CN101356089A - 鉴于有轨车厢参数优化火车运行的***、方法和计算机软件代码 - Google Patents

鉴于有轨车厢参数优化火车运行的***、方法和计算机软件代码 Download PDF

Info

Publication number
CN101356089A
CN101356089A CNA2007800011856A CN200780001185A CN101356089A CN 101356089 A CN101356089 A CN 101356089A CN A2007800011856 A CNA2007800011856 A CN A2007800011856A CN 200780001185 A CN200780001185 A CN 200780001185A CN 101356089 A CN101356089 A CN 101356089A
Authority
CN
China
Prior art keywords
train
rail compartment
compartment
rail
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800011856A
Other languages
English (en)
Other versions
CN101356089B (zh
Inventor
W·道姆
J·E·赫尔谢
D·M·佩尔茨
G·R·沙菲尔
J·F·诺夫辛格
J·博恩雷格
A·库马
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/621,221 external-priority patent/US8473127B2/en
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN101356089A publication Critical patent/CN101356089A/zh
Application granted granted Critical
Publication of CN101356089B publication Critical patent/CN101356089B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)

Abstract

一种改进火车性能的方法,该方法包括为包含于火车内的至少一个有轨车厢确定有轨车厢参数,和按照所述火车的至少一个操作准则根据所述有轨车厢参数创建火车行程计划。

Description

鉴于有轨车厢参数优化火车运行的***、方法和计算机软件代码
本申请基于2006年5月19日提交的临时申请号60/802,147,并且是2006年3月20日提交的美国申请号11/385,354的部分继续申请,在此将其全部内容并入作为参考。
技术领域
本发明的领域涉及有轨运输(rail transportation),而且更特别地涉及识别有轨车厢(rail car)参数以供改进火车(train)操作之用。
发明背景
机车(locomotive)是具有多个子***的复杂***,其中每个子***都与其他的子***相互依赖。操作者通常上到机车上以确保机车及其相关联的运货车厢的负载的正常运行。除确保机车正常运行之外,操作者还负责确定火车的运行速度并且负责在火车内将各种力限制到可接受的值,其中机车是所述火车的一部分。为了执行该功能,操作者通常必须具有在指定地形上操作机车和各种火车的丰富经验。为了遵照可能随火车沿轨道的位置而变化的可指定的运行速度而行事,这种知识是必需的。此外,操作者还负责确保火车内的力保持在可接受的限制之内。
铁路场站(rail yard)是铁路运输***的枢纽(hub)。铁路场站执行许多服务,例如货物发起(origination)、互换及终止,机车存放及维护、新火车的装配及检查、火车经过工厂(facility)的维修、有轨车厢的检查及维护,以及有轨车厢存放。铁路场站的不同服务在不同工厂中争夺诸如人员、设备和空间之类的资源,这样有效地管理整个铁路场站就是很复杂的操作。
装配新火车通常涉及根据装载量(trainload)预定到给定目的地的次数以及给定火车可用的原动力(motive power)进行装配。典型地在装配火车时,有轨车厢在火车中的放置可以随机地完成。更具体地,不是根据可使火车运行最优的次序来执行车厢设置的。在了解诸如车厢重量、负载、车轮轴向、横向和/或垂直力之类的信息的情况下,可以改进火车行程优化。这种类型的信息可以有助于优化火车运行的某些方面,例如但不限于用于加速、减速的燃料/速度优化,对分布式动力或非分布式动力火车的改进的火车处理,和/或改进的排放。
现在存在着对改进火车装配过程和改进火车机车操作参数以减少燃料成本和跨路转换时间(over-road transit time)的持续需求。在此所公开的一种方法在组装火车时使用有轨车厢参数。
发明内容
本发明的示例性实施例公开了一种用于识别有轨车厢参数以供改进火车运行之用的***、方法和计算机软件代码。为此,一种用于改进火车性能的方法包括为要被包含于火车中的至少一个有轨车厢确定有轨车厢参数的步骤。另一步骤包括按照火车的至少一个操作准则,根据有轨车厢参数创建火车行程计划。
在另一个示例性实施例中,公开了一种在处理器中使用的、用以改进火车性能的计算机软件代码。所述计算机软件代码包括用于确定所述火车的至少一个有轨车厢的有轨车厢参数的计算机软件模块。另一计算机软件模块用于按照所述火车的至少一个操作准则根据所述有轨车厢参数来创建火车行程计划。
还公开了一种通过确定有轨车厢参数来改进火车性能的***。该***包括有轨车厢参数测量***。还公开了中央控制器。进一步包括通信网络,其实现所述测量***和所述中央控制器之间的通信。有轨车厢参数被测量并且被提供给所述中央控制器,然后该中央控制器根据所述有轨车厢参数为火车内的所有有轨车厢确定火车组成轮廓(make upprofile)和/或为火车任务确定行程计划。
附图详细说明
下面将参考在附图中示出的本发明的特定实施例对如上简要描述的本发明进行更加详细的描述。可以理解的是,这些附图仅仅描述本发明的典型实施例,因此不能被视为对本发明的范围的限制,下面将通过利用附图使用附加的特征和细节对本发明的进行描述和解释,其中:
图1描述了本发明的流程图的示例性图解;
图2描述了可以采用的火车的简化模型;
图3描述了本发明的元件的示例性实施例;
图4描述了燃料耗费(fuel use)/行驶时间曲线图的示例性实施例;
图5描述了对行程计划进行分段分解的示例性实施例;
图6描述了分段例子的示例性实施例;
图7描述了本发明的示例性流程图;
图8描述了供操作者使用的动态显示器的示例性图解;
图9描述了供操作者使用的动态显示器的另一个示例性图解;
图10描述了供操作者使用的动态显示器的另一个示例性图解;
图11描述了对用于改进火车运行的有轨车厢参数进行自动识别的***的示意性表示;和
图12描述了用于说明自动识别用于改进火车运行的有轨车厢参数的步骤的流程图。
本发明的详细描述
本发明的示例性实施例通过提供用于识别有轨车厢参数以供改进火车运行之用的***、方法和计算机软件代码,从而解决了本领域内的问题。本领域技术人员将会认识到,诸如数据处理***之类的设备(包括CPU、存储器、I/O、程序存储器、连接总线和其他适当的组件),可以被编程或被以其他方式设计成促进本发明示例性实施例的方法的实施。这样的***将包括用来执行本发明示例性实施例的适当的程序装置。
一般地说,技术效果是识别有轨车厢参数并使用这些参数改进火车运行。本发明可以在由计算机执行的计算机可执行的指令(例如程序模块)的通用环境中描述。通常,程序模块可以包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等。例如,能够以不同的语言对支持本发明示例性实施例的软件程序进行编码,以用于不同的计算平台。然而,应当理解,也能够使用其他类型的计算机软件技术来实现支持本发明示例性实施例的原理。
此外,本领域的技术人员将会意识到,本发明可以用其他计算机***配置来实施,包括手持装置、多处理器***、基于微处理器的或者可编程的消费电子产品、微型计算机、大型计算机等等。本发明也可以在分布式计算环境中实施,在该环境中由通过通信网络耦连(link)的远程处理装置执行任务。在分布式计算环境中,程序模块可以位于包括存储装置的本地和远程计算机存储介质这二者之中。
而且,与数据处理***一起使用的制造物品(例如预记录的磁盘或其他类似的计算机程序产品)可以包括存储介质和在其上记录的程序装置,所述程序装置用于指引数据处理***以促进本发明的方法的实现。这样的设备和制造物品也落入本发明的精神和范围之内。
在整个文件中都使用了术语“机车组(locomotive consist)”。正如此处所使用的,机车组可以被描述为具有一个或多个接连的机车,这些机车被连接在一起以提供电动驱动(motoring)和/或制动能力。机车被连接在一起,此处在机车之间没有火车车厢。火车在其组成中能够具有一个以上机车组。特别地,可以有一个引导组和一个以上远程组,例如车厢线中间的一个组和火车末端的另一个远程组。每个机车组都可以具有第一机车(first locomotive)和拖拽机车(trail locomotive)(一个或多个)。尽管第一机车通常被看作引导机车,但是所属领域技术人员将很容易认识到多机车组中的第一机车在物理上可以位于物理拖拽位置。尽管机车组成通常被看作接连的机车,但是所属领域技术人员将很容易认识到,即使当至少一个车厢与机车分离时,例如当机车组被配置成用于分布式动力操作时(其中油门和制动命令通过无线电链路或者物理电缆而被从引导机车中继到远程火车),机车组群也可以认为是一组。为此,当在同一火车中讨论多个机车时,术语“机车组”不应该被视作限制因素。
现在参考附图,来描述本发明的实施例。本发明能够以多种方式实现,包括作为***(包括计算机处理***)、方法(包括计算机实现的方法)、设备、计算机可读介质、计算机程序产品、图形用户界面(包括web网络门户)或确实地安装在计算机可读存储器中的数据结构。下面将讨论本发明的若干实施例。
图1描述了本发明的示例性实施例的流程图的示例性图解。如图所示,输入专用于在车上或者从远程位置(例如调度中心10)计划行程的指令。这样的输入信息包括但不限于:火车位置、组描述(例如机车模型)、机车动力描述、机车牵引传送性能、作为输出功率的函数的发动机燃料消耗、冷却特性、计划的行程路线(作为路标(milepost)的函数的有效轨道坡度和曲率,或反映遵循标准铁路惯例的曲率的“有效坡度”成分)、由车厢组成和负载与有效拖曳系数一起表示的火车,所期望的行程参数包括但不限于:起始时间和位置、终止位置、期望的行驶时间、工作人员(用户和/或操作者)标识、工作人员换班到期时间和路线。
可以采用多种方式将该数据提供给机车42,例如但不限于:操作者经由机载的显示器手动地将该数据输入到机车42,将包括该数据的存储装置(例如硬件卡和/或USB驱动器)***机车上的插座(receptacle),以及经由无线通信从中心或路边(wayside)位置41例如轨道信号发送(signalling)装置和/或路边装置(wayside means)(如图3所示)向机车42传送信息。机车42和火车31负载特性(例如,拖曳)也可以随路线(例如,随着铁轨(rail)与有轨车厢的状况、高度、周围的温度)而变化,而且可以根据需要采用上述任意一种方法和/或通过实时自动收集机车/火车的状况来更新所述计划以反映这样的变化。这包括例如,通过监视机车(一个或多个)42上或之外的装置来检测机车或火车特性的变化。
轨道信号***确定容许的火车速度。存在着与每个信号相关联的很多类型的轨道信号***和操作规则。例如,一些信号具有单个灯(开/关),一些信号具有带多种颜色的单个镜头,而一些信号具有多个灯和颜色。这些信号能够指示出轨道是畅通的并且火车可以以最大的容许速度前进。它们还能够指示出需要减速或停止。该减速可能需要立刻完成,或在某一位置(例如,在下一个信号或交叉口之前)完成。
通过各种手段将信号状态传送到火车和/或操作者。一些***在轨道中有电路,并且在机车上有感应采集线圈。其他***具有无线通信***。信号***还可能需要操作者直观地检查信号并采取适当的措施。
信号发送***可以与车载信号***对接并且根据输入和适当的操作规则来调整机车速度。对于需要操作者直观地检查信号状态的信号***,操作者屏幕将根据火车的位置向操作者呈现适当的信号选项以供输入。操作规则和信号***的类型,作为位置的函数,可以被存储在车载数据库63中。
根据输入到本发明的示例性实施例中的规范数据,计算使燃料耗费和/或产生的排放最小化的最优计划(其服从沿具有期望起始和结束时间的路线的速度限制约束)以产生行程轮廓(profile)12。所述轮廓包括火车所遵循的最优速度和功率(挡)设置,其被表示为距离和/或时间的函数,而且这样的火车运行限制,包括但不限于:最大挡功率和制动设置,和作为位置的函数的速度限制,和所期望耗费的燃料与产生的排放。在示例性实施例中,用于挡设置的值被选择以大约每10到30秒获得一次油门改变决定。所属领域技术人员将很容易认识到,如果需要和/或期望遵循最优的速度轮廓,油门改变决定可以在更长或更短的持续期间发生。在广义上,对所属领域技术人员来说,很明显的是这些轮廓在火车级别、组级别和/或单个火车级别的任意级别为火车提供功率设置。功率包括制动功率、驱动功率和空气制动功率。在另一优选的实施例中,本发明的示例性实施例能够选择被确定为就所选择的轮廓而言是最优的连续功率设置,而不是在传统的离散功率挡设置下运行。这样,例如,如果最优的轮廓指定6.8的挡设置而不是在挡设置7下运行,则机车42能够在6.8下运行。允许这样的中间功率设置可以带来如下面描述的额外效率利益。
如下面所概括的,用于计算最优轮廓的程序能够是用于计算驱动火车31以最小化服从机车运行和时间表约束的燃料和/或排放的功率序列的任意多种方法。在一些情况下,由于火车配置、路线和环境状况的相似性,所需要的最优轮廓可能与一个先前确定的轮廓足够接近。在这些情况下,在数据库63内查找驱动轨道并尝试跟随它是足够的。当先前计算的计划都不合适时,用于计算一个新计划的方法包括但不限于,利用近似火车运动物理性质的微分方程模型来引导最优轮廓的计算。此设置包括选择定量的目标函数,通常是与燃料消耗率和排放产生相对应的模型变量的加权和(积分)加上用以处罚过量油门变化的项。
最优的控制公式被建立以最小化定量的目标函数,其所服从的约束包括但不限于,速度限制与最小和最大功率(油门)设置。根据任何时间的计划目标,可以灵活地建立该问题以最小化服从排放和速度限制的约束的燃料、或者最小化服从燃料耗费和到达时间的约束的排放。也可以建立这样的目标,例如,在没有对总排放或燃料耗费的约束的情况下最小化总行驶时间的目标,此处针对任务将允许或需要这样的约束放宽。
在整个文件中所给出的示例性方程和目标函数都用于最小化机车燃料消耗。这些方程和函数仅作为例子,其他方程和目标函数能够被用来优化燃料消耗或用来优化其他机车/火车的操作参数。
数学上,待解的问题可以被更精确地陈述。基本物理性质被表示为:
dx dt = v ; x(0)=0.0;x(Tf)=D
dv dt = T e ( u , v ) - G a ( x ) - R ( v ) ; v(0)=0.0;v(Tf)=0.0
此处x是火车的位置,v是火车速度,且t是时间(单位分别是英里、英里每小时以及视情况而定分钟或小时),并且u是挡(油门)命令输入。此外,D表示要行驶的距离,Tf是沿着轨道经过距离D所期望的到达时间,Te是机车组产生的牵引力,Ga是取决于火车长度、火车组成和火车所处地形的地心引力,R是机车组与火车结合体依赖于净速度的拖曳力。最初和最终速度也能够被指定,然而在不失一般性的情况下,在此将其设成零(火车在开始和结束时都处于停止)。最后,模型很容易被修改成包括其他重要的动力学特性(dynamics),例如油门u变化与由此引起的牵引力或制动力之间的滞后。利用这个模型,建立了最优控制公式以最小化定量目标函数,其服从的约束包括但不限于:速度限制与最小和最大功率(油门)设置。根据任何时间的计划目标,可以灵活地建立问题以最小化服从排放和速度限制的约束的燃料,或者最小化服从燃料耗费和到达时间的约束的排放。
也可以建立这样的目标,例如,在没有对总排放或者燃料耗费进行约束的情况下最小化总行驶时间,此处针对该任务允许或需要这样的约束放宽。所有这些性能测量都能够被表达为下面各项的任意的线性组合:
Figure A20078000118500123
-最小化总燃料消耗
Figure A20078000118500124
-最小化行驶时间
-最小化挡操纵(jockeying)(分段常数输入)
Figure A20078000118500131
-最小化挡操纵(连续输入)
用与排放量对应的项代替(1)中的燃料项F。例如,对于排放
Figure A20078000118500132
-最小化总排放消耗。在这个公式中E是每个挡(或功率设置)的排放量(单位是克每马力小时(gm/hphr))。另外可以根据燃料和排放的加权总和来实现最小化。
因此,通常所使用的且有代表性的目标函数是:
min u ( t ) α 1 ∫ 0 T f F ( u ( t ) ) dt + α 3 T f + α 2 ∫ 0 T f ( du / dt ) 2 dt - - - ( OP )
线性组合的系数取决于赋予每一项的重要性(权重)。注意,在方程式(OP)中,u(t)是连续挡位置的优化变量。如果需要离散挡,例如,对较老的机车而言,方程式(OP)的解被离散化,这可以导致较低的燃料节约。寻找最小的时间解(α1设为0,α2设为0或者相对小的值)被用来为可实现的行驶时间寻找下限(Tf=Tfmin)。在这种情形下,u(t)和Tf这二者都是优化变量。优选的实施例在α3设为0的情况下对方程式(OP)求解以得到Tf>Tfmin的各种Tf值。在该后者的情况下,Tf被当作约束来对待。
对于那些熟悉这样的最优问题的解的人来说,有必要附加约束,例如,沿路径的速度限制:
0≤v≤SL(x)
或者当把最小时间作为目标时,终点约束必须保持,例如所消耗的总燃料必须小于油箱中的燃料,例如经由:
0 < &Integral; 0 T f F ( u ( t ) ) dt &le; W F
此处WF是Tf时刻油箱中剩余的燃料。所属领域技术人员将很容易认识到方程式(OP)也能够采用其他形式来表示而且上述介绍的是供本发明示例性实施例中使用的示例性方程式。
本发明示例性实施例的上下文中涉及的排放可以指由各种形式产生的累积排放。例如,排放要求可设定氧化氮(NOx)排放、碳氢化合物(HC)排放、氧化碳(COx)排放和/或颗粒物(PM)排放的最大值。其他排放限制可以包括电磁发射的最大值,例如对由机车发射的各频率上的射频(RF)功率输出(以瓦特为单位度量)的限制。还有一种排放形式是机车所产生的噪声,通常以分贝(dB)为单位度量。排放要求可以基于一天中的时间、一年中的时间,和/或大气条件(例如天气或空气中的污染级)的变化而变化。已知,排放调整可以在地理上在整个铁路***范围内变化。例如,运行区域(例如城市或州)可以具有指定的排放目标,而且邻近的区域可以具有不同的排放目标,例如对于给定排放等级允许较低排放量或收取较高费用。因此,可以编制特定地理区域的排放轮廓以包括含于轮廓中的每个被调整排放的最大排放值,以满足该区域所需的预定排放目标。典型地,对于机车,这些排放参数由功率(挡)、周围条件、发动机控制方法等确定。
通过设计,每个机车就制动特定的排放而言都必须服从EPA标准,因而当在本发明的示例性实施例中优化排放时,这可以是任务总排放,对其当前不存在规范。操作一直都服从联邦EPA要求。如果行程任务期间的关键目标是减少排放,则最优的控制公式、方程式(OP)将被修改以考虑该行程目标。优化设置中的关键灵活性是任何或所有的行程目标都能够根据地理区域或任务而变化。例如,对于高优先级的火车,最小时间可以是一条路线上的唯一目标,原因在于它是高优先级通行。在另一个例子中,排放输出可以沿着所计划的火车路线从州到州进行变化。
为了解决由此引起的优化问题,在示例性实施例中,本发明把在时域中的动态最优控制问题转换为具有N个决策变量的等效静态数学规划问题,其中数字N取决于进行油门和制动调节所在的频率以及行程的持续时间。对于典型的问题,这个N能以千计。例如在一个示例性实施例中,假定火车在美国西南172英里的一段轨道上行驶。利用本发明的示例性实施例,当比较使用本发明示例性实施例所确定并遵循的行程与在行程是由操作者确定的情况下的、实际驱动器油门/速度历史时,在所耗费的燃料上可以实现示例性7.6%的节约。因为与操作者的行程计划相比,通过利用本发明示例性实施例而实现的优化产生既具有较少拖曳损失又具有很少或没有制动损失的驱动策略,所以实现了节约的增加。
为了使上面所描述的优化在计算上易于处理,可以采用火车的简化模型,例如图2中示出的以及上面所讨论的方程式。通过驱动具有所产生的最优功率序列的更详细的模型,就产生了优化轮廓的关键细化,以测试是否违反其他热的、电的和机械的约束,从而产生具有与运行最接近的速度对距离的修正的轮廓,所述运行可在不损害机车或火车设备的情况下(也就是满足附加的隐含约束,例如对火车中机车力和车厢间力的热限制和电限制)实现。
回来参考图1,一旦行程开始12,就产生功率命令14以开始计划。根据本发明示例性实施例的操作设置,一个命令用来使机车遵循优化的功率命令16以获得最优的速度。本发明示例性实施例从火车的机车组中获得实际速度和功率信息18。由于为优化而使用的模型中的不可避免的近似,校正到优化功率的闭环计算被获得以跟踪期望的最优速度。这样的火车运行限制的校正能够自动执行或由一直拥有火车最终控制权的操作者执行。
在一些情况下,在优化中使用的模型可以与实际的火车明显不同。这可以因很多原因而发生,包括但不限于,额外货物的收取(pickup)或分配(setout),在路线中发生故障的机车以及初始数据库63或操作者输入数据中的错误。由于这些原因,一个监视***是适当的,该***利用实时火车数据来实时地估计机车和/或火车参数20。然后当行程最初被创建时,则把估计的参数与所使用的假设参数相比较22。如果要从新计划中产生足够大的节省,根据假设值和估计值的任何差别,行程可被重新计划24。
行程可以被重新计划的其他原因包括来自远程位置的指示,例如调度和/或操作者请求改变目标以与更加全局的运动计划目标相一致。更加全局的运动计划目标可以包括但不限于:其他火车时间表、允许废气从隧道消散、维护操作等。另一个原因可以归因于车载零件的故障。根据破坏的严重程度,用于进行重新计划的策略可以被编组成增加且主要的调整,如下面进行更详细的讨论。一般而言,“新”计划必须从上述的优化问题方程式(OP)的解中得出,但是如这里所描述的,常常能够找到更快的近似解。
运行中,机车42将连续地监控***效率并且根据所测量的实际效率连续地更新行程计划,每当这样的更新会提高行程性能时就更新。重新计划的计算可以全部在机车(一个或多个)内执行或者完全或部分地转移到远程位置来执行,例如调度或路边处理设施,其中利用无线技术把计划传送到机车42。本发明的示例性实施例还可以生成效率趋势,所述效率趋势能够被用于产生关于效率传递函数的机车车队(fleet)数据。当确定初始行程计划时,车队范围数据可以被使用,而且当考虑多个火车的位置时,所述车队范围数据可以被用于网络范围的优化权衡。例如,图4所示的行驶时间燃料耗费权衡曲线反映了当时在特定路线上的火车的性能,其是根据为同一路线上多个相似火车收集的整体平均值而更新的。这样,从多个机车收集图4那样的曲线的中心调度设施可以利用该信息更好地协调总体火车的运动,从而在燃料耗费或吞吐量方面获得***范围的优势。
日常运行中的很多事件都能够导致对产生或修改当前执行计划的需要,其中对于当火车没有按时与另一个火车发生计划的相遇或经过并且其需要弥补时间时,所期望的是保持相同的行程目标。利用机车实际的速度、功率和位置,在计划的到达时间和当前估计的(预测的)到达时间之间进行比较25。根据时间的不同,以及(由调度或操作者检测的或改变的)参数的不同来调整计划26。可以遵循铁路公司关于应当如何处理这种与计划的偏离的要求自动进行该调整,或者由车上的操作者和调度员人工地提出选择以共同决定重新回到计划的最好方式。无论计划何时被更新但是在原始目标(例如但不限于到达时间)保持相同的情况下,附加的变化可以被同时包含在内,例如新的未来速度限制变化,它会影响曾经恢复原始计划的可行性。在这样的情形下,如果不能维持原来的行程计划,或者换句话说火车不能满足原始行程计划目标,则如这里所讨论的那样,可以提供其他的行程计划(一个或多个)给操作者和/或远程设施,或者调度。
当希望改变原始目标时也可以进行重新计划。这样的重新计划能够在固定的预先计划时间通过操作者或调度员的判断手动完成,或者当超过预定义的限制(例如火车运行限制)时被自动地完成。例如,如果当前计划的执行比指定阈值(例如30分钟)要晚,那么本发明的示例性实施例能够如上述所描述的那样以增加燃料为代价重新计划行程以适应延迟或者警告操作者和调度员能够总共弥补多少时间(也就是在时间约束的范围内要走的最少时间或能够节省的最多燃料)。还能够根据所消耗的燃料或者动力组的状况预见用于重新计划的其他触发,包括但不限于到达时间,因设备故障和/或设备暂时运转异常(例如,太热或者太冷运行)而造成的马力损失,和/或检测到总设置错误,这些都是在假设的火车负载中。换句话说,如果变化反映了当前行程的机车性能的消减,则这些可以被包括到优化中所使用的模型和/或方程式中。
计划目标的变化还可能起因于对事件进行协调的需要,其中一个火车的计划兼顾另一列火车在不同等级满足目标和判优(arbitration)的能力,例如需要调度室。例如,通过火车到火车的通信,可以进一步优化相遇和经过的协调。这样,作为例子,如果火车知道它在到达相遇和/或经过的位置上落后了,则来自其他火车的通信能通知晚点火车(和/或调度)。操作者然后能够将关于晚点的信息输入到本发明的示例性实施例中,其中示例性实施例将重新计算火车的行程计划。本发明的示例性实施例也能够在高等级、或网络级使用,以允许调度来确定在可能不满足预定的相遇和/或经过时间约束的情况下哪个火车应该减速或加速。如这里所描述的,这是通过火车向调度传送数据以区分每列火车应该如何改变它的计划目标的优先次序而完成的。根据情况,可以根据时间表或者燃料节省的好处来做出选择。
对任何手动或自动启动的重新计划,本发明的示例性实施例可以向操作者提供一个以上行程计划。在一个示例性实施例中,本发明将向操作者提供不同的轮廓,以允许操作者选择到达时间并且理解相应的燃料和/或排放影响。出于相似的考虑,这样的信息还能够被提供给调度,作为可替换方案的简单列表或者作为如图4所示的多个权衡曲线。
本发明的示例性实施例能够学习和适应火车和动力组中的关键变化,其能够被并入当前计划和/或将来的计划中。例如,上述触发之一为马力损失。当随着时间推移而增大马力时,或者在损失马力之后或者当开始行程时,利用转换逻辑来确定何时达到所需的马力。该信息能够被保存在机车数据库61中,以用于在马力损失再次发生的情况下优化未来行程或者当前行程。
图3描述了可以是示例性***的一部分的元件的示例性实施例。提供了用于确定火车31的位置的***元件30。***元件30可以是GPS传感器、或者是传感器***,用于确定火车31的位置。这样的其他***的例子可以包括但不限于:路边装置,例如射频自动设备识别(RFAEI)标签、调度和/或视频确定。另一***可以包括机车上的转速计(一个或多个)和从参考点的距离计算。如先前所述,还可以提供无线通信***47以考虑火车之间和/或与远程位置(例如调度)的通信。关于行驶位置的信息还可以被从其他火车传递而来。
还提供了轨道特性描述元件33,用以提供关于轨道的信息,主要是坡度、海拔和曲率信息。轨道特性描述元件33可以包括车上的轨道完整性数据库36。传感器38用来测量由机车组42拖曳的牵引力40、机车组42的油门设置、机车组42配置信息、机车组42的速度、单独机车配置、单独机车能力等。在示例性实施例中,机车组42配置信息可以在不使用传感器38的情况下被加载,但是通过如上所述的其他方式来输入。此外,也可以考虑机车组中机车的状况。例如,如果组中的一个机车不能运行在功率挡级别5之上,则在优化行程计划时使用该信息。
来自***元件的信息也可以被用来确定火车31适当的到达时间。例如,如果火车31沿着轨道34向目的地移动而且其后面没有火车,而且火车没有要遵守的固定的到达截止期限,那么***元件(包括但不限于射频自动设备识别(RF AEI)标签、调度和/或视频确定)可以用来精确计量火车31的确切位置。此外,来自这些信号发送***的输入可以用来调整火车速度。利用下面讨论的车上轨道数据库和***元件(例如GPS),本发明的示例性实施例能够在给定的机车位置调整操作者界面以反映信号发送***状态。在信号状态会指示前面有限制速度的情况下,规划器(planner)可以选择降低火车的速度以节约燃料消耗。
来自***元件30的信息还可以被用来根据与目的地的距离来改变计划目标。例如,由于沿着线路关于堵塞的不可避免的不确定性,在线路的早期部分上可以采取“较快速的”时间目标以避免稍后在统计学上可能发生的延迟。如果恰巧在个别的行程没有出现延迟,则能够修改行程的后面部分的目标以利用早期积累的内置松弛时间,从而补偿一些燃料效率。关于排放限制目标,例如靠近市区,可以援引相似的策略。
作为防范策略的例子,如果行程被计划成从纽约到芝加哥,***可以选择在行程的开始或者在行程的中间或者在行程的末尾使火车较慢地运行。因为未知的约束(例如但不限于天气条件、轨道维护等)可以在行程期间逐步显现并成为已知,所以本发明的示例性实施例将优化行程计划以考虑在行程的末尾减速运行。作为另一种考虑,如果在传统上拥挤的地区是已知的,则计划可以被选择开发成在这些在传统上拥挤的地区周围具有更多灵活性。因此,本发明的示例性实施例也可以将加权/惩罚作为时间/距离的函数考虑进将来和/或基于已知的/过去的经验来考虑。所属领域技术人员将很容易认识到这样的考虑到天气条件、轨道条件、轨道上的其他火车等的计划和重新计划,可以在行程期间的任何时间考虑,其中行程计划被相应地调整。
图3还公开了可以作为本发明示例性实施例的一部分的其他元件。提供了可操作用来接收来自***元件30、轨道特性描述元件33、和传感器38的信息的处理器44。算法46在处理器44内运行。算法46用来根据涉及如上所述的机车42、火车31、轨道34、和任务目标的参数,来计算优化的行程计划。在示例性实施例中,根据火车31沿着轨道34移动的火车行为的模型来建立行程计划,其中模型作为从具有在该算法中提供的简化假设的物理性质得出的非线性微分方程的解。算法46可以使用来自***元件30、轨道特性描述元件33和/或传感器38的信息来创建这样的行程计划,所述行程计划最小化机车组42的燃料消耗、最小化机车组42的排放、建立期望的行程时间、和/或确保在机车组42上适当的工作人员操作时间。在示例性实施例中,还提供了驱动器或控制器元件51。如这里所讨论的,控制器元件51用于当火车遵循行程计划时对火车进行控制。在这里进一步描述的示例性实施例中,控制器元件51自发地做出火车运行决策。在另一个示例性实施例中,操作者可以潜心于引导火车遵循行程计划运行。
本发明的示例性实施例的要求是能够最初创建计划并能够在运行中快速修改正在执行的任何计划。由于计划优化算法的复杂性,所以当涉及长距离时,这包括创建初始计划。当行程轮廓的总长度超过给定距离时,算法46可以用来分割任务,其中任务可以通过路点进行分割。尽管只描述了单种算法46,所属领域技术人员将会很容易认识到可以利用一种以上的算法,其中这些算法可以被结合起来。路点可以包括火车31停靠的自然位置,例如但不限于:与对向列车相遇或者经过当前火车之后的火车预定出现在单轨道铁路上的旁轨,或者在收取和分配车厢的场站旁轨(yard siding)或工业区,以及计划的工作位置。在这样的路点,可以要求火车31在预定的时间到达预定的位置以及停止或以指定范围内的速度移动。从到达路点至离开路点的时段被称为停留时间。
在示例性实施例中,本发明能够采用专用的***方法将较长的行程分解成较小的区段。每个区段在长度上可以是稍微任意的,但通常都选择在例如停靠或有明显的速度限制的自然位置,或在限定与其他路线交汇点的关键路标。给出以这种方式选择的分区或区段,根据被视作独立变量的行驶时间为轨道的每个区段创建驱动轮廓,如图4中所示。与每一区段相关联的燃料耗费/行驶时间的权衡能够在火车31到达该轨道区段之前被计算出来。能够根据为每一区段创建的驱动轮廓来创建总行程计划。本发明的示例性实施例在行程的所有区段中以最优的方式分布行驶时间,以满足所期望的总行程时间并且使所有区段上的总燃料消耗尽可能小。示例性3区段行程在图6中公开并在下文中描述。然而,所属领域技术人员将会认识到,尽管描述了区段,行程计划可以包括代表完整行程的单个区段。
图4描述了燃料耗费/行驶时间曲线图的示例性实施例。如前面提到的,当为每个区段不同的行驶时间计算最优行程轮廓时创建这样的曲线50。也就是说,对于给定的行驶时间51,所耗费的燃料52是如上述计算的详细驱动轮廓的结果。一旦为每个区段分配了行驶时间,就根据先前计算的解为每个区段确定功率/速度计划。如果在区段之间对速度存在着任何路点限制,例如但不限于,速度限制的变化,则在创建最优行程轮廓期间,使它们相配合。如果速度限制仅在单个区段中变化,则仅需要为变化的区段重新计算燃料耗费/行驶时间曲线50。这样就减少了必须重新计算行程的更多部分或区段的时间。如果机车组或火车沿着线路发生显著的变化,例如,因为机车的损失或车厢的收取或分配,那么就必须重新计算所有随后区段的驱动轮廓以创建曲线50的新实例。然后这些新曲线50将与新的时间表目标一起被使用以计划剩余的行程。
一旦如上所述的那样创建了行程计划,速度和功率对距离的轨迹线就被用于在要求的行程时间以最少的燃料和/或排放到达目的地。存在着用以执行行程计划的多种方法。如下面更加详细的描述,在示例性实施例中,在训练模式下,向操作者显示信息以供操作者遵循,从而获得根据最优行程计划确定的所需功率和速度。在该模式下,运行信息是操作者应当使用的建议操作条件。在另一个示例性实施例中,实现加速和维持恒定速度。然而,当火车31必须减速时,操作者负责使用制动***52。在本发明的另一个示例性实施例中,根据需要提供了用于驱动和制动的命令,以遵循所要求的速度-距离路线。
利用反馈控制策略来提供对轮廓中的功率控制序列的校正,从而校正这样的事件,例如但不限于,因逆风和/或顺风波动而引起的火车负载变化。当与优化的行程计划中的假设相比较时,另一个这样的误差可以由火车参数的误差引起,例如但不限于,火车质量和/或拖曳力。第三种类型的误差可能因被包括在轨道数据库36中的信息而发生。另一个可能的误差可以包括由机车发动机、牵引马达热解除配给(thermalderation)和/或其他因素造成的未建模的性能差异。反馈控制策略将作为位置的函数的实际速度与期望的最优轮廓中的速度进行比较。根据该差异,添加对最优功率轮廓的校正,以使实际速度向最优轮廓逼近。为了确保稳定的调节,可以提供补偿算法,所述补偿算法将反馈速度滤入功率校正中以确保闭合性能的稳定性。补偿可以包括控制***设计领域的技术人员使用的标准动力学补偿以满足性能目标。
本发明的示例性实施例允许最简单的和因此最快的手段适应行程目标的变化,这在铁路运行中是惯例,而不是例外。在示例性实施例中,为了确定从点A到点B(其中沿着路线有车站)的燃料最优的行程,而且就为剩下的行程更新行程,一旦行程已经开始,次最优的分解方法可用于寻找最优的行程轮廓。利用建模方法,计算方法能够找到具有指定行驶时间和最初及最终速度的行程计划,以满足当有车站时所有的速度限制和机车性能约束。尽管接下来的描述针对的是优化燃料耗费,但是也能够将其应用到优化其他因素,例如但不限于:排放、时间表、工作人员的舒适和负载影响。该方法可以用在开发行程计划的初期阶段,而且更重要的是适应启动行程后的目标变化。
如这里所讨论的,本发明的示例性实施例可以采用如图5中所示的示例性流程图中图示的设置,而且作为示例,在图6中详细地描述了3区段实例。如图示,行程可以被分解成两个或多个区段:T1、T2和T3。尽管如这里讨论的,但也可以把行程当作单个区段。如这里所讨论的,区段边界的存在可能不会导致相等的区段。取而代之,区段使用自然的或任务专用的边界。为每个区段预先计算最优行程计划。如果燃料耗费与行程时间的关系是要满足的行程目标,则为每个区段建立燃料与行程时间的关系曲线。如这里所讨论的,曲线可以以其他因素为基础,其中所述因素是行程计划要满足的目标。当行程时间是要确定的参数时,在满足总行程时间约束时,计算每个区段的行程时间。图6示出了示例性的3区段200英里行程97的速度限制。进一步示出了200英里行程98上的坡度变化。还示出了表示行程的每个区段的燃料耗费与行驶时间的关系曲线的组合图99。
利用先前描述的最优控制设置,本计算方法能够找到具有指定行驶时间和最初及最终速度的行程计划,以便当有车站时满足所有的速度限制和机车能力约束。尽管接下来的详细描述针对的是优化燃料耗费,但也可以将其用于优化这里所描述的其他因素,例如但不限于:排放。关键的灵活性是适应在车站的期望停留时间并且考虑对最早到达和离开一位置的约束,这例如在进入或通过旁轨的时间是苛刻的单轨道运行中可能是需要的。
本发明的示例性实施例得到从距离D0到DM、在时间T内行驶的、有M-1个中间站在D1,...,DM-1的燃料最优的行程,而且在这些站的到达和离开时间受下式约束:
tmin(i)≤tarr(Di)≤tmax(i)-Δti
tarr(Di)+Δti≤tdep(Di)≤tmax(i)i=1,...,M-1
其中,tarr(Di),tdep(Di),和Δti分别是在第i个站的到达、离开和最小停止时间。假设燃料最优性意味着最小化停止时间,因此tdep(Di)=tarr(Di)+Δti消除了上面的第二个不等式。假设对于每个i=1,...,M,从Di-1到Di行驶时间为t(Tmin(i)≤t≤Tmax(i))的燃料最优行程是已知的。让Fi(t)表示与该行程对应的燃料消耗。如果从Dj-1到Dj的行驶时间由Tj表示,那么在Di的到达时间由下式给出:
t arr ( D i ) = &Sigma; j = 1 i ( T j + &Delta;t j - 1 )
其中Δt0被定义为0。从D0到DM行驶时间为T的燃料最优行程通过寻找Ti(i=1,...,M)而获得,其最小化
&Sigma; i = 1 M F i ( T i ) Tmin(i)≤Ti≤Tmax(i)
服从
t min ( i ) &le; &Sigma; j = 1 i ( T j + &Delta;t j - 1 ) &le; t max ( i ) - &Delta;t i i=1,...,M-1
&Sigma; j = 1 M ( T j + &Delta;t j - 1 ) = T
一旦行程在进行中,问题就是随着行程的进行为剩下的行程(原来在时间T内从D0到DM)重新确定燃料最优的解决方案,但是在此,干扰排除遵循燃料最优的解决方案。假设当前距离和速度分别是x和v,其中Di-1<x≤Di。而且,假设自行程开始以来的当前时间是tact。于是,保持原始到达DM的时间的、从x到DM的剩下的行程的燃料最优解决方案是通过找到
Figure A20078000118500234
Tj,j=i+1,...,M而获得的,其最小化
F ~ i ( T ~ i , x , v ) + &Sigma; j = i + 1 M F j ( T j )
服从
t min ( i ) &le; t act + T ~ i &le; t max ( i ) - &Delta;t i
t min ( k ) &le; t act + T ~ i + &Sigma; j = i + 1 k ( T j + &Delta;t j - 1 ) &le; t max ( k ) - &Delta;t k k=i+1,...,M-1
t act + T ~ i + &Sigma; j = i + 1 M ( T j + &Delta; t j - 1 ) = T
这里,是在x具有初始速度v,在时间t内从x行进到Di的最优行程的燃料消耗。
如上所述,实现更高效的重新计划的示例性方法是为划分区段的站到站的行程建立最优解决方案。对于从Di-1到Di,行驶时间为Ti的行程,选择一组中间点Dij,j=1,...,Ni-1。设Di0=Di-1 D iN i = D i . 于是,从Di-1到Di的最优行程的燃料耗费被表示为
F i ( t ) = &Sigma; j = 1 N i f ij ( t ij - t i , j - 1 , v i , j - 1 , v ij )
此处,fij(t,vi,j-1,vij)是在时间t内行驶的、具有最初和最终速度Vi,j-1和Vij的从Di,j-1到Dij的最优行程的燃料耗费。此外,tij是与距离Dij对应的最优行程中的时间。通过定义, t iN i - t i 0 = T i . 因为火车停在Di0
Figure A20078000118500244
所以 v i 0 = v i N i = 0 .
上述表达式使函数Fi(t)能够通过首先确定函数fij(·)(1≤j≤Ni)然后得到τij,1≤j≤Ni和vij,1≤j<Ni而被可替换地确定,其最小化
F i ( t ) = &Sigma; j = 1 N i f ij ( &tau; ij , v i , j - 1 , v ij )
服从
&Sigma; j = 1 N i &tau; ij = T i
vmin(i,j)≤vij≤vmax(i,j)j=1,...,Ni-1
v i 0 = v iN i = 0
通过选择Dij(例如,在速度约束或相遇点),vmax(i,j)-vmin(i,j)能够被最小化,从而最小化需要知道fij()的范围。
根据上述划分,比上述更简单的次最优重新计划方法用来把重新计划限定到火车位于距离点Dij,1≤i≤M,1≤j≤Ni的时间。在点Dij,从Dij到DM的新的最优行程能够通过找到τik,j<k≤Ni,vik,j<k<Ni,和τmn,i<m≤M,1≤n≤Nm,vmn,i<m≤M,1≤n<Nm而被确定,其最小化
&Sigma; k = j + 1 N i f ik ( &tau; ik , v i , k - 1 , v ik ) + &Sigma; m = i + 1 M &Sigma; n = 1 N m f mn ( &tau; mn , v m , n - 1 , v mn )
服从
t min ( i ) &le; t act + &Sigma; k = j + 1 N i &tau; ik &le; t max ( i ) - &Delta;t i
t min ( n ) &le; t act + &Sigma; k = j + 1 N i &tau; ik + &Sigma; m = i + 1 n ( T m + &Delta;t m - 1 ) &le; t max ( n ) - &Delta;t n n=i+1,...,M-1
t act + &Sigma; k = j + 1 N i &tau; ik + &Sigma; m = i + 1 M ( T m + &Delta;t m - 1 ) = T
此处
T m = &Sigma; n = 1 N m &tau; mn
通过等待Tm,i<m≤M的重新计算,直到到达距离点Di,可以得到进一步的简化。这样,在Di-1和Di之间的点Dij,上面的最小化仅仅需要在τik,j<k≤Ni,vik,j<k<Ni上执行。根据需要增加Ti,以适应比从Di-1到Dij的计划时间更长的任何实际行驶时间。如果可能,随后通过重新计算Tm,i<m≤M,在距离点Di补偿这种增加。
关于上面公开的闭环结构,将火车31从点A移动到点B所需的总输入能量由四个分量的总和组成,具体而言是点A和点B之间的动能差;点A和B之间的势能差;由于摩擦和其他拖曳力损失而导致的能量损失;以及由于使用制动而消耗的能量。假定开始和结束速度相等(举例来说,静止),第一分量是零。而且,第二分量不依赖于驱动策略。因此,这足以使最后两个分量之和最小化。
遵循恒定速度轮廓来最小化拖曳力(drag)损失。当不需要制动来维持恒定速度时,遵循恒定速度轮廓还最小化总能量输入。然而,如果需要制动来维持恒定速度,则由于需要补充因制动而消耗的能量,施加制动以恰好维持恒定速度将很最可能增加总的所需能量。存在这样的可能性,如果附加制动损失多于由制动引起的拖曳力损失的总的减少所抵消的制动损失,则通过减少速度变化,某些制动实际上可以减少总能量使用。
在根据上述事件的收集完成重新计划之后,能够通过使用在此描述的闭环控制来遵循新的最优挡/速度计划。然而,在某些情况下,可能没有足够的时间来执行上述的区段分解计划,尤其是当必须考虑临界速度限制时,需要一个替换方案。本发明的示例性实施例使用被称为“智能巡航控制”的算法来实现该替换方案。智能巡航控制算法是这样一种高效方法,用以在行驶中产生用于在已知地形上驱动火车31的能量高效(从而燃料高效)的次最优方案。此算法假定总是知道火车31沿轨道34的位置,并且知道轨道对位置的坡度和曲率。此方法依赖于火车31运动的质点模型,其参数可以根据前述的火车运动的在线测量而被适应性地估计。
智能巡航控制算法具有三个主要部分:具体而言是修改的速度限制轮廓,其用作以速度限制减少为中心的能量高效引导;理想的油门或者动态制动设置轮廓,其尝试在最小化速度变化和制动之间保持平衡;用于组合后面两个部分以产生挡命令的机制,其利用速度反馈环来补偿建模参数在与真实参数比较时的失配。在本发明的实施例中,智能巡航控制能够适应不进行有效制动(active braking)(也就是驱动器被用信号通知并假定提供必不可少的制动)的策略,或者适应进行有效制动的变体。
相对于不控制动态制动的巡航控制算法而言,这三个示例性部分是:修改的速度限制轮廓,其用作以速度限制减少为中心的能量高效引导;通知信号,用以通知操作者何时应当施加制动;理想的油门轮廓,其尝试在最小化速度变化和通知操作者施加制动之间保持平衡;采用反馈环来补偿模型参数与真实参数的失配的机制。
本发明的示例性实施例还包括用来识别火车31的关键参数值的方法。例如,对于估计火车质量而言,可以使用卡尔曼(Kalman)滤波器和递归最小二乘法来检测可能随时间推移而逐渐出现的误差。
图7描述了本发明的示例性流程图。如前面所讨论的,远程设施,例如调度60(如图3所公开的)能够提供信息。如所示,这样的信息被提供给执行控制元件62。被提供给执行控制元件62的还有机车建模信息数据库63、来自轨道数据库36的信息,例如但不限于,轨道坡度信息和速度限制信息、估计的火车参数,例如但不限于,火车重量和拖曳系数,以及来自燃料消耗率估计器64的燃料消耗率表。执行控制元件62向规划器12提供信息,这在图1中已经被更详细地公开。一旦已经计算出行程计划,该计划就被提供给驱动咨询器(advisor)、驱动器或者控制器元件51。行程计划也被提供给执行控制元件62,以便当其他新数据被提供时它能够对行程进行比较。
如上面所讨论的,驱动咨询器51能够自动设置挡功率,或者预先确立的挡设置或者最优的连续挡功率。除了向机车31提供速度命令之外,还提供显示器68,以便操作者能够查看规划器所推荐的内容。操作者也可以使用控制面板69。通过控制面板69,操作者能够决定是否应用所建议的挡功率。为此,操作者可以限制目标或建议的功率。也就是,在任何时间,操作者总是对机车组将要以什么功率设定运行具有最终权威。这包括在行程计划建议使火车31减速的情况下,决定是否施加制动。例如,如果在黑暗的地区运行,或者来自路边装置的信息不能采用电方式向火车传送信息,而是操作者从路边装置查看可视信号,则操作者根据包含在轨道数据库中的信息和来自路边装置的可视信号来输入命令。根据火车31如何运行,将关于燃料测量的信息提供给燃料消耗率估计器64。由于通常不能在机车组中获得对燃料流量的直接测量,因此与迄今为止在行程内消耗的燃料以及对将来随后的最优计划的预测有关的所有信息是利用校准的物理模型(例如那些在开发最优计划中所使用的)来实现的。例如,这样的预测可以包括但不限制于:使用所测量的总马力以及已知的燃料特性来得到累积的所使用的燃料。
火车31还具有***设备30,例如GPS传感器,如上面所讨论的。信息被提供给火车参数估计器65。这样的信息可以包括但不限于:GPS传感器数据、牵引/制动力数据、制动状态数据、速度和速度数据的任何变化。关于坡度和速度限制信息的信息,与火车重量和拖曳系数信息一起被提供给执行控制元件62。
本发明的示例性实施例还可以考虑在整个优化计划和闭环控制执行中使用连续变化的功率。在传统机车中,功率常常被量化成8个离散级别。现代机车能够实现马力的连续变化,这可以被并入到前述的优化方法中。利用连续的功率,机车42能够进一步优化运行条件,例如,通过最小化辅助负载和功率传输损耗,以及微调最优效率的发动机马力区域,或者微调到增加的排放裕量(margin)的点。例子包括但不限于:最小化冷却***损耗、调整交流发电机(alternator)电压、调整发动机速度,以及减少驱动轴(axles)的数目。此外,机车42可以使用车上的轨道数据库36和预测的性能要求,来最小化辅助负载和功率传输损耗,以提供目标燃料消耗/排放的最优效率。例子包括但不限于减少平面地形上的驱动轴的数目,以及在进入隧道之前预先冷却机车发动机。
本发明的示例性实施例还可以使用车上的轨道数据库36和预测的性能来调整机车性能,例如以确保当火车接近山和/或隧道时具有足够的速度。例如,这可以表示为在特定位置的速度约束,其成为求解方程式(OP)而创建的最优计划生成的一部分。此外,本发明的示例性实施例可以并入火车操纵的规则,例如但不限制于牵引力斜坡率、最大制动力斜坡率。这些可以直接并入用于优化行程轮廓的公式中,或者可替换地并入闭环调节器中,所述闭环调节器用于控制功率运用以获得目标速度。
在一个优选实施例中,本发明仅仅被安装在火车组的引导机车上。即使本发明的示例性实施例不依赖于数据或者与其他机车的相互作用,它也可以与组管理器(如在美国专利号6,691,957和专利申请号10/429,596(由受让人拥有,并且二者在此都被引入作为参考)所公开的)、功能性和/或组优化器功能性结合在一起以提高效率。也不排除与多个火车的相互作用,如在此所描述的通过对两个“独立优化的”火车进行判优的调度例子所示。
具有分布式动力***的火车能够以不同的模式运行。一个模式是火车中的所有机车在相同的挡命令下运行。因此,如果引导机车是命令电动驱动-N8,则火车内的所有单元将被命令产生电动驱动-N8功率。另一个操作模式是“独立”控制。在这个模式下,分布在整个火车中的多个机车或者机车组能够在不同的电动驱动或者制动功率下运行。例如,当火车达到山顶时,引导机车(在山的下坡上)可以被置于制动,而在火车中间或者末端的机车(在山的上坡上)可以处于电动驱动。这样做是为了最小化连接有轨车厢和机车的机械耦合器上的张力。传统上,在“独立”模式下操作分布式动力***需要操作者经由引导机车内的显示器来手动命令每一个远程机车或者机车组。使用基于物理性质的计划模型、火车设置信息、车上的轨道数据库、车上的操作规则、位置确定***、实时闭环动力/制动控制和传感器反馈,该***将在“独立”模式下自动地操作分布式动力***。
当以分布式动力运行时,引导机车内的操作者能够通过控制***(例如分布式动力控制元件)来控制远程组中的远程机车的操作功能。这样,当以分布式动力运行时,操作者能够命令每一个机车组在不同挡功率等级下运行(或者一组可以处于电动驱动,而其他处于制动),其中在机车组中的每一个单独机车在相同挡功率下运行。在示例性实施例中,本发明示例性实施例被安装在火车上,优选地与分布式动力控制元件进行通信,当远程机车组的挡功率等级期望是优化的行程计划所推荐的等级时,本发明的示例性实施例将向远程机车组传送该功率设置以供执行。如下面讨论的,这对于制动同样适用。
本发明的示例性实施例可以用于其中机车不邻接的机车组(例如在前面具有一个或者多个机车,其他的在火车的中间和后面)。这样的配置被称为分布式动力,其中机车之间的标准连接由无线电链路或者辅助电缆代替以在外部耦连机车。当以分布式动力运行时,引导机车内的操作者能够通过控制***(例如分布式动力控制元件)来控制组中的远程机车的操作功能。尤其是,当以分布式动力运行时,操作者能够命令每一个机车组在不同挡功率等级下运行(或者一组处于电动驱动,而其他的处于制动),其中机车组中的每一个个体都在相同挡功率下运行。
在示例性实施例中,本发明的示例性实施例被安装在火车上,优选与分布式动力控制元件进行通信,当远程机车组的挡功率等级被期望是最优行程计划所推荐的等级时,本发明的示例性实施例将向远程机车组传送该功率设置以供执行。如下面所述,这对于制动同样适用。当以分布式动力运行时,前述的优化问题能够被增强以允许附加的自由度,这是因为每一个远程单元能够相对于引导单元被独立控制。其价值在于,附加目标或者与火车内力有关的约束可以被并入性能函数中,假定反映火车内力的模型也被包含进来。因此,本发明的示例性实施例可以包括使用多油门控制,来更好地管理火车内的力以及燃料消耗和排放。
在利用组管理器的火车中,机车组中的引导机车可以在与该组中的其他机车不同的挡功率设置下运行。组中的其他机车在相同的挡功率设置下运行。本发明的示例性实施例可以与组管理器结合使用,以命令组中的机车的挡功率设置。这样,根据本发明的示例性实施例,由于组管理器将机车组成分为两组:引导机车和尾随单元,引导机车将被命令在某一挡功率下运行,而尾随机车被命令在另一个确定挡功率下运行。在一个示例性实施例中,分布式动力控制元件可以是收容这种操作的***和/或设备。
同样地,当组优化器用于机车组时,本发明的示例性实施例能够与组优化器结合使用以确定机车组中每个机车的挡功率。例如,假定行程计划推荐将机车组的挡功率设置为4。根据火车的位置,组优化器将获得该信息,然后确定组中每一个机车的挡功率设置。在此实现方式中,提高了经由火车内的通信信道来设置挡功率设定的效率。此外,如上所讨论的,这种配置的实现方式可以利用分布式控制***来执行。
此外,如先前所讨论的,就火车组何时根据即将出现的所关心的项目而使用制动而言,本发明的示例性实施例可以被用于连续校正和重新计划,所述项目例如但不限制于铁路交叉点、坡度变化、接近旁轨、接近车辆段场站(depot yard)、以及接近燃料站,其中组中的每一个机车都可能需要不同的制动选择。例如,如果火车翻越小山,那么引导机车可能必须进入制动状态,而没有到达山顶的远程机车可能必须保持电动驱动状态。
图8、图9和图10描述了供操作者使用的动态显示器的示例性图解。如图8所提供的,提供了行程轮廓72。在此轮廓内,提供了机车的位置73。诸如火车长度105和火车中的车厢数目106之类的信息也被提供。还提供了有关轨道坡度的要素107、曲率(curve)和路边要素108(包括桥的位置109和火车速度110)。显示器68允许操作者查看这样的信息并且察看火车处于沿路线的什么地方。关于距离和/或估计到达诸如交叉口112之类的位置的时间、信号114、速度改变116、地标118和目的地120的信息也被提供。到达时间管理工具125也被提供,以允许使用者确定在行程期间实现的燃料节省。操作者能够改变到达时间127并观察这如何影响燃料节省。如在此所讨论的,本领域技术人员将认识到,燃料节省仅仅是能够利用管理工具查看的一个目标的示例性例子。为此,依赖于所查看的参数,能够利用对操作者可见的管理工具来查看和评价在此所讨论的其他参数。操作者还被提供以关于工作人员已经操作火车多长时间的信息。在示例性实施例中,时间和距离信息可以表示为到特定事件和/或位置之前的时间和/或距离,或者它可以提供总的经过时间。
如图9所示,示例性显示器提供了关于组数据130、事件和位置图132、到达时间管理工具134以及动作键136的信息。在这个显示器中,还提供了如上所讨论的类似信息。该显示器68还提供了动作键138,以允许操作者重新计划,以及解除本发明示例性实施例140。
图10描述了显示器的另一个示例性实施例。包括气闸状态72、具有数字嵌入(inset)的模拟速度计74以及关于磅力(或者对DC机车而言,是牵引安培数(traction amps))形式的牵引力的信息的现代机车的典型数据是可见的。提供指示器74,以示出正被执行的计划中的当前最优速度以及用来补充以mph/分钟为单位的读数的加速度计图。用于最优计划执行的重要的新数据位于屏幕的中心,包括滚动带状图76,图中示出最优速度及挡设置和距离的关系(与这些变量的当前历史相比较)。在该示例性实施例中,使用***元件来得到火车的位置。如所示,可通过识别火车距离其最终目的地有多远、绝对位置、初始目的地、中间点和/或操作者的输入来提供所述位置。
条形图表提供了对遵循最优计划所需的速度变化的预测,这在手动控制中是有用的,并且在自动控制期间监视计划与实际情况的关系。如在此讨论的,例如当在训练模式下时,操作员能够遵循由本发明示例性实施例建议的挡或速度。垂直条给出了所期望挡和实际挡的图,它们也被数字地显示在条形图的下面。如上所讨论的,当利用连续挡功率时,该显示器将仅仅舍入到最接近的离散等效值,该显示器可以是模拟显示,以便显示模拟等效值或者百分率或者实际马力/牵引力。
关于行程状态的关键信息被显示在屏幕上,并示出火车遇到的当前坡度88,所述坡度指的是引导机车、沿火车的其他位置遇到的坡度或者整个火车长度的平均坡度。还公开了在计划中迄今为止行驶的距离90、累积耗费的燃料92、计划下一站在哪里或者离下一站的距离94、当前和预测的到达时间96、到下一站的预期时间。显示器68还示出了到根据可用的计算的计划而得到的可能的目的地的最大可能时间。如果需要晚到达,将执行重新计划。增量计划数据示出在当前最优计划之前或者之后的燃料和时间表的状态。负数表示与计划相比燃料较少或者时间较早,正数表示与计划相比燃料较多或者时间较晚,并且常常在相反方向上权衡(减速以节省燃料使得火车晚到,反之亦然)。
这些显示68一直向操作者提供他相对于当前制定的驾驶计划所处位置的瞬态图(snapshot)。该显示器仅出于说明性目的,原因在于还存在着很多用于将该信息显示/传送给操作者和/或调度的其他方式。为此,上面所公开的信息可以被相互混合以提供与所公开的显示不同的显示。
可以被包括在本发明示例性实施例中的其他特征包括但不限于:考虑产生数据记录日志和报告。该信息可以被存储在火车上,并且可以在某一时间点被下载到车外***。所述下载可以通过手动和/或无线传输而发生。该信息也可以由操作者经由机车显示器来查看。所述数据可以包括但不限于这样的信息,例如操作者输入、***运行的时间、节省的燃料、在火车中机车范围内的燃料不平衡、偏离航向的火车行程、***诊断问题(例如如果GPS传感器发生故障)。
由于行程计划必须考虑容许的工作人员的操作时间,所以当计划行程时本发明的示例性实施例可以将这样的信息考虑进来。例如,如果工作人员可以工作的最大时间为8个小时,那么行程应当被形成为包括供新工作人员代替当前工作人员的停止位置。这样指定的停止位置可以包括但不限于:铁路场站、相遇/经过位置等等。如果,随着行程的进行,行程时间可能会超出,本发明的示例性实施例可***作者覆盖(override),以符合由操作者确定的标准。最终,不管火车的操作条件(例如但不限于高负载、低速、火车伸展(stretch)状况等等)如何,操作者都保持对火车的速度和/或运行条件的控制。
利用本发明的示例性实施例,火车可以在多个操作下运行。在一种操作概念中,本发明的示例性实施例可以提供用于控制推进、动态制动的命令。于是操作者操纵所有其他的火车功能。在另一操作概念中,本发明的示例性实施例可以提供仅仅用于控制推进的命令。于是操作者操纵动态制动和所有其他的火车功能。在又一种操作概念中,本发明的示例性实施例可以包括用于控制推进、动态制动和气闸作用的命令。于是操作者操纵所有其他的火车功能。
本发明的示例性实施例也可以通过向操作者通知对即将出现的所关心的项目所采取的行动而被使用。具体地,本发明的示例性实施例的预测逻辑、对于优化的行程计划的连续校正和重新计划、轨道数据库,能够通知操作者即将出现的交叉口、信号、坡度变化、刹车动作、旁轨、铁路场站、燃料站等等。这种通知可以以可听见的方式和/或通过操作者界面发生。
特别地,使用基于物理性质的计划模型、火车设置信息、车上的轨道数据库、车上的操作规则、位置确定***、实时闭环动力/制动控制、和传感器反馈,该***将向操作者呈现和/或通知所需的动作。该通知能够是可视的和/或可听见的。例子包括通知需要操作者启动机车喇叭和/或铃的交叉口,通知不需要操作者启动机车喇叭或铃的“无声的”交叉口。
在另一个示例性实施例中,使用上面所讨论的基于物理性质的计划模型、火车设置信息、车上的轨道数据库、车上的操作规则、位置确定***、实时闭环动力/制动控制、和传感器反馈,如图9中所示,本发明的示例性实施例可以向操作者提供这样的信息(例如显示器上的量表),所述信息允许操作者查看火车何时将到达不同位置。该***将允许操作者调整行程计划(目标到达时间)。该信息(实际估计的到达时间或者在车外得出的所需信息)也能够被传送给调度中心,以允许调度者或者调度***调整目标到达时间。这允许***对适当的目标函数(例如权衡速度和燃料耗费)进行快速地调整和优化。
一般而言,根据对构成火车的有轨车厢的有轨车厢参数的了解可以改进火车运行。这些参数可以包括关于铁轨的重量、轮轴数量、耦合器的类型及特性、速度限制、轴向负载、摩擦力、风阻力(wind resistance)、车轮轴向负载、垂直负载以及横向负载。单独车厢参数进而可以影响火车负载能力。例如,一组位于火车中央的轻型负载车厢和位于后面的重型负载车厢在以曲线加速或牵引时会造成较大的出轨可能性。此外,对总的车厢负载的了解允许对速度与火车燃料消耗及火车排放的关系进行优化。同样,对有轨车厢参数的了解也可以引起自铁路场站的更快调度。
在另一示例性实施例中,关于货物数据的信息也可以被包含作为有轨车厢参数。该信息可包括货物的数量和类型。例如,假设车厢运载着液体。如果该车厢没有被充满,则液体的运动可能影响在车轮和耦合器上能够承载的总力。该信息可以用来进一步优化火车运行。同样地,假设车厢运载着危险材料。由于可能要求某一速度限制约束,因此该信息可以用来进一步优化火车运行。当货物数据不可用时,传感器可以用来检测负载的变化,例如由部分充满液体的运载车厢所实现的负载变化。在运行中,火车被减速并且轴向负载变化被测量。在另一示例性实施例中,驼峰(例如存在于驼峰调车场(hump yard)中)被引入车厢的路径,其中轴向负载变化被测量。对液体的位移(displacement)和其如何影响轴向负载的了解可以被考虑进去,以确保通过上文所公开的火车优化程序建立最大加速和减速限制。
在另一示例性实施例中,利用传感器检测轴向负载,轴向负载的意外变化可以说明意外的货物移动。利用特征分析(signature analysis)***,区别液***移和固定货物(cargo)(例如但不限于松动的盒)的移动。特征分析***会检测为具有高频谱,而液体运动会显示为较宽的频谱。
自动提供火车组成的车厢特性及货单(manifest)可以有利地减少场站(yard)设置时间并且允许总体的铁路场站网络优化,其中能够在设置时间上进行权衡,其中车厢以最优的方式被排列并且经常必须被重新排序,因而增加了场站时间。可以相对于火车运行时间对总设置时间进行权衡。提供车厢特性允许产生火车货单,所述火车货单具有关于工作人员、调度和卸载的问题和车厢特性的细节。提供车厢特性允许火车车厢的负载特性被用公式表示为重量、阻力、曲线性能,允许有和无DP的火车处理被优化,允许在火车中把车厢装配在一起并使得场站有序以提高网络交通能力,出于对车厢负载和性能的了解的缘故,通过调整火车处理参数(比如加速度、减速度和速度)以允许降低出轨的可能性,允许车厢性能作为限制因素被输入以用于火车速度/燃料优化和/或改进排放,这可能够实现单人操作,并且允许巡航控制的优化。
在此公开了有轨车厢特性描述***和方法,其自动确定车厢参数,比如重量、负载、车轮轴向力、横向力和垂直力。可以在火车在铁路场站(例如驼峰调车场)中的组成期间在路上和/或在旁轨上提供有轨车厢参数。有轨车厢参数可以用于火车货单表征并可以被耦连到铁路效率工具(比如巡航控制器)以允许对加速和/或改进的排放、减速、改进的有DP或非DP火车的火车处理的燃料/速度优化。有轨车厢参数可以允许通过考虑火车处理约束(例如就DP和非DP操作而言,其可以限制速度、加速度和减速度)来优化火车燃料与速度的关系。有轨车厢参数可以允许确定跨路火车交付(delivery)时间与场站火车组成时间(makeuptime)之间的权衡,以便改善总的货物交付效率。有轨车厢参数可以被用来提供火车货单数据,其包含车厢性能特性响应重量、横向、轴向及垂直轴负载和车厢的力。如在此所描述的,车厢参数确定可以被自动执行。
某些类型的车厢可能受到风和/或空气阻力的影响。例如,空载木材运载车厢具有较大的表面,所述表面会充当影响车厢运动的帆。在一个方面,所测量的有轨车厢参数可包括确定有轨车厢的风阻因素。因此,车厢类型和相应的风阻因素和/或风阻测量参数可以在测量收集过程期间例如经由轨道旁的车厢的可视观察器(visual observer)而被包含在测量数据中。
在图1所示的示例性实施例中,可以在铁路场站205获取有轨车厢200的有轨车厢参数,在那里当越过(traverse)预定的轨道部分216(比如直的部分或弯曲部分)时,可以测量诸如车厢重量和车轮力的参数。有轨车厢参数测量***215(或测量***)被提供并且可以包括车上传感器220和/或车外传感器225,例如力传感器,其用于测量轨道、车轮、悬梁(suspension)和/或其组合上的力。其他传感器可以包括偏转(deflection)检测器、弹簧、激光测量仪(laser gauge)等等。测量***215可以包括用于收集测量数据的数据收集模块230并且可以经由收发器235与中央控制器240(比如车厢调度***,火车组成/货单***)进行通信,并可以将测量数据提供到网络调度***以及火车速度/燃料效率优化***。测量***还可以经由机车收发器255、路边电子单元260和车外传感器255向便携式数据收集单元245、机车250提供测量信息并且与之进行通信。这些***可以在通信网络中一起共享信息,其中这些元件可以彼此通信以交换信息。此类通信可以通过无线耦合方式(例如经由射频(RF)和红外通信)来提供,或者可以通过硬连线方式(例如有轨车厢和机车250之间的硬连线连接)来提供。
在另一实施例中,测量***215可以被实现于铁路场站外,例如在远离铁路场站的旁轨上。因此,测量数据可以在火车离开铁路场站205之后被获取,并且测量数据可以在火车在场站中被组装之后被馈送到网络265和中央控制器240,以用于进一步行动。
在本发明的一方面,中央控制器240可以包括处理器270,用于处理提供给火车的测量数据以提供加速度/减速度优化因素,从而确保火车操作参数将这些限制考虑在内。在优化车厢组成的情况下,给定用于优化的另外的参数,加速度/减速度能够被增加以减少任务时间。在分布式动力(DP)火车的情况下,由于为火车的有轨车厢提供的测量数据,火车的后部单元的正常减小的牵引力(TE)能够更好地与前面单元相匹配。
在另一示例性实施例中,提供特征分析***300。该***300可以是控制器240的一部分或与之进行通信。如上面所讨论的,该特征分析***300可以用来区分液***移和移动的固定货物。
另外,通过将当前数据和先前测量的数据进行比较,先前获得的测量数据可以用来确定非正常车厢性能,比如可能归因于轴承问题的高车轮摩擦力。这允许在将车厢耦合到火车之前进行维护。
有利地,该***可以提供对场站火车组成时间与火车运行时间的关系进行权衡的能力、优化火车(例如DP火车)的机车的功率设置的能力、根据测量或预测的车厢负载针对给定机车功率增加更多车厢的能力、优化燃料/速度设置的能力,并且提供车厢诊断,例如过度摩擦、车轮平点(flat spot)等等。
在本发明的一个方面中,车上传感器可以包括重量传感器,比如有轨车厢上的标度或弹簧偏转传感器。车外传感器225可以包括位于有轨车厢在其上行驶的轨道210上的测力计(force gauge)。在本发明的一个方面中,当在轨道上以已知的摩擦负载(减速)或施加动力(加速)来对车厢进行加速或减速(例如通过利用有轨车厢上的加速计来确定)时,可以测量重量。
对于弯曲铁轨测量部分,车上传感器220可以包括用以检测车轮力的力检测器,例如垂直、轴向和/或水平测力计。在另一实施例中,车上传感器220可以包括在绕(go around)曲线行进时监控车轮的偏转(运动)传感器(例如,用于在绕曲线行进时观测速度的减少);并且可以包括用于在绕曲线行进时检测所耗散的热量的热传感器。车外传感器225可以包括用来检测铁轨偏转的位于铁轨210上的测力计和/或位于有轨车厢在其上行驶的转辙器(switch)上的测力计。
对于直铁轨测量部分,车上传感器220可以包括用以检测车轮力的力检测器,例如垂直、轴向和/或水平测力计或加速计。车外传感器225可以包括位于铁轨上的测力计、铁轨的偏转/加速计、和/或位于转辙器上的测力计。在另一实施例中,车上传感器220可以包括当在直铁轨上行进时监控车轮的偏转(运动)传感器(通过绕预定直线行进时观测速度的减少来计算),并且可以包括用于绕直线行进时检测所耗散的热量的热传感器。
数据收集可以由车上数据收集***230来执行或者可以在远程执行,例如通过利用便携式数据收集单元245。网络265可以包括以下类型网络的一种或多种:有线、无线、实时、批数据传输、存储并转发、数据推(当数据可用时)、数据拉(实时或延迟地请求动作提示)、和/或人工录入。
在其他实施例中,通过耦连到中央控制器240(例如场站/调度***)的电子(electronic)和硬件(hard)、具有人工耦连装置(linkage)的电子、具有读出器(readout)以及对另一***的人工录入的电子,耦连到场站/调度***的机械(mechanical)和硬件,具有人工耦连装置的机械、具有读出器和/或对其他***的人工录入的机械,可以提供从该***的测量数据的数据读出。供***使用的有轨车厢标识可以人工地或经由可以包括电子标签、射频(RF)标签和/或条形码的有轨车厢识别器280而被输入到该***。
在其他示例性实施例中,测量***配置可以包括:使用电子数据录入(data entry)的人工场站调度、使用人工数据录入的人工场站调度、使用人工数据录入的电子场站调度、使用电子数据录入的电子场站调度、人工货单组成、电子货单组成、使用来自人工场站***计算手册(manual)/查找/电子的数据的人工网络***、使用来自电子场站***计算手册/查找/电子的数据的人工网络***、使用来自人工场站***计算手册/查找/电子的数据的电子网络***、使用来自电子场站***计算手册/查找/电子的数据的电子网络***、使用来自人工场站***计算手册/查找/电子的数据的人工行程优化器、使用来自电子场站***计算手册/查找/电子的数据的人工行程优化器、使用来自人工场站***计算的手册/查找/电子的数据的电子行程优化器、使用来自电子场站***计算手册/查找/电子的数据的电子行程优化器、使用来自道路/旁轨/转辙器***计算手册/查找/电子上的手册的数据的人工行程优化器、使用来自道路/旁轨/转辙器***计算手册/查找/电子上的电子设备的数据的人工行程优化器、使用来自道路/旁轨/转辙器***计算手册/查找/电子上的手册的数据的电子行程优化器,和/或使用来自道路/旁轨/转辙器***计算手册/查找/电子上的电子设备的数据的电子行程优化器。
由***获得的测量数据可以用来控制火车的运行以限制操作参数、均衡操作参数、放宽参数限制、在行程前/为设置优化操作参数、实时地优化操作参数、优化整个行程的操作参数、优化部分行程的操作参数、使用单个输入优化操作参数、使用多个数据输入组优化操作参数和/或优化诊断和车厢维护。
用于把数据存储到***中的数据源可以包括路边电子单元260、车厢电子设备(比如数据收集单元230)、机车250和/或中央控制器240(比如场站***或调度***)。用于接收测量数据的数据接收器可以包括离线主机、在线机车***、在线场站***、离线场站***、在线调度***、离线调度***、在线路边装置、离线路边装置、在线网络优化器、离线网络优化器和/或帐单***。
可用来处理测量数据以产生优化的操作参数的优化技术可以包括逐次逼近松弛(relaxation)法、时序泰勒(Taylor)级数、神经网络、变换、基于经验的查找表、基于第一力学原理的技术和/或卡尔曼(Kalman)滤波。
在示例性实施例中,提供了远程位置,例如但不限于区域性和/或全国性中心310,其维护有轨车厢信息的全国性(national)数据库320。该全国性数据库320可以用作火车建造的资源。它也可以用于模型分析。由于所提供的信息类型,该数据库320也可以由政府机构使用来解决运输要求和/或安全问题。来自全国性数据库的信息在其自身和控制器240之间传送。当从控制器240获得新的信息时,全国性数据库320中的信息被更新。控制器248和全国性数据库320之间的通信可以被保护,例如但不限于加密和/或鉴别技术。在另一示例性实施例中,可以存在多个区域性数据库,其彼此进行通信,如上面所公开的关于全国性数据库与控制器240进行通信那样。在示例实施例中,网络265可以被保护而免受来自外部代理的暗中攻击,其中通信是通过该网络而发生的。
图2描述了示出用于识别用于改进火车运行的有轨车厢参数的步骤的流程图。本领域技术人员将很容易地认识到流程图330中的这些步骤可以自动和/或自发地进行。这些步骤包括确定火车的有轨车厢的有轨车厢参数(步骤335),以及按照所述火车的至少一个操作准则,根据所述有轨车厢参数来创建火车行程计划(步骤340)。额外的步骤包括根据至少一个有轨车厢参数在火车内定位有轨车厢。此外,如上所讨论的,可以根据有轨车厢参数来确定有轨车厢在火车中的次序。同样如上所讨论的,这些步骤(步骤335和/或334)可以通过使用计算机软件代码和/或另一处理器实现技术来实现。
在另一示例性实施例中,作为铁轨分类***的一部分的路边自动设备识别(AEI)标签读取器用来从有轨车厢中读取信息(通常为货单信息)。铁轨分类***需要具备可靠的货单以完成分类和转发有轨车厢的任务。大多数***经由公司网从数据库获取这些货单。在建造火车后,该火车中的车厢列表由场站人员和/或AEI***上载到数据库中。因此,当火车经过AEI标签读取器时(通常一旦整列火车经过后),可以从铁路车辆读取信息。在示例性实施例中,读取的信息被传送到机车,更具体地被传送到行程优化器,其中信息用来更新行程计划和/或用来创建未来的行程计划。当在预定目的地增加和/或减少有轨车厢时,能够更新信息。
虽然已经参照示例性实施例描述了本发明,但是本领域技术人员将会理解到,在不偏离本发明精神和范围的情况下,可以做出各种改变、省略和/或增加,并且可以用等同物替换本发明的元素。另外,在不偏离本发明的范围的情况下,可以对本发明的教导进行很多修改以适应特定情况或者材料。因此,目的在于,本发明不限制于所公开的作为用来执行本发明的预期最佳模式的特定实施例,而是本发明将包括落入所附权利要求范围内的所有实施例。此外,除非明确指出,术语第一、第二等的任何使用不表示任何次序或者重要性,而是用于将一个元件与另一个元件区别开。

Claims (36)

1.一种用于改进火车性能的方法,所述方法包括:
a)为要被包含在火车中的至少一个有轨车厢确定有轨车厢参数;以及
b)按照火车的至少一个操作准则,根据有轨车厢参数创建火车行程计划。
2.根据权利要求1所述的方法,其中有轨车厢参数包括重量、轴向负载、摩擦力、风阻力、车轮轴向负载、垂直负载和横向负载中的至少一个。
3.根据权利要求1所述的方法,进一步包括根据至少一个有轨车厢参数确定有轨车厢在火车内的位置。
4.根据权利要求1所述的方法,进一步包括根据至少一个有轨车厢参数来优化速度对火车的燃料消耗和速度对火车的排放输出中的至少一个。
5.根据权利要求1所述的方法,进一步包括将有轨车厢参数数据传送到远程中央数据库。
6.根据权利要求5所述的方法,进一步包括保护去往和来自所述远程中央数据库的通信。
7.根据权利要求2所述的方法,进一步包括确定轴向负载的变化是否是由液***移和移位的固定货物中的至少一个引起的。
8.根据权利要求1所述的方法,进一步包括根据有轨车厢参数减少火车的场站设置时间。
9.根据权利要求1所述的方法,进一步包括根据重量、阻力和曲线性能中的至少一个来确定火车中的有轨车厢的负载特性。
10.根据权利要求1所述的方法,进一步包括根据有轨车厢参数来优化分布式动力火车和非分布式动力火车中的至少一个的操作性能。
11.根据权利要求1所述的方法,进一步包括提供多个有轨车厢,其中在火车中排列有轨车厢的次序基于有轨车厢参数。
12.根据权利要求1所述的方法,进一步包括根据所创建的行程计划来操作火车。
13.根据权利要求1所述的方法,其中确定有轨车厢参数的步骤进一步包括通过穿越预定轨道部分来确定有轨车厢参数。
14.根据权利要求1所述的方法,进一步包括通过读取被包含在附于有轨车厢的识别标签上的信息来确定有轨车厢数据。
15.一种在处理器中使用的、用以改进火车性能的计算机软件代码,所述计算机软件代码包括:
a)用于确定火车的至少一个有轨车厢的有轨车厢参数的计算机软件模块;和
b)用于按照火车的至少一个操作准则,根据有轨车厢参数创建火车行程计划的计算机软件模块。
16.根据权利要求15所述的计算机软件代码,其中有轨车厢参数包括重量、轴向负载、摩擦力、风阻力、车轮轴向负载、垂直负载和横向负载中的至少一个。
17.根据权利要求15所述的计算机软件代码,还包括用于根据至少一个有轨车厢参数来确定有轨车厢在火车内的位置的计算机软件模块。
18.根据权利要求15所述的计算机软件代码,还包括用于根据有轨车厢参数来优化速度对火车的燃料消耗和速度对火车的排放输出中的至少一个的计算机软件模块。
19.根据权利要求15所述的计算机软件代码,还包括用于将有轨车厢参数数据传送到远程中央数据库的计算机软件模块。
20.根据权利要求19所述的计算机软件代码,还包括用于保护去往和来自所述远程中央数据库的通信的计算机软件模块。
21.根据权利要求16所述的计算机软件代码,还包括用于确定轴向负载的变化是否是由有轨车厢内的液***移和移位的固定货物中的至少一个引起的计算机软件模块。
22.根据权利要求15所述的计算机软件代码,还包括用于根据重量、阻力和曲线性能中的至少一个来确定火车中的车厢的负载特性的计算机软件模块。
23.根据权利要求15所述的计算机软件代码,还包括用于根据有轨车厢参数来优化分布式动力火车和非分布式动力火车中的至少一个的操作性能的计算机软件模块。
24.根据权利要求15所述的计算机软件代码,还包括提供多个有轨车厢,其中计算机软件模块根据有轨车厢参数来确定有轨车厢在火车中的次序。
25.根据权利要求15所述的计算机软件代码,还包括用于根据所创建的行程计划来操作火车的计算机软件模块。
26.根据权利要求15所述的计算机软件代码,还包括用于通过读取被包含在附于有轨车厢的识别标签上的信息来确定有轨车厢数据的计算机软件模块。
27.一种通过确定有轨车厢参数来改进火车性能的***,所述***包括:
a)有轨车厢参数测量***;
b)中央控制器;
c)通信网络,用于允许测量***和中央控制器之间的通信;
d)其中有轨车厢参数被测量并且被提供给中央控制器,所述中央控制器根据有轨车厢参数来确定火车内所有有轨车厢的火车组成轮廓和针对火车任务的行程计划中的至少一个。
28.根据权利要求27所述的***,其中所述参数测量***还包括用于确定有轨车厢参数的车上传感器和车外传感器中的至少一个。
29.根据权利要求27所述的***,其中所述车上传感器和车外传感器确定重量、轴向负载、摩擦力、风阻力、车轮轴向负载、垂直负载和横向负载中的至少一个。
30.根据权利要求27所述的***,还包括远程数据库和便携式数据收集单元中的至少一个。
31.根据权利要求27所述的***,其中所述通信网络提供测量***、中央控制器、远程数据库、便携式数据收集单元、路边装置、车外传感器和机车中的至少两个之间的通信。
32.根据权利要求30所述的***,其中所述通信网络是受保护的通信网络。
33.根据权利要求27所述的***,其中所述中央控制器还包括处理器。
34.根据权利要求30所述的***,其中所述远程数据库包括多个有轨车厢的有轨车厢参数。
35.根据权利要求27所述的***,还包括:
a)附于有轨车厢的识别标记;
b)识别标记读取器,所述识别标记读取器被安置靠近有轨车厢所位于其上的轨道之处以便与所述标记通信以从所述标记收集信息;
c)其中中央控制器与识别标记读取器通信,并且与识别标记相关联的信息被用来确定有轨车厢的特性。
36.根据权利要求35所述的***,其中与识别标记相关联的信息被提供给行程优化器以供确定行程计划之用。
CN200780001185.6A 2006-05-19 2007-04-16 鉴于有轨车厢参数优化火车运行的***、方法和计算机软件代码 Active CN101356089B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US80214706P 2006-05-19 2006-05-19
US60/802,147 2006-05-19
US11/621,221 US8473127B2 (en) 2006-03-20 2007-01-09 System, method and computer software code for optimizing train operations considering rail car parameters
US11/621,221 2007-01-09
PCT/US2007/066697 WO2007136947A2 (en) 2006-05-19 2007-04-16 System, method and computer software code for optimizing train opeations considering rail car parameters

Publications (2)

Publication Number Publication Date
CN101356089A true CN101356089A (zh) 2009-01-28
CN101356089B CN101356089B (zh) 2015-06-24

Family

ID=40308412

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200780001185.6A Active CN101356089B (zh) 2006-05-19 2007-04-16 鉴于有轨车厢参数优化火车运行的***、方法和计算机软件代码

Country Status (2)

Country Link
CN (1) CN101356089B (zh)
ZA (1) ZA200802611B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072789A (zh) * 2010-11-03 2011-05-25 西南交通大学 一种地面测试铁道车辆轮轨力的连续化处理方法
CN101875361B (zh) * 2009-04-29 2012-01-25 华为技术有限公司 列车速度调整方法和装置
CN102951165A (zh) * 2012-11-05 2013-03-06 北京交通大学 轨道列车节省电能运行控制方法
CN105416299A (zh) * 2014-08-12 2016-03-23 通用电气公司 用于车辆操作的***和方法
US9701323B2 (en) 2015-04-06 2017-07-11 Bedloe Industries Llc Railcar coupler
CN107107928A (zh) * 2014-10-28 2017-08-29 西门子公司 用于运行交通工具的方法
CN107531260A (zh) * 2015-03-04 2018-01-02 通用电气公司 用于控制车辆***以在行程期间实现不同目标的***和方法
CN107618519A (zh) * 2017-08-18 2018-01-23 西南交通大学 一种燃料电池混合动力有轨电车参数匹配联合优化方法
CN110155031A (zh) * 2018-02-14 2019-08-23 通用汽车环球科技运作有限责任公司 使用神经网络的用于车辆横向控制的轨迹跟踪
CN110740280A (zh) * 2018-07-19 2020-01-31 杭州海康汽车技术有限公司 一种列车车厢信息获取方法、装置、监控设备及存储介质
CN110958967A (zh) * 2017-07-20 2020-04-03 西门子交通有限公司 用于运行轨道车辆的控制方法和控制装置
CN111169512A (zh) * 2019-12-29 2020-05-19 合肥工业大学 一种轨道机车车辆编组完整性检查方法及***
CN111997732A (zh) * 2020-09-02 2020-11-27 中车大连机车车辆有限公司 一种基于分布感知的铁路机车控制***及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19830053C1 (de) * 1998-07-04 1999-11-18 Thyssenkrupp Stahl Ag Einrichtung für die Überwachung eines schienengebundenen Zuges aus einem Triebfahrzeug und mindestens einem Waggon
DE19935353A1 (de) * 1999-07-29 2001-02-01 Abb Daimler Benz Transp Verfahren zur Energieoptimierung bei einem Fahrzeug/Zug mit mehreren Antriebsanlagen
WO2004059446A2 (en) * 2002-12-20 2004-07-15 Union Switch & Signal, Inc. Dynamic optimizing traffic planning method and system
US20050065674A1 (en) * 2003-09-24 2005-03-24 General Electric Company Method and apparatus for controlling a railway consist

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19830053C1 (de) * 1998-07-04 1999-11-18 Thyssenkrupp Stahl Ag Einrichtung für die Überwachung eines schienengebundenen Zuges aus einem Triebfahrzeug und mindestens einem Waggon
DE19935353A1 (de) * 1999-07-29 2001-02-01 Abb Daimler Benz Transp Verfahren zur Energieoptimierung bei einem Fahrzeug/Zug mit mehreren Antriebsanlagen
WO2004059446A2 (en) * 2002-12-20 2004-07-15 Union Switch & Signal, Inc. Dynamic optimizing traffic planning method and system
US20050065674A1 (en) * 2003-09-24 2005-03-24 General Electric Company Method and apparatus for controlling a railway consist

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101875361B (zh) * 2009-04-29 2012-01-25 华为技术有限公司 列车速度调整方法和装置
CN102072789A (zh) * 2010-11-03 2011-05-25 西南交通大学 一种地面测试铁道车辆轮轨力的连续化处理方法
CN102951165A (zh) * 2012-11-05 2013-03-06 北京交通大学 轨道列车节省电能运行控制方法
CN102951165B (zh) * 2012-11-05 2015-04-15 北京交通大学 轨道列车节省电能运行控制方法
CN105416299A (zh) * 2014-08-12 2016-03-23 通用电气公司 用于车辆操作的***和方法
CN105416299B (zh) * 2014-08-12 2020-01-03 通用电气全球采购有限责任公司 用于车辆操作的***和方法
US10207724B2 (en) 2014-10-28 2019-02-19 Siemens Aktiengesellschaft Method for operating a vehicle
CN107107928A (zh) * 2014-10-28 2017-08-29 西门子公司 用于运行交通工具的方法
CN107107928B (zh) * 2014-10-28 2019-08-23 西门子交通有限公司 用于运行交通工具的方法
US10730539B2 (en) 2015-03-04 2020-08-04 Ge Global Sourcing Llc System and method for controlling a vehicle system
US10363949B2 (en) 2015-03-04 2019-07-30 Ge Global Sourcing Llc System and method for controlling a vehicle system
CN115158394A (zh) * 2015-03-04 2022-10-11 Ip传输控股公司 用于控制车辆***在行程期间实现不同目标的***和方法
CN107531260A (zh) * 2015-03-04 2018-01-02 通用电气公司 用于控制车辆***以在行程期间实现不同目标的***和方法
US9701323B2 (en) 2015-04-06 2017-07-11 Bedloe Industries Llc Railcar coupler
US10532753B2 (en) 2015-04-06 2020-01-14 Bedloe Industries Llc Railcar coupler
CN110958967A (zh) * 2017-07-20 2020-04-03 西门子交通有限公司 用于运行轨道车辆的控制方法和控制装置
CN107618519A (zh) * 2017-08-18 2018-01-23 西南交通大学 一种燃料电池混合动力有轨电车参数匹配联合优化方法
CN110155031A (zh) * 2018-02-14 2019-08-23 通用汽车环球科技运作有限责任公司 使用神经网络的用于车辆横向控制的轨迹跟踪
CN110155031B (zh) * 2018-02-14 2022-03-08 通用汽车环球科技运作有限责任公司 使用神经网络的用于车辆横向控制的轨迹跟踪
CN110740280A (zh) * 2018-07-19 2020-01-31 杭州海康汽车技术有限公司 一种列车车厢信息获取方法、装置、监控设备及存储介质
CN111169512A (zh) * 2019-12-29 2020-05-19 合肥工业大学 一种轨道机车车辆编组完整性检查方法及***
CN111169512B (zh) * 2019-12-29 2021-11-26 合肥工业大学 一种轨道机车车辆编组完整性检查方法及***
CN111997732A (zh) * 2020-09-02 2020-11-27 中车大连机车车辆有限公司 一种基于分布感知的铁路机车控制***及方法
CN111997732B (zh) * 2020-09-02 2021-12-31 中车大连机车车辆有限公司 一种基于分布感知的铁路机车控制***及方法

Also Published As

Publication number Publication date
CN101356089B (zh) 2015-06-24
ZA200802611B (en) 2009-06-24

Similar Documents

Publication Publication Date Title
CN101356089B (zh) 鉴于有轨车厢参数优化火车运行的***、方法和计算机软件代码
RU2605648C2 (ru) Система и способ для оптимизации работы поезда с учетом параметров вагона
CN102112358B (zh) 用于为沿路线行进的多个机动***定速的***和方法
US8989917B2 (en) System, method, and computer software code for controlling speed regulation of a remotely controlled powered system
CN101374714B (zh) 用于列车的行程优化***及方法
CN102030024B (zh) 用于优化运行在多交叉铁路网上的多个轨道车辆的参数的方法
US8295993B2 (en) System, method, and computer software code for optimizing speed regulation of a remotely controlled powered system
CN102806923B (zh) 用于操作铁路车辆的方法
CN102026841B (zh) 用于管理在机动***中的储能量的***和方法
US8924049B2 (en) System and method for controlling movement of vehicles
US8768543B2 (en) Method, system and computer software code for trip optimization with train/track database augmentation
CN101245740A (zh) 柴油动力***的优化燃料效率和排放输出的***和方法
CN102036870B (zh) 用于基于任务计划控制动力驱动的***的方法
WO2008073546A2 (en) Method and apparatus for optimizing railroad train operation for a train including multiple distributed-power locomotives
CN101983152A (zh) 用于机动***的优化的燃料效率、排放量和任务性能的方法
CN102700567B (zh) 用于机动***的优化的燃料效率、排放量和任务性能的方法
AU2015200168A1 (en) System, method and computer software code for optimizing train operations considering rail car parameters
AU2013202194A1 (en) System, method and computer software code for optimizing train operations considering rail car parameters
RU2466049C2 (ru) Система и способ для оптимизации параметров множества железнодорожных транспортных средств, действующих в железнодорожных сетях с множеством пересечений

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant