein RNA interfering is miRNA.
37. the method for claim 35, wherein RNA interfering is siRNA.
38. comprise the compositions of RNA interfering and drug acceptable carrier, described RNA interfering length is 19-49 nucleotide and contains arbitrary nucleotide sequence or its complementary series among SEQ ID NO:8, SEQ ID NO:14-SEQ IDNO:32, SEQ ID NO:83-SEQ ID NO:100, SEQ ID NO:102-SEQ IDNO:122, SEQ ID NO:135-SEQ ID NO:219, SEQ ID NO:720 and the SEQ IDNO:721.
39. the compositions of claim 38, wherein RNA interfering is shRNA.
40. the compositions of claim 38, wherein RNA interfering is siRNA.
41. the compositions of claim 38, wherein RNA interfering is miRNA.
CNA2008102131399A 2005-02-01 2006-02-01 RNAi-mediated inhibition of ocular targets Pending CN101444525A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US64892605P 2005-02-01 2005-02-01
US60/648,926 2005-02-01
US60/753,364 2005-12-22

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800073006A Division CN101137753A (en) 2005-02-01 2006-02-01 Rnai-mediated inhibition of ocular hypertension targets

Publications (1)

Publication Number Publication Date
CN101444525A true CN101444525A (en) 2009-06-03

Family

ID=39161089

Family Applications (3)

Application Number Title Priority Date Filing Date
CNA2008102131399A Pending CN101444525A (en) 2005-02-01 2006-02-01 RNAi-mediated inhibition of ocular targets
CNA2006800073006A Pending CN101137753A (en) 2005-02-01 2006-02-01 Rnai-mediated inhibition of ocular hypertension targets
CNA2006800102460A Pending CN101155918A (en) 2005-02-01 2006-02-01 Rnai-mediated inhibition of ocular hypertension targets

Family Applications After (2)

Application Number Title Priority Date Filing Date
CNA2006800073006A Pending CN101137753A (en) 2005-02-01 2006-02-01 Rnai-mediated inhibition of ocular hypertension targets
CNA2006800102460A Pending CN101155918A (en) 2005-02-01 2006-02-01 Rnai-mediated inhibition of ocular hypertension targets

Country Status (2)

Country Link
CN (3) CN101444525A (en)
ZA (2) ZA200706083B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102604946A (en) * 2011-01-21 2012-07-25 北京蛋白质组研究中心 Small interfering ribonucleic acid (siRNA) for inhibiting tumor metastasis and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102757946B (en) * 2011-04-28 2014-07-09 中国科学院生态环境研究中心 Gobiocypris rarus alpha type Na+/K+-ATPase, and encoding gene and application thereof
JP6988481B2 (en) * 2016-01-26 2022-01-05 日産化学株式会社 Single-stranded oligonucleotide
CN109557309B (en) * 2018-12-04 2021-09-10 九江学院附属医院 Application of carbonic anhydrase-2 as detection marker in diagnosis of kidney stones

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102604946A (en) * 2011-01-21 2012-07-25 北京蛋白质组研究中心 Small interfering ribonucleic acid (siRNA) for inhibiting tumor metastasis and application thereof
CN102604946B (en) * 2011-01-21 2014-02-19 北京蛋白质组研究中心 Small interfering ribonucleic acid (siRNA) for inhibiting tumor metastasis and application thereof

Also Published As

Publication number Publication date
ZA200706083B (en) 2008-09-25
CN101155918A (en) 2008-04-02
ZA200706084B (en) 2009-04-29
CN101137753A (en) 2008-03-05

Similar Documents

Publication Publication Date Title
US7592324B2 (en) RNAi-mediated inhibition of ocular targets
US8168609B2 (en) RNAi-mediated inhibition of Rho kinase for treatment of ocular disorders
US20120077864A1 (en) Rnai-mediated inhibition of gremlin for treatment of iop-related conditions
CN101326287A (en) RNAi-mediated inhibition of HIF1A for treatment of ocular angiogenesis
US9765340B2 (en) RNAi-mediated inhibition of phosphodiesterase type 4 for treatment of CAMP-related ocular disorders
CN102172407A (en) Rnai inhibition of serum amyloid a for treatment of glaucoma
US20150057336A1 (en) RNAi-RELATED INHIBITION OF TNF alpha SIGNALING PATHWAY FOR TREATMENT OF GLAUCOMA
CN101444525A (en) RNAi-mediated inhibition of ocular targets
WO2009102931A1 (en) Rnai-mediated inhibition of connexin 43 for treatment of iop-related conditions
CN101326282A (en) RNAi-mediated inhibition of iIGF1R for treatment of ocular angiogenesis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1133819

Country of ref document: HK

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20090603

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1133819

Country of ref document: HK