CN101411892A - Method for preparing hydroxylapatite/polylactic acid composite biological coating on surface of magnesium alloy - Google Patents

Method for preparing hydroxylapatite/polylactic acid composite biological coating on surface of magnesium alloy Download PDF

Info

Publication number
CN101411892A
CN101411892A CN 200710157568 CN200710157568A CN101411892A CN 101411892 A CN101411892 A CN 101411892A CN 200710157568 CN200710157568 CN 200710157568 CN 200710157568 A CN200710157568 A CN 200710157568A CN 101411892 A CN101411892 A CN 101411892A
Authority
CN
China
Prior art keywords
polylactic acid
coating
phosphate
magnesium alloy
coat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200710157568
Other languages
Chinese (zh)
Other versions
CN101411892B (en
Inventor
宋影伟
单大勇
韩恩厚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN 200710157568 priority Critical patent/CN101411892B/en
Publication of CN101411892A publication Critical patent/CN101411892A/en
Application granted granted Critical
Publication of CN101411892B publication Critical patent/CN101411892B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The invention belongs to the field of a biomaterial, in particular to a preparation method for hydroxyapatite/polylactic acid composite biological coat on magnesium alloy surface, and solves the problem that an electrolytic deposition hydroxyapatite (HA) coat is not quite compact through sealing treatment of polylactic acid, so that the composite coat can improve corrosion resistance of magnesium alloy in human body fluid remarkably, and biological degradability of the composite coat is used for adjusting service cycle of the magnesium alloy in vivo. The preparation method is as follows: the magnesium alloy is subjected to electrolytic deposition in water solution consisting of calcium salt, dihydrogen phosphate or hydrogen phosphate or other additives, so as to obtain a mixture coat of several calcium phosphates; the mixture coat is treated by alkali metal hydroxide solution and then transformed into an even HA coat; the HA coat is soaked in polylactic acid solution and subjected to the sealing treatment; and finally the HA coat is dried to obtain the hydroxyapatite/polylactic acid composite coat. The preparation method which combines biological activity of the HA and biological degradability of the polylactic acid organically is used for corrosion protection of the magnesium alloy in biotic environment.

Description

The preparation method of Mg alloy surface hydroxylapatite/polylactic acid composite biological coating
Technical field
The present invention relates to the application of magnesium alloy aspect biomaterial, belong to technical field of biological material, specifically the preparation method of Mg alloy surface hydroxylapatite/polylactic acid composite biological active coating.
Background technology
Since the sixties in 20th century, biomaterial has obtained development rapidly as the substitute of repairing bone injury.At present mainly comprise metal material, ceramic material and macromolecular material etc. at the biomaterial of clinical practice.But every kind of material all has its drawback, and, macromolecular material big as the fragility of can the stripping harmful metal ion of metal material, ceramic material be undercapacity then.Comparatively speaking, magnesium and alloy thereof have a lot of potential advantages as biomaterial for medical purpose: (1) magnesium resource is abundant, and is cheap; (2) density of magnesium is 1.74g/cm 3, density minimum in all structural materials is with the Compact bone density (1.75g/cm of people's bone 3) very approaching; (3) magnesium and alloy have high specific strength and specific stiffness, and processing characteristics is good, and the specific strength of pure magnesium is 133GPa/ (g/cm 3), the specific strength of superhigh strength magnesium alloy has reached 480GPa/ (g/cm 3); (4) Young's modulus of elasticity of magnesium and alloy is about 45GPa, and more near the elastic modelling quantity (about 20GPa) of people's bone, the magnesium metal can be avoided stress-shielding effect as implant than other medical metal material; (5) magnesium and alloy have excellent biological compatibility, magnesium is the macroelement that is only second to calcium, sodium and potassium in the human body, everyone the daily requirement amount of being grown up surpasses 350mg, it participates in protein synthesis, can swash in vivo plurality of enzymes, regulates neuromuscular and central nervous system's activity, and magnesium almost participates in all metabolic processes in the human body, not only the growth to medullary cell does not have inhibitory action, does not find the cytolysis phenomenon yet, can also quicken symphysis; (6) magnesium and alloy have biodegradability, the short-term that only needs many medical embedded devices plays medical function (as angiocarpy bracket, nail and blade plate etc.), keep somewhere in vivo if implant is long-term, just have the potential danger of long-term release toxicant, need operation once more to take out.The corrosion resistance of magnesium alloy is poor, can progressively degrade and be absorbed or metabolism by body under the physiological environment in vivo, need not the taking-up of performing the operation once more.
Yet magnesium is the most active structural material, is easy to be corroded, and is especially all the more so in containing the Human Physiology environment of chloride ion.The pH value of human body is about 7.4, may cause secondary acidosis in the human body in postoperative metabolism absorption process, makes intravital pH value be lower than 7.4, more quickens the corrosion of magnesium alloy.For example, adopt magnesium or magnesium alloy to make degradable coronary artery bracket (the silk footpath is at 70-80 μ m, in the quality 300mg), postoperative needs the active time in 180 days-1 year, calculates that thus the corrosion rate of magnesium or magnesium alloy should be controlled in the 0.1mm/.But studies show that the corrosion degradation rate of pure magnesium in simulated body fluid is about 0.2-1mm/, bigger than normal than the corrosion rate of estimation, this will cause the premature failure of biomaterial.Therefore, researcheres improve the biodegradation rate of magnesium alloy in body fluid by the way of using protective coating.These protective finish also need to satisfy the requirement of biomaterial, not only good biocompatibility and degradability will be arranged, and magnesium alloy is had the certain protection effect, can regulate degradation rate and reach instructions for use.Hydroxyapatite (HA) is the more successful biomaterial of clinical practice.It is the main inorganic composition in vertebrates skeleton and the tooth, have excellent biological compatibility and biodegradability, to human body safety, nontoxic, can be spontaneous directly form very strong chemical bond with bone, along with the growth from the body osseous tissue, material is degraded gradually, and final catabolite absorbs by effect dissolving in the body or discharged by metabolic system, and defect is replaced by new life's osseous tissue gradually, thereby reaches the purpose that bone is repaired.But the mechanical property of HA is relatively poor, can not independently use as stressed member.Therefore, prepare the HA coating, can realize the mutual supplement with each other's advantages of metal and HA to a great extent, make material have favorable mechanical performance and biological activity at metal material surface.At present, the method that material surface prepares hydroxyapatite coating layer is a lot, uses wider have plasma spraying method, magnetron sputtering method, electrochemical process, detonation flame spraying method and biomimetic method etc.Wherein electrochemical deposition method can directly prepare the perfect hydroxyapatite coating layer of crystallization from calcium microcosmic salt aqueous solution under temperate condition, and electrochemical deposition method is simple to operate, and controllability is strong, and is with low cost.But at the hydroxyapatite coating layer that the Mg alloy surface electro-deposition obtains is not very fine and close, can't reach requirement of actual application.
Summary of the invention
The object of the invention is to provide a kind of environmental protection, simple Mg alloy surface to prepare the method for hydroxylapatite/polylactic acid composite biological active coating, makes magnesium alloy have good biological activity, and can realize the adjustability of degradation rate.The present invention can solve magnesium alloy and degrade too soon as biomaterial in body fluid, can not satisfy desired useful life's a difficult problem.The mechanical property that has solved simultaneously HA again is relatively poor, can not independently use as stressed member, and the hydroxyapatite coating layer that electro-deposition obtains is not very fine and close, can't reach problems such as application request.
To achieve these goals, technical scheme of the present invention is:
The preparation method of Mg alloy surface hydroxylapatite/polylactic acid composite biological active coating is as follows:
(1) oil removing: remove the greasy dirt of matrix surface with alkaline solution, temperature 60-90 ℃, time 2-20min;
(2) pickling: remove the oxide and the rusty scale of matrix surface, room temperature, time 10-90s with weakly acidic solution;
(3) electro-deposition calcium phosphate coating: in the aqueous solution that contains calcium salt, dihydric phosphate, hydrophosphate and other additive composition, carry out electro-deposition, pH value of solution 4-5, the magnesium alloy sample is as negative electrode, corrosion resistant plate or titanium plate are as anode, deposition voltage 1-8V, time 0.5-4h, room temperature, magnetic agitation; Obtain the mixture coating be made up of multiple calcium phosphate, coating layer thickness is 3-40 μ m.
(4) alkali liquor is handled: the coating after the electro-deposition is immersed in 0.5-4h in the alkali liquor, temperature 50-90 ℃, obtains the HA coating;
(5) configuration polylactic acid solution: polylactic acid is dissolved in the polylactic acid solution of making variable concentrations in the organic solvent;
(6) preparation polylactic acid coating: the magnesium alloy sample of surface coverage hydroxyapatite coating layer is immersed in the polylactic acid solution room temperature, time 5-60s;
(7) oven dry: it is the hydroxyapatite/polylactic acid composite coating of 4-45 μ m that 5-60min acquisition thickness is handled in 50-150 ℃ of oven dry.
Described degreasing fluid is wherein one or more composite aqueous solutions of alkali metal hydroxide 10-70g/l, carbonate 15-50g/l, phosphate 20-70g/l, bicarbonate 10-80g/l.Hydroxide can be sodium hydroxide, potassium hydroxide, and carbonate can be sodium carbonate, potassium carbonate, and phosphate can be sodium phosphate, potassium phosphate, and bicarbonate can be sodium bicarbonate, potassium bicarbonate.
That described acid washing water solution adopts is dihydric phosphate 10-80g/l and corrosion inhibiter 0.1-2g/l.
Calcium salt in the described electro-deposition calcium phosphate aqueous solution is calcium chloride, lime nitrate a kind of or its compound wherein, and its concentration is calcium chloride 0.01-0.3M, lime nitrate 0.01-0.3M; Dihydric phosphate is sodium dihydrogen phosphate, potassium dihydrogen phosphate, Ammonium biphosphate a kind of or its compound wherein, and its concentration is sodium dihydrogen phosphate 0.005-0.2M, potassium dihydrogen phosphate 0.005-0.2M, Ammonium biphosphate 0.005-0.2M; Hydrophosphate is ammonium hydrogen phosphate, potassium hydrogen phosphate, dibastic sodium phosphate a kind of or its compound wherein, and its concentration is ammonium hydrogen phosphate 0.005-0.2M, potassium hydrogen phosphate 0.005-0.2M, dibastic sodium phosphate 0.005-0.2M; Other additive is hydrogen peroxide, ethanol a kind of or its compound wherein, and its concentration is hydrogen peroxide 5-40ml/l, ethanol 50-400ml/l.
Described corrosion inhibiter is a kind of or its compound in magnesium alloy corrosion inhibiter potassium fluoride commonly used, the sodium fluoride.
The molar concentration ratio of calcium salt and phosphate radical is 1-2 in the described electro-deposition calcium phosphate aqueous solution.
It is sodium hydroxide or potassium hydroxide a kind of or its compound wherein that described alkali liquor is handled employed aqueous solution, and its concentration is sodium hydroxide 0.1-2M, potassium hydroxide 0.1-2M.
Described polylactic acid is white powder body, and molecular weight is 20-80 ten thousand.The organic solvent that is used to prepare polylactic acid solution is acetone, dehydrated alcohol etc.The polylactic acid solution concentration of preparing is 20-300g/l, can be by the concentration of adjusting polylactic acid and the polylactic acid coating that soak time is prepared different-thickness, composition.
The degradation rate of described magnesium alloy in body fluid can be realized the degradation rate controllability by the composition of regulating the hydroxyapatite/polylactic acid composite coating.
Principle of the present invention is as follows:
The present invention carries out the compound biodegradability of magnesium alloy in people's body fluid of improving with polylactic acid and hydroxyapatite.Polylactic acid belongs to macromolecular material, have excellent biocompatibility and biodegradability, the degraded back generates water and carbon dioxide, nontoxic, aspects such as constituent, microstructure, mechanical performance and degradation speed at material can be regulated and control in advance, but its maximum defective is to lack the cell recognition signal.The hydroxyapatite/polylactic acid composite can be realized both mutual supplement with each other's advantages to a great extent, gives material bone conductibility and biodegradability when having good mechanical performance and biocompatibility.Therefore, the present invention adopts the method for electro-deposition at Mg alloy surface deposition one deck hydroxyapatite coating layer, be dipped into then and carry out the sealing of hole processing in the polylactic acid solution, the surface obtains the polylactic acid coating, the biomaterial that obtains thus not only has the metallic character of magnesium alloy excellence, and can regulate degradation rate by the content of hydroxyapatite and polylactic acid in the change composite coating, realize the controllability of degradation rate.
The present invention has following advantage:
1, processing method of the present invention does not contain human body and the deleterious material of environment, belongs to environmental type technology.
2, solution composition of the present invention and operating procedure are simple, are easy to control, process stabilizing.
3, the composite coating prepared of the present invention is even, and is good with basal body binding force, has good biological activity, and can improve the biodegradability of magnesium alloy in body fluid.
4, the present invention can realize the controllability of magnesium alloy degradation rate by the composition of adjusting the hydroxyapatite/polylactic acid composite coating.
5, the present invention makes full use of the biodegradability of biological activity and the polylactic acid of HA, and both are organically combined, and learns from other's strong points to offset one's weaknesses, and will promote the extensive use of magnesium alloy aspect biomaterial.
The specific embodiment
The preparation method of Mg alloy surface hydroxylapatite/polylactic acid composite biological active coating of the present invention, step is as follows:
(1) pre-treatment: pre-treatment comprises oil removing and two steps of pickling, all will wash after each step.
Described degreasing fluid is alkali metal hydroxide 10-70g/l, carbonate 15-50g/l, phosphate 20-70g/l, bicarbonate 10-80g/L, wherein one or more composite aqueous solutions.It is 2-20min in 60-90 ℃ the degreasing fluid that the magnesium alloy sample is immersed in temperature, removes oils and fats and the dirt of Mg alloy surface remnants.
Described hydroxide can be sodium hydroxide, potassium hydroxide, and carbonate can be sodium carbonate, potassium carbonate, and phosphate can be sodium phosphate, potassium phosphate, and bicarbonate can be sodium bicarbonate, potassium bicarbonate.
That described acid washing water solution adopts is dihydric phosphate 10-80g/l and corrosion inhibiter 0.1-2g/l.Magnesium alloy sample after the oil removing is immersed in 10-90s in the pickle, room temperature, the oxide and the rusty scale of removal sample surfaces are beneficial to the adhesion that improves coating and parent metal.
Described dihydric phosphate is a kind of or its compound in potassium dihydrogen phosphate, sodium dihydrogen phosphate, the Ammonium biphosphate; Corrosion inhibiter is a kind of or its compound in magnesium alloy corrosion inhibiter potassium fluoride commonly used, the sodium fluoride.
(2) electro-deposition calcium phosphate coating
At first, preparing the required solution of electro-deposition places stand-by.Its method is to get the calcium salt of metering, dihydric phosphate or hydrophosphate respectively to put into exsiccant beaker, adds an amount of distilled water, is placed in 60~100 ℃ the water-bath it is dissolved fully.The solution that dissolving is good mixes, and stirs with Glass rod it is mixed fully, adds an amount of additive, the pH value that uses a kind of regulator solution in sodium hydroxide, ammonia, nitric acid or the hydrochloric acid as 4-5 after, adding distil water is extremely volume required.
Calcium salt in the described electro-deposition calcium phosphate coating aqueous solution is calcium chloride, lime nitrate a kind of or its compound wherein, and its concentration is calcium chloride 0.01-0.3M, lime nitrate 0.01-0.3M; Dihydric phosphate is sodium dihydrogen phosphate, potassium dihydrogen phosphate, Ammonium biphosphate a kind of or its compound wherein, and its concentration is sodium dihydrogen phosphate 0.005-0.2M, potassium dihydrogen phosphate 0.005-0.2M, Ammonium biphosphate 0.005-0.2M; Hydrophosphate is ammonium hydrogen phosphate, potassium hydrogen phosphate, dibastic sodium phosphate a kind of or its compound wherein, and its concentration is ammonium hydrogen phosphate 0.005-0.2M, potassium hydrogen phosphate 0.005-0.2M, dibastic sodium phosphate 0.005-0.2M; Other additive is hydrogen peroxide, ethanol a kind of or its compound wherein, and its concentration is hydrogen peroxide 5-40ml/l, ethanol 50-400ml/l.The molar concentration ratio of calcium salt and phosphate radical is 1-2 in the electro-deposition calcium phosphate coating solution.
Secondly, carry out electro-deposition HA coating.Its method is for to be connected the magnesium alloy sample after the pickling with power cathode, corrosion resistant plate or titanium plate are connected with power anode, voltage transfers to 1-8V, room temperature, magnetic agitation is behind the electro-deposition 0.5-4h, take out, oven dry obtains the mixture coating be made up of multiple calcium phosphate, and coating layer thickness is 3-40 μ m.
(3) alkali liquor is handled
It is that calcium phosphate coating with the electro-deposition after drying is immersed in 0.5-4h in the alkali liquor that described alkali liquor is handled, and makes multiple calcium phosphate mixture coating be transformed into uniform HA coating, temperature 50-90 ℃.
It is sodium hydroxide or potassium hydroxide a kind of or its compound wherein that described alkali liquor is handled employed aqueous solution, and its concentration is sodium hydroxide 0.1-2M, potassium hydroxide 0.1-2M.
(4) polylactic acid coating
At first, configure the polylactic acid solution for later use.Take by weighing a certain amount of polylactic acid powder body and put in the appropriate amount of organic, stir, polylactic acid is dissolved fully.
Described polylactic acid is white powder body, and molecular weight is 20-80 ten thousand, and organic solvent is acetone, dehydrated alcohol etc., and the polylactic acid solution concentration of preparing is 20-300g/l.
Secondly, the magnesium alloy sample of surface coverage hydroxyapatite coating layer is immersed in obtains polylactic acid coating, room temperature, time 5-60s in the polylactic acid solution;
Described polylactic acid coating layer thickness and structure can be adjusted by adjusting polylactic acid solution concentration and soak time.
At last, oven dry is handled and is obtained the hydroxyapatite/polylactic acid composite coating, and temperature 50-150 ℃, time 5-60min, obtaining thickness is the hydroxyapatite/polylactic acid composite coating of 4-45 μ m.
Below in conjunction with embodiment in detail the present invention is described in detail.
Embodiment 1
Sample is a die casting AZ91D magnesium alloy, is of a size of 30mm * 25mm * 5mm, and its concrete operations step is as follows:
1, oil removing: degreasing fluid consists of the aqueous solution of sodium hydroxide 50g/L, sodium phosphate 40g/l, sodium carbonate 30g/l, 70 ℃ of temperature, time 8min, oils and fats and the dirt of removal Mg alloy surface remnants;
2, pickling: that acid washing water solution adopts is Ammonium biphosphate 30g/l and potassium fluoride 0.5g/l.Magnesium alloy sample after the oil removing is immersed in 60s in the pickle of room temperature, removes the oxide and the rusty scale of sample surfaces.
3, electro-deposition calcium phosphate coating: the electro-deposition aqueous solution consists of lime nitrate 0.1M, sodium dihydrogen phosphate 0.06M, hydrogen peroxide 20ml/l.It is 4.3 that sodium hydroxide is regulated pH.Magnesium alloy sample after the pickling is as negative electrode, and corrosion resistant plate is as anode, and supply voltage transfers to 3V, behind the electro-deposition 2h, takes out, and oven dry obtains the mixture coating be made up of multiple calcium phosphate, and coating layer thickness is 15 μ m.
4, alkali liquor is handled: the coating after the electro-deposition is immersed in 2h in the 0.5M sodium hydrate aqueous solution, and 70 ℃ of temperature obtain uniform HA coating, oven dry.
5, polylactic acid solution: the polylactic acid powder body 5g that takes by weighing molecular weight and be 40-50 ten thousand puts into beaker, adds the acetone of 50ml then, stirs, and polylactic acid is dissolved fully.
6, polylactic acid coating: the magnesium alloy sample of surface coverage hydroxyapatite coating layer is dipped in the polylactic acid solution, obtains the polylactic acid coating, room temperature, time 30s;
7, oven dry is handled: 100 ℃ of oven dry 10min obtain the hydroxyapatite/polylactic acid composite coating.
Present embodiment finally obtain thickness be 18 μ m evenly, composite coating that adhesion is good, the magnesium alloy sample that applies this composite coating is immersed in 48h does not see significant change in the rear surface in the simulated body fluid.
Embodiment 2
Sample is of a size of 30mm * 25mm * 2mm for extruding attitude AZ31 D magnesium alloy, and difference from Example 1 is:
1, pickling: that acid washing water solution adopts is sodium dihydrogen phosphate 50g/l and sodium fluoride 1g/l.Magnesium alloy sample after the oil removing is immersed in 30s in the pickle of room temperature, removes the oxide and the rusty scale of sample surfaces.
2, electro-deposition calcium phosphate coating: the electro-deposition aqueous solution consists of calcium chloride 0.05M, ammonium hydrogen phosphate 0.03M, ethanol 200ml/l, and it is 4.1 that hydrochloric acid is regulated pH.The magnesium alloy sample is as negative electrode, and the titanium plate is as anode, and supply voltage transfers to 1.5V, behind the electro-deposition 3h, takes out, and oven dry obtains the mixture coating be made up of multiple calcium phosphate, and coating layer thickness is 20 μ m.
3, polylactic acid solution: the polylactic acid powder body 2.5g that takes by weighing molecular weight and be 30-40 ten thousand puts into beaker, adds the ethanol solution of 50ml then, stirs, and polylactic acid is dissolved fully.
4, polylactic acid coating: the magnesium alloy sample of surface coverage hydroxyapatite coating layer is dipped in the polylactic acid solution, obtains the polylactic acid coating, room temperature, time 60s;
It is that the hydroxyapatite/polylactic acid composite coating of 23 μ m is even, adhesion is good that present embodiment finally obtains thickness, the magnesium alloy sample that applies this composite coating is immersed in 48h does not see significant change in the rear surface in the simulated body fluid.
Embodiment 3
Sample is of a size of 30mm * 25mm * 2mm for extruding attitude AM60 magnesium alloy, and difference from Example 1 is:
1, electro-deposition calcium phosphate coating: the electro-deposition aqueous solution consists of lime nitrate 0.2M, potassium dihydrogen phosphate 0.1M, ethanol 100ml/l, hydrogen peroxide 10ml/l, and it is 4.2 that ammonia is regulated pH.The magnesium alloy sample is as negative electrode, and corrosion resistant plate is as anode, and supply voltage transfers to 5V, behind the electro-deposition 1h, takes out, and oven dry obtains the mixture coating be made up of multiple calcium phosphate, and coating layer thickness is 13 μ m.
2, alkali liquor is handled: the coating after the electro-deposition is immersed in 1h in the 1.5M potassium hydroxide aqueous solution, 80 ℃ of temperature, and the mixture coating of being made up of multiple calcium phosphate is transformed into uniform HA coating, oven dry.
3, polylactic acid coating: the magnesium alloy sample of surface coverage hydroxyapatite coating layer is dipped in the polylactic acid solution, obtains the polylactic acid coating, room temperature, time 20s;
4, oven dry is handled: 80 ℃ of oven dry 30min obtain the hydroxyapatite/polylactic acid composite coating.
Present embodiment finally obtain thickness be 14 μ m evenly, composite coating that adhesion is good, the magnesium alloy sample that applies this composite coating is immersed in 48h does not see significant change in the rear surface in the simulated body fluid.
Comparative Examples 1
Sample is of a size of 30mm * 25mm * 2mm for extruding attitude AZ91 D magnesium alloy, and difference from Example 1 is: the magnesium alloy sample does not apply the polylactic acid coating after obtaining the HA coating through oil removing, pickling, electro-deposition calcium phosphate coating and alkali liquor processing.
What finally obtain is the HA coating of white, and the magnesium alloy sample that covers the HA coating is immersed in 48h in the simulated body fluid, section H A coating shedding.
Comparative Examples 2
Sample is of a size of 30mm * 25mm * 2mm for extruding attitude AZ31D magnesium alloy, and difference from Example 1 is: after the oil removing of magnesium alloy sample process, the pickling processes, do not have electro-deposition HA coating, directly be dipped into and obtain the polylactic acid coating in the polylactic acid solution.
Because it is acid that polylactic acid shows, magnesium alloy is immersed in appearance corrosion in rear surface in the polylactic acid solution, and final resulting polylactic acid coating is a clear films, but coating is inhomogeneous, is easy to peel off from matrix surface.Sample is immersed in just occurred obvious corrosion in the simulated body fluid behind the 24h.

Claims (7)

1. the preparation method of a Mg alloy surface hydroxylapatite/polylactic acid composite biological coating is characterized in that operating as follows:
(1) oil removing: remove the greasy dirt of matrix surface with alkaline solution, temperature 60-90 ℃, time 2-20min;
(2) pickling: remove the oxide and the rusty scale of matrix surface, room temperature, time 10-90s with weakly acidic solution;
(3) electro-deposition calcium phosphate coating: in the aqueous solution that contains calcium salt, dihydric phosphate or hydrophosphate and other additive composition, carry out electro-deposition, pH value of solution 4-5, the magnesium alloy sample is as negative electrode, corrosion resistant plate or titanium plate be as anode, deposition voltage 1-8V, room temperature, magnetic agitation, sedimentation time 0.5-4h obtains the mixture coating be made up of multiple calcium phosphate, and coating layer thickness is 3-40 μ m;
(4) alkali liquor is handled: the coating after the electro-deposition is immersed in 0.5-4h in the alkali liquor, makes multiple calcium phosphate mixture coating be transformed into uniform HA coating, temperature 50-90 ℃;
(5) polylactic acid is dissolved in the polylactic acid solution of making variable concentrations in the organic solvent;
(6) the magnesium alloy sample that will cover hydroxyapatite coating layer is immersed in and carries out sealing of hole in the polylactic acid solution and handle, and the surface obtains the polylactic acid coating, room temperature, time 5-60s;
(7) oven dry processing acquisition thickness is the hydroxyapatite/polylactic acid composite coating of 4-45 μ m, temperature 50-150 ℃, and time 5-60min.
2. according to the preparation method of the described Mg alloy surface hydroxylapatite/polylactic acid composite biological coating of claim 1, it is characterized in that: that described acid washing water solution adopts is dihydric phosphate 10-80g/l and corrosion inhibiter 0.1-2g/l; Dihydric phosphate is a kind of or its compound in potassium dihydrogen phosphate, sodium dihydrogen phosphate, the Ammonium biphosphate; Corrosion inhibiter is a kind of or its compound in magnesium alloy corrosion inhibiter potassium fluoride commonly used, the sodium fluoride.
3. according to the preparation method of the described Mg alloy surface hydroxylapatite/polylactic acid composite biological coating of claim 1, it is characterized in that: the calcium salt in the described electro-deposition calcium phosphate coating aqueous solution is calcium chloride, lime nitrate a kind of or its compound wherein, its concentration is calcium chloride 0.01-0.3M, lime nitrate 0.01-0.3M; Dihydric phosphate is sodium dihydrogen phosphate, potassium dihydrogen phosphate, Ammonium biphosphate a kind of or its compound wherein, and its concentration is sodium dihydrogen phosphate 0.005-0.2M, potassium dihydrogen phosphate 0.005-0.2M, Ammonium biphosphate 0.005-0.2M; Hydrophosphate is ammonium hydrogen phosphate, potassium hydrogen phosphate, dibastic sodium phosphate a kind of or its compound wherein, and its concentration is ammonium hydrogen phosphate 0.005-0.2M, potassium hydrogen phosphate 0.005-0.2M, dibastic sodium phosphate 0.005-0.2M; Other additive is hydrogen peroxide, ethanol a kind of or its compound wherein, and its concentration is hydrogen peroxide 5-40ml/l, ethanol 50-400ml/l.
4. according to the preparation method of the described Mg alloy surface hydroxylapatite/polylactic acid composite biological of claim 3 active coating, it is characterized in that: the molar concentration ratio of calcium salt and phosphate radical is 1-2 in the described electro-deposition calcium phosphate coating solution.
5. according to the preparation method of the described Mg alloy surface hydroxylapatite/polylactic acid composite biological coating of claim 1, it is characterized in that: described alkali liquor is handled the aqueous solution that uses and is sodium hydroxide or potassium hydroxide a kind of or its compound wherein, its concentration is sodium hydroxide 0.1-2M, potassium hydroxide 0.1-2M.
6. according to the preparation method of the described Mg alloy surface hydroxylapatite/polylactic acid composite biological coating of claim 1, it is characterized in that: described polylactic acid is white powder body, and molecular weight is 20-80 ten thousand; The organic solvent that is used to prepare polylactic acid is acetone or dehydrated alcohol, and the polylactic acid solution concentration of preparing is 20-300g/l, by the concentration of adjusting polylactic acid and the polylactic acid coating that soak time is prepared different-thickness, composition.
7. according to the preparation method of the described Mg alloy surface hydroxylapatite/polylactic acid composite biological coating of claim 1, it is characterized in that: the degradation rate of described magnesium alloy in body fluid realized the degradation rate controllability by the composition of regulating the hydroxyapatite/polylactic acid composite coating.
CN 200710157568 2007-10-19 2007-10-19 Method for preparing hydroxylapatite/polylactic acid composite biological coating on surface of magnesium alloy Active CN101411892B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200710157568 CN101411892B (en) 2007-10-19 2007-10-19 Method for preparing hydroxylapatite/polylactic acid composite biological coating on surface of magnesium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200710157568 CN101411892B (en) 2007-10-19 2007-10-19 Method for preparing hydroxylapatite/polylactic acid composite biological coating on surface of magnesium alloy

Publications (2)

Publication Number Publication Date
CN101411892A true CN101411892A (en) 2009-04-22
CN101411892B CN101411892B (en) 2013-01-16

Family

ID=40592766

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710157568 Active CN101411892B (en) 2007-10-19 2007-10-19 Method for preparing hydroxylapatite/polylactic acid composite biological coating on surface of magnesium alloy

Country Status (1)

Country Link
CN (1) CN101411892B (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101991879A (en) * 2010-11-11 2011-03-30 奇瑞汽车股份有限公司 Preparation method of carbon-carbon composite material/hydroxyapatite/polylactic acid biological material
CN102614545A (en) * 2012-03-15 2012-08-01 河南师范大学 Metal-based implant ternary compound coating material and preparation method thereof
CN102787339A (en) * 2012-07-30 2012-11-21 同济大学 Method for preparing magnesium alloy - calcium phosphorus coating composite material by electrochemical deposition
CN103418035A (en) * 2013-07-19 2013-12-04 上海交通大学 Preparation method of surface coating capable of regulating degradation rate of magnesium alloy intravascular stent
CN103484845A (en) * 2013-10-12 2014-01-01 同济大学 Preparation method of biodegradable magnesium alloy/calcium phosphate coating composite material
CN103933611A (en) * 2014-03-27 2014-07-23 同济大学 Preparation method of hydroxyapatite/polylactic acid composite coating on surface of medical magnesium alloy
CN104524647A (en) * 2014-12-30 2015-04-22 马艳荣 Biodegradable polymer coating drug-loaded magnesium alloy-eluting stent
CN105441940A (en) * 2015-11-30 2016-03-30 扬州大学 Method for coating surface of nickel and titanium alloy with polylactic acid and hydroxyapatite composite material
CN105536045A (en) * 2016-02-03 2016-05-04 江苏时空涂料有限公司 Method for preparing fibroin modified magnesium polylactate alloy active coating
TWI577324B (en) * 2015-12-30 2017-04-11 Applicable to hot melt implantation to bone correction or bone defect
CN106693043A (en) * 2015-11-18 2017-05-24 先健科技(深圳)有限公司 Absorbable iron-base alloy implantable medical device and preparation method thereof
CN106822994A (en) * 2016-12-30 2017-06-13 浙江工业大学 A kind of stainless steel is implanted into composite material and its preparation and application
CN106902390A (en) * 2016-12-30 2017-06-30 浙江工业大学 A kind of titanium alloy is implanted into composite material and its preparation and application
CN106902391A (en) * 2016-12-30 2017-06-30 浙江工业大学 A kind of magnesium alloy is implanted into composite material and its preparation and application
CN107236940A (en) * 2017-05-12 2017-10-10 重庆大学 A kind of preparation method of calcium phosphate coated magnesium powder
CN108404222A (en) * 2018-05-25 2018-08-17 湖南早晨纳米机器人有限公司 A kind of POROUS TITANIUM based nano composite material for hard tissue material and preparation method thereof, application
CN108686268A (en) * 2017-03-28 2018-10-23 德普伊新特斯产品公司 Orthopaedic implant and preparation method thereof with crystallized calcium phosphate coating
CN109106982A (en) * 2018-09-02 2019-01-01 张家港市六福新材料科技有限公司 A kind of preparation method of titanium aluminium base hydroxyl apatite biological painting
CN109175667A (en) * 2018-09-11 2019-01-11 华南理工大学 A kind of hydroxyapatite/composite material of magnesium alloy and preparation method thereof
CN111870736A (en) * 2020-06-15 2020-11-03 江汉大学附属湖北省第三人民医院 Preparation method of novel photo-thermal anti-bone-tumor coating on surface of magnesium alloy
CN113616853A (en) * 2021-08-06 2021-11-09 吉林大学 Preparation method of composite coating for improving corrosion resistance/biocompatibility of magnesium alloy
CN114533955A (en) * 2022-02-16 2022-05-27 上海宛文创业孵化器管理合伙企业(有限合伙) Medical magnesium alloy surface coating with strong binding force and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6045683A (en) * 1997-12-01 2000-04-04 University Of Alabama In Huntsville Modified brushite surface coating, process therefor, and low temperature conversion to hydroxyapatite
CN1500792A (en) * 2002-11-14 2004-06-02 宋子圣 Normal temperature four in one cleaning agent using in industry
CN100439569C (en) * 2004-07-06 2008-12-03 厦门大学 Electrochemical preparing method for nano ordered hydroxy apatite coating
CN1760410A (en) * 2005-11-07 2006-04-19 中山大学 Method for preparing composite material of titanium hydroxy apatite
CN100516317C (en) * 2006-02-22 2009-07-22 福建师范大学 Method of preparing electrophoretic deposited hydroxyl apatite coating on Ti or Ti alloy surface

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101991879A (en) * 2010-11-11 2011-03-30 奇瑞汽车股份有限公司 Preparation method of carbon-carbon composite material/hydroxyapatite/polylactic acid biological material
CN102614545A (en) * 2012-03-15 2012-08-01 河南师范大学 Metal-based implant ternary compound coating material and preparation method thereof
CN102787339A (en) * 2012-07-30 2012-11-21 同济大学 Method for preparing magnesium alloy - calcium phosphorus coating composite material by electrochemical deposition
CN103418035A (en) * 2013-07-19 2013-12-04 上海交通大学 Preparation method of surface coating capable of regulating degradation rate of magnesium alloy intravascular stent
CN103418035B (en) * 2013-07-19 2015-07-08 上海交通大学 Preparation method of surface coating capable of regulating degradation rate of magnesium alloy intravascular stent
CN103484845B (en) * 2013-10-12 2016-04-20 同济大学 The preparation method of biodegradable magnesium alloy/calcium phosphor coating matrix material
CN103484845A (en) * 2013-10-12 2014-01-01 同济大学 Preparation method of biodegradable magnesium alloy/calcium phosphate coating composite material
CN103933611A (en) * 2014-03-27 2014-07-23 同济大学 Preparation method of hydroxyapatite/polylactic acid composite coating on surface of medical magnesium alloy
CN103933611B (en) * 2014-03-27 2015-11-25 同济大学 The preparation method of medical magnesium alloy surface hydroxyapatite/polylactic acid composite coating
CN104524647A (en) * 2014-12-30 2015-04-22 马艳荣 Biodegradable polymer coating drug-loaded magnesium alloy-eluting stent
WO2017084314A1 (en) * 2015-11-18 2017-05-26 先健科技(深圳)有限公司 Absorbable iron-based alloy implanted medical device and preparation method thereof
CN106693043B (en) * 2015-11-18 2020-06-16 先健科技(深圳)有限公司 Absorbable iron-based alloy implanted medical instrument and preparation method thereof
CN106693043A (en) * 2015-11-18 2017-05-24 先健科技(深圳)有限公司 Absorbable iron-base alloy implantable medical device and preparation method thereof
CN105441940A (en) * 2015-11-30 2016-03-30 扬州大学 Method for coating surface of nickel and titanium alloy with polylactic acid and hydroxyapatite composite material
TWI577324B (en) * 2015-12-30 2017-04-11 Applicable to hot melt implantation to bone correction or bone defect
CN105536045A (en) * 2016-02-03 2016-05-04 江苏时空涂料有限公司 Method for preparing fibroin modified magnesium polylactate alloy active coating
CN105536045B (en) * 2016-02-03 2018-11-30 东阳市特意新材料科技有限公司 A kind of preparation method of silk-fibroin polydactyl acid magnesium alloy active coating
CN106822994A (en) * 2016-12-30 2017-06-13 浙江工业大学 A kind of stainless steel is implanted into composite material and its preparation and application
CN106902390A (en) * 2016-12-30 2017-06-30 浙江工业大学 A kind of titanium alloy is implanted into composite material and its preparation and application
CN106902391A (en) * 2016-12-30 2017-06-30 浙江工业大学 A kind of magnesium alloy is implanted into composite material and its preparation and application
CN108686268A (en) * 2017-03-28 2018-10-23 德普伊新特斯产品公司 Orthopaedic implant and preparation method thereof with crystallized calcium phosphate coating
CN108686268B (en) * 2017-03-28 2023-03-07 德普伊新特斯产品公司 Orthopedic implants with crystalline calcium phosphate coatings and methods of making the same
CN107236940A (en) * 2017-05-12 2017-10-10 重庆大学 A kind of preparation method of calcium phosphate coated magnesium powder
CN108404222A (en) * 2018-05-25 2018-08-17 湖南早晨纳米机器人有限公司 A kind of POROUS TITANIUM based nano composite material for hard tissue material and preparation method thereof, application
CN109106982A (en) * 2018-09-02 2019-01-01 张家港市六福新材料科技有限公司 A kind of preparation method of titanium aluminium base hydroxyl apatite biological painting
CN109175667A (en) * 2018-09-11 2019-01-11 华南理工大学 A kind of hydroxyapatite/composite material of magnesium alloy and preparation method thereof
CN111870736A (en) * 2020-06-15 2020-11-03 江汉大学附属湖北省第三人民医院 Preparation method of novel photo-thermal anti-bone-tumor coating on surface of magnesium alloy
CN111870736B (en) * 2020-06-15 2021-10-22 江汉大学附属湖北省第三人民医院 Preparation method of magnesium alloy surface photothermal anti-bone tumor coating
CN113616853A (en) * 2021-08-06 2021-11-09 吉林大学 Preparation method of composite coating for improving corrosion resistance/biocompatibility of magnesium alloy
CN114533955A (en) * 2022-02-16 2022-05-27 上海宛文创业孵化器管理合伙企业(有限合伙) Medical magnesium alloy surface coating with strong binding force and preparation method thereof

Also Published As

Publication number Publication date
CN101411892B (en) 2013-01-16

Similar Documents

Publication Publication Date Title
CN101411892B (en) Method for preparing hydroxylapatite/polylactic acid composite biological coating on surface of magnesium alloy
CN101461964B (en) Bioactivity surface modification method of biological medical degradable magnesium alloy
CN102268711B (en) Method for preparing biological composite coating on surface of magnesium-based material
Zhang et al. Advances in hydroxyapatite coatings on biodegradable magnesium and its alloys
CN101643929B (en) Pulse electrodeposition preparation method of hydroxyapatite coating on surface of pure magnesium or magnesium alloy
CN101709496B (en) Micro-arc oxidation-electrodeposition preparation method of magnesium-based bioactive coating
Wang et al. In vitro degradation and mechanical integrity of Mg–Zn–Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process
CN103933611B (en) The preparation method of medical magnesium alloy surface hydroxyapatite/polylactic acid composite coating
Hafeez et al. Phosphate chemical conversion coatings for magnesium alloys: a review
CN110448728B (en) Magnesium-phosphorus biocompatible coating on surface of medical zinc-based material, preparation and application
CN101249286A (en) Degradable chemical bitter earth alloy bracket and method of preparing the same
CN101984144B (en) Surface mount method of mineralized collagen gradient coating for medical titanium implant
CN103372232A (en) Micro-arc oxidation self-sealing hole active coating of magnesium-based implant material and preparation method of micro-arc oxidation self-sealing hole active coating
CN101156963A (en) Method for preparing similar bone bioactivity coatings medical material by galvano-chemistry method
CN104623739A (en) Coated magnesium alloy bone nails, bone plates and cancellous bone screws and preparation method thereof
CN101560685B (en) Method for preparing bioactive coating on titanium alloy surface
CN104436301A (en) Preparation method of phytic acid/hydroxyapatite hybrid coating on magnesium alloy
CN101642585B (en) Biological activating solution for surface of magnesium alloy and application thereof
CN103934184B (en) The preparation method of degradable magnesium alloy/polydactyl acid coating composite material
CN105200413A (en) Preparation method of Ca-P-Sn composite coating layer on surface of magnesium alloy
Zhai et al. Fluoride coatings on magnesium alloy implants
CN103194781A (en) Bioactivity surface modification method used in degradable magnesium alloy
CN103301512B (en) Absorbable biological material and preparation method thereof
CN110624128B (en) Degradable magnesium-based bone repair material calcium-phosphorus strontium-doped functional coating and preparation thereof
CN101161295A (en) Method for modifying medical metallic grafting body surface collagen by galvano-chemistry method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant