CN101328059A - Machinable complex phase ceramic material, preparation and secondary hardening heat treatment method - Google Patents

Machinable complex phase ceramic material, preparation and secondary hardening heat treatment method Download PDF

Info

Publication number
CN101328059A
CN101328059A CNA2008100180615A CN200810018061A CN101328059A CN 101328059 A CN101328059 A CN 101328059A CN A2008100180615 A CNA2008100180615 A CN A2008100180615A CN 200810018061 A CN200810018061 A CN 200810018061A CN 101328059 A CN101328059 A CN 101328059A
Authority
CN
China
Prior art keywords
ceramic material
preparation
diphase ceramic
sic
secondary hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100180615A
Other languages
Chinese (zh)
Other versions
CN101328059B (en
Inventor
乔冠军
贾祥亚
施玉婷
金海云
王红洁
杨建锋
王继平
高积强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN2008100180615A priority Critical patent/CN101328059B/en
Publication of CN101328059A publication Critical patent/CN101328059A/en
Application granted granted Critical
Publication of CN101328059B publication Critical patent/CN101328059B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)

Abstract

The invention discloses a machinable composite ceramic material, a preparation method and a secondary hardening heat treatment method thereof relating to the ceramic material preparation field. The weight percentage of the machinable composite ceramic material is as follows: (1) 40-80% of Al2O3, 5-30% of h-BN, 5-50% of Al; or (2) 40-80% of SiC, 5-30% of h-BN, 5-50% of Al; or (3) 40-80% of Al2O3, 5-30% of h-BN, 5-50% of Ti; or (4) 40-80% of SiC, 5-30% of h-BN, 5-50% of Ti. The component ingredients are milled into mixed powder, then one time sintered in a plasma active stove(PAS) to get machinable composite ceramic material with a relative lower rigidity. A secondary hardening treatment is carried out to the product machined by the machinable composite ceramic material in a heat-treatment furnace under the protection of N2, thereby improving the rigidity of the product and expanding the application field of the product.

Description

Can process diphase ceramic material and preparation method thereof and secondary hardening heat treating method
Technical field
The present invention relates to stupalith and make field, particularly a kind of diphase ceramic material and preparation method thereof and secondary hardening heat treating method processed.
Background technology
Processable ceramic typically refers under the processing condition of traditional Machining Technology for Cutting of not using diamond cutter, the clearance of material and surfaceness can both satisfy the stupalith of certain engineering service requirements, generally process the rear surface roughness and require less than 10 μ m.At present, the preparation processable ceramic mainly is toughened and reinforced method and the complex method that utilizes some excellences, arranges in pairs or groups by rational component and improves the processable ceramics material mechanical property, workability and this contradiction of its intensity of mediation stupalith.For example wait and prepare the stupalith that workability is good, intensity is high by nanotechnology, hexagonal boron nitride (h-BN) the second phase toughening technology.
But, high rigidity and many performances such as wear-resistant of bringing thus are the unique advantages of stupalith, raising along with processing characteristics, the hardness of processable ceramic but descends thereupon, that is to say that processability and hardness are a pair of contradiction, have limited the Application Areas of processable ceramic to a great extent.How much relevant the hardness of stupalith is with the content of its hard phase, can't improve the hardness of processable ceramic by the microstructure of simple change material.Therefore, seek that the preparation of a kind of new operational path not only can have been processed, hardness but also high complex phase ceramic seem particularly urgent.
Summary of the invention
The present invention is directed to the above-mentioned technological deficiency of present processable ceramics material, a kind of diphase ceramic material and preparation method thereof and secondary hardening heat treating method processed is provided.This complex phase processable ceramic material can carry out mechanical workout easily, through secondary hardening thermal treatment, can significantly improve its hardness after the processing, widens its Application Areas.
In order to reach above purpose, the present invention takes following technical scheme to be achieved:
Can process diphase ceramic material, its weight percent component is: (1) 40-80% aluminum oxide (Al 2O 3), 5-30% hexagonal boron nitride (h-BN), 5-50% aluminium (Al); Or (2) 40-80% silicon carbide (SiC), 5-30% hexagonal boron nitride (h-BN), 5-50% aluminium (Al); Or (3) 40-80% aluminum oxide (Al 2O 3), 5-30% hexagonal boron nitride (h-BN), 5-50% titanium (Ti); Or (4) 40-80% silicon carbide (SiC), 5-30% hexagonal boron nitride (h-BN), 5-50% titanium (Ti).
It further optimizes the set of dispense ratio: (1) 60-80%Al 2O 3, 5-30%h-BN, 10-30%Al; Or (2) 40-60%SiC, 10-30%h-BN, 20-50%Al; Or (3) 60-80%Al 2O 3, 5-30%BN, 10-30%Ti; Or (4) 40-60%SiC, 10-30%h-BN, 20-50%Ti.
Can process the preparation method of diphase ceramic material, may further comprise the steps: in above-mentioned weight percentage ranges, prepare burden, the ball milling mixed powder, once sintered in plasma activation (PAS) stove then, temperature rise rate 200-500 ℃/min wherein, pressure 30-60MPa, vacuum tightness 0-10Pa, sintering temperature 800-1300 ℃, insulation 2-4min, last furnace cooling is promptly.Its agglomerating is further optimized processing parameter and is: temperature rise rate 300-500 ℃/min, and pressure 30-50MPa, vacuum tightness 6-10Pa, sintering temperature 900-1200 ℃, insulation 2-4min.
Can process the secondary hardening heat treating method of diphase ceramic material, the diphase ceramic material processed of above-mentioned preparation is machined into product, put into heat treatment furnace, at N 2Under the gas shiled, rise to 900-1200 ℃ with 5-10 ℃/min earlier, rise to 1600-1800 ℃ with 2-5 ℃/min again, insulation 2-3h, last furnace cooling gets final product.It further optimizes processing parameter: in the heat treatment furnace, at N 2Under the gas shiled, rise to 1000-1200 ℃ with 5-7 ℃/min earlier, rise to 1600-1700 ℃ with 5 ℃/min again, insulation 2-3h, last furnace cooling gets final product.
The present invention has tangible beneficial effect.Because the present invention will contain h-BN, Al (or Ti) and ceramic matrix phase (Al 2O 3Or SiC) mixed powder is put into PAS and is rapidly heated, and h-BN and Al have little time reaction or have only partial reaction, exist h-BN, Al (or Ti) tender constitution phase in the pottery after once sintered, the diphase ceramic material that obtains has certain intensity, but hardness is not high, convenient processing; The diphase ceramic material processed of preparation is heat-treated after being machined into product, and original position generates AlN, AlB 2, TiN, TiB 2Deng the hard phase, consistency is good mutually, boundary strength is high, particle size is little with matrix for these hard, and the hardness of whole ceramic matrix and intensity have all been played the effect that increases.
In addition, technical process of the present invention is simple, and required sintering time is short; Stupalith after once sintered and the secondary hardening thermal treatment tests such as Vickers' hardness, bending strength have been carried out, its result shows, hardness improves greatly after the complex phase processable ceramic second heat treatment of employing the inventive method preparation, can process diphase ceramic material as h-BN/Al/SiC, hardness is brought up to 6.5GPa by the 4.1GPa after once sintered, and bending strength is brought up to 330MPa by 180MPa.
Description of drawings
Fig. 1 is a technological principle synoptic diagram of the present invention;
The matrix material microstructure photograph that Fig. 2 a is h-BN/Al after once sintered;
Fig. 2 b is a microstructure photograph after the secondary hardening thermal treatment of h-BN/Al matrix material.
Embodiment
The present invention is described in further detail below in conjunction with drawings and Examples.
Referring to Fig. 1, principle of the present invention is to add aluminium or titanium isoreactivity metal in the hexagonal boron nitride complex phase ceramic, and by once sintered acquisition dense sintering body, this moment, material hardness was low, can adopt the standard machinery cutting process to process difform product easily; Then product is carried out secondary hardening thermal treatment, new ceramic phase generates the hardness that has improved the complex phase processable ceramic material.Because h-BN and metal A l, Ti etc. have good wetting property, at a certain temperature, between its interface chemical reaction can take place, its reaction equation is:
3Al+2BN=AlB 2+2AlN
3Ti+2BN=TiB 2+2TiN
Original position generates new ceramic phase AlN, AlB 2, AlB 12, TiN, TiB 2Deng, shown in Fig. 2 a, 2b, contrast can be found, through secondary hardening thermal treatment, new hard phase AlN occurred, thereby has improved the hardness of once sintered back processable ceramic.
Specific embodiments of the present invention is as follows:
Can process diphase ceramic material, its weight percent component is: (1) 60-80%Al 2O 3, 5-30%h-BN, 10-30%Al; Or (2) 40-60%SiC, 10-30%h-BN, 20-50%Al; Or (3) 60-80%Al 2O 3, 5-30%BN, 10-30%Ti; Or (4) 40-60%SiC, 10-30%h-BN, 20-50%Ti.
Can process the preparation method of diphase ceramic material, may further comprise the steps: according to above-mentioned weight percent component batching, the ball milling mixed powder, sintering in plasma activation (PAS) stove then, temperature rise rate 300-500 ℃/min wherein, pressure 30-50MPa, vacuum tightness 6-10Pa, sintering temperature 900-1200 ℃, insulation 2-4min, last furnace cooling is promptly.
Can process the secondary hardening heat treating method of diphase ceramic material, the diphase ceramic material processed of above-mentioned preparation is machined into product, put into vacuum oven, at N 2Under the gas shiled, rise to 900-1200 ℃ with 5-10 ℃/min earlier, rise to 1600-1800 ℃ with 2-5 ℃/min again, insulation 2-3h, last furnace cooling gets final product.
Embodiment 1:
Can process the diphase ceramic material batching: with Al 2O 3Be the ceramic matrix phase, Al and h-BN are toughness reinforcing and reacting phase, and the weight percent proportioning of each component is Al 2O 360%, h-BN15%, Al25%.
Can process the diphase ceramic material preparation: above-mentioned each component is mixed, and wet-milling is 24 hours in ball grinder, and medium is dehydrated alcohol (concentration 99.7%), and abrading-ball is an agate ball, and 70 ℃ dry down, crosses 200 mesh sieves; Then, with h-BN/Al/Al 2O 3The powder graphite jig of packing into, and insert in the plasma activation stove, plasma activation (PAS) is once sintered fast, and temperature is 1150 ℃ when once sintered, 300 ℃/min of temperature rise rate, pressure 30MPa, vacuum tightness 10Pa, insulation 2min, sintering process adopts infrared measurement of temperature, and furnace cooling is promptly.
Can process the secondary hardening thermal treatment of diphase ceramic material: with the diphase ceramic material processed (h-BN/Al/Al of above-mentioned preparation 2O 3) be machined into product, put into heat treatment furnace, at N 2Rise to 900 ℃ with 10 ℃/min under the gas shiled, rise to 1600 ℃ of insulation 2h with 5 ℃/min again, cool off with the stove cooling then.
The hardness test result: once sintered and secondary hardening is handled the hardness of back complex phase ceramic and is brought up to 5.5GPa by 4.15GPa.
Embodiment 2:
Can process the diphase ceramic material batching: with Al 2O 3Be the ceramic matrix phase, Al and h-BN are toughness reinforcing and reacting phase, and the weight percent proportioning of each component is Al 2O 375%, h-BN10%, Al15%.
Can process the diphase ceramic material preparation: above-mentioned each component is mixed, and wet-milling is 24 hours in ball grinder, and medium is dehydrated alcohol (concentration 99.7%), and abrading-ball is an agate ball, and 70 ℃ dry down, crosses 200 mesh sieves; Then the h-BN/Al/SiC powder is packed in the graphite jig, and insert in the plasma activation stove, plasma activation (PAS) is once sintered fast, once sintered temperature is 1200 ℃, 400 ℃/min of temperature rise rate, pressure 40MPa, vacuum tightness 8Pa, insulation 4min, sintering process adopts infrared measurement of temperature, and last furnace cooling is promptly.
Can process the secondary hardening thermal treatment of diphase ceramic material: the diphase ceramic material processed (h-BN/Al/SiC) of above-mentioned preparation is machined into product, puts into heat treatment furnace, at N 2Rise to 900 ℃ with 10 ℃/min under the gas shiled, rise to 1700 ℃ of insulation 2h with 5 ℃/min again, cool off with the stove cooling then.
The hardness test result: once sintered and secondary hardening is handled the hardness of back complex phase ceramic and is brought up to 6.2GPa by 4.8GPa.
Embodiment 3:
Can process the diphase ceramic material batching: with Al 2O 3Be the ceramic matrix phase, Ti and h-BN are toughness reinforcing and reacting phase, and the weight percent proportioning of each component is Al 2O 360%, h-BN15%, Ti25%.
Can process the diphase ceramic material preparation: above-mentioned each component is mixed, and wet-milling is 24 hours in ball grinder, and medium is dehydrated alcohol (concentration 99.7%), and abrading-ball is an agate ball, and 70 ℃ dry down, crosses 200 mesh sieves; Then, with h-BN/Ti/Al 2O 3The powder graphite jig of packing into, and insert in the plasma activation stove, plasma activation (PAS) is once sintered fast, and temperature is 1200 ℃ when once sintered, 400 ℃/min of temperature rise rate, pressure 30MPa, vacuum tightness 8Pa, insulation 3min, sintering process adopts infrared measurement of temperature, and furnace cooling is promptly.
Can process the secondary hardening thermal treatment of diphase ceramic material: with the diphase ceramic material processed (h-BN/Ti/Al of above-mentioned preparation 2O 3) be machined into product, put into vacuum oven, at N 2Rise to 1200 ℃ with 10 ℃/min under the gas shiled, rise to 1600 ℃ with 5 ℃/min again, insulation 3h, cool off with the stove cooling then.
The hardness test result: once sintered and secondary hardening is handled the hardness of back complex phase ceramic and is brought up to 6.82GPa by 5.43GPa.
Embodiment 4:
Can process the diphase ceramic material batching: with Al 2O 3Be the ceramic matrix phase, Ti and h-BN are toughness reinforcing and reacting phase, and the weight percent proportioning of each component is Al 2O 375%, h-BN10%, Ti15%.
Can process the diphase ceramic material preparation: above-mentioned each component is mixed, and wet-milling is 24 hours in ball grinder, and medium is dehydrated alcohol (concentration 99.7%), and abrading-ball is an agate ball, and 70 ℃ dry down, crosses 200 mesh sieves; Then, with h-BN/Ti/Al 2O 3The powder graphite jig of packing into, and insert in the plasma activation stove, plasma activation (PAS) is once sintered fast, and temperature is 1200 ℃ when once sintered, 400 ℃/min of temperature rise rate, pressure 30MPa, vacuum tightness 6Pa, insulation 2min, sintering process adopts infrared measurement of temperature, and furnace cooling is promptly.
Can process the secondary hardening thermal treatment of diphase ceramic material: with the diphase ceramic material processed (h-BN/Al/Al of above-mentioned preparation 2O 3) be machined into product, put into heat treatment furnace, at N 2Rise to 1200 ℃ with 10 ℃/min under the gas shiled, rise to 1600 ℃ of insulation 3h with 5 ℃/min again, cool off with the stove cooling then.
The hardness test result: once sintered and secondary hardening is handled the hardness of back complex phase ceramic and is brought up to 7.1GPa by 5.85GPa.
Embodiment 5:
Can process the diphase ceramic material batching: with SiC is the ceramic matrix phase, and Al and h-BN are toughness reinforcing and reacting phase, and the weight percent proportioning of each component is SiC40%, h-BN25%, Al35%.
Can process the diphase ceramic material preparation: above-mentioned each component is mixed, and wet-milling is 24 hours in ball grinder, and medium is dehydrated alcohol (concentration 99.7%), and abrading-ball is an agate ball, and 70 ℃ dry down, crosses 200 mesh sieves; With the h-BN/Al/SiC powder graphite jig of packing into, and insert in the plasma activation stove, plasma activation (PAS) is once sintered fast, once sintered temperature is 1200 ℃, 400 ℃/min of temperature rise rate, pressure 40MPa, vacuum tightness 10Pa, insulation 2min, sintering process adopts infrared measurement of temperature, and last furnace cooling is promptly.
Can process the secondary hardening thermal treatment of diphase ceramic material: the diphase ceramic material processed (h-BN/Al/SiC) of above-mentioned preparation is machined into product, puts into heat treatment furnace, at N 2Rise to 900 ℃ with 10 ℃/min under the gas shiled, rise to 1600 ℃ of insulation 2h with 5 ℃/min again, cool off with the stove cooling then.
The hardness test result: once sintered and secondary hardening is handled the hardness of back complex phase ceramic and is brought up to 6.5GPa by 4.1GPa.
Embodiment 6:
Can process the diphase ceramic material batching: with SiC is the ceramic matrix phase, and Al and h-BN are toughness reinforcing and reacting phase, and the weight percent proportioning of each component is SiC60%, h-BN15%, Al25%.
Can process the diphase ceramic material preparation: above-mentioned each component is mixed, and wet-milling is 24 hours in ball grinder, and medium is dehydrated alcohol (concentration 99.7%), and abrading-ball is an agate ball, and 70 ℃ dry down, crosses 200 mesh sieves; With the h-BN/Al/SiC powder graphite jig of packing into, and insert in the plasma activation stove, plasma activation (PAS) is once sintered fast, once sintered temperature is 1100 ℃, 400 ℃/min of temperature rise rate, pressure 40MPa, vacuum tightness 10Pa, insulation 3min, sintering process adopts infrared measurement of temperature, and last furnace cooling is promptly.
Can process the secondary hardening thermal treatment of diphase ceramic material: the diphase ceramic material processed (h-BN/Al/SiC) of above-mentioned preparation is machined into product, puts into heat treatment furnace, at N 2Rise to 1000 ℃ with 10 ℃/min under the gas shiled, rise to 1600 ℃ of insulation 2h with 5 ℃/min again, cool off with the stove cooling then.
The hardness test result: once sintered and secondary hardening is handled the hardness of back complex phase ceramic and is brought up to 5.8GPa by 3.56GPa.
Embodiment 7:
Can process the diphase ceramic material batching: with SiC is the ceramic matrix phase, and Ti and h-BN are toughness reinforcing and reacting phase, and the weight percent proportioning of each component is SiC40%, h-BN25%, Ti35%.
Can process the diphase ceramic material preparation: above-mentioned each component is mixed, and wet-milling is 24 hours in ball grinder, and medium is dehydrated alcohol (concentration 99.7%), and abrading-ball is an agate ball, and 70 ℃ dry down, crosses 200 mesh sieves; With the h-BN/Ti/SiC powder graphite jig of packing into, and insert in the plasma activation stove, plasma activation (PAS) is once sintered fast, once sintered temperature is 1100 ℃, 400 ℃/min of temperature rise rate, pressure 40MPa, vacuum tightness 10Pa, insulation 3min, sintering process adopts infrared measurement of temperature, and last furnace cooling is promptly.
Can process the secondary hardening thermal treatment of diphase ceramic material: the diphase ceramic material processed (h-BN/Al/SiC) of above-mentioned preparation is machined into product, puts into heat treatment furnace, at N 2Rise to 1200 ℃ with 10 ℃/min under the gas shiled, rise to 1700 ℃ of insulation 2h with 5 ℃/min again, cool off with the stove cooling then.
The hardness test result: once sintered and secondary hardening is handled the hardness of back complex phase ceramic and is brought up to 6.68GPa by 4.67GPa.
Embodiment 8:
Can process the diphase ceramic material batching: with SiC is the ceramic matrix phase, and Ti and h-BN are toughness reinforcing and reacting phase, and the weight percent proportioning of each component is SiC60%, h-BN15%, Ti25%.
Can process the diphase ceramic material preparation: above-mentioned each component is mixed, and wet-milling is 24 hours in ball grinder, and medium is dehydrated alcohol (concentration 99.7%), and abrading-ball is an agate ball, and 70 ℃ dry down, crosses 200 mesh sieves; With the h-BN/Ti/SiC powder graphite jig of packing into, and insert in the plasma activation stove, plasma activation (PAS) is once sintered fast, once sintered temperature is 1100 ℃, 400 ℃/min of temperature rise rate, pressure 40MPa, vacuum tightness 10Pa, insulation 3min, sintering process adopts infrared measurement of temperature, and last furnace cooling is promptly.
Can process the secondary hardening thermal treatment of diphase ceramic material: the diphase ceramic material processed (h-BN/Ti/SiC) of above-mentioned preparation is machined into product, puts into heat treatment furnace, at N 2Rise to 1200 ℃ with 10 ℃/min under the gas shiled, rise to 1700 ℃ of insulation 2h with 5 ℃/min again, cool off with the stove cooling then.
The hardness test result: once sintered and secondary hardening is handled the hardness of back complex phase ceramic and is brought up to 6.8GPa by 4.3GPa.
The diphase ceramic material processed with above embodiment 1~8 preparation is machined into product, carries out secondary hardening thermal treatment, obtains sample.Specimen surface carries out the Vickers' hardness test after polishing, test result sees Table 1.
The changes in hardness of complex phase ceramic after once sintered preparation of table 1 and the secondary hardening thermal treatment
Figure A20081001806100101
As can be seen from Table 1, through secondary hardening thermal treatment, the hardness of the diphase ceramic material processed of once sintered preparation is improved.

Claims (6)

1, a kind of diphase ceramic material of processing is characterized in that, the weight percent component is: (1) 40-80%Al 2O 3, 5-30%h-BN, 5-50%Al; Or (2) 40-80%SiC, 5-30%h-BN, 5-50%Al; Or (3) 40-80%Al 2O 3, 5-30%h-BN, 5-50% titanium Ti; Or (4) 40-80%SIC, 5-30%h-BN, 5-50%Ti.
2, the diphase ceramic material of processing according to claim 1 is characterized in that, the weight percent component is: (1) 60-80%Al 2O 3, 5-30%h-BN, 10-30%Al; Or (2) 40-60%SiC, 10-30%h-BN, 20-50%Al; Or (3) 60-80%Al 2O 3, 5-30%BN, 10-30%Ti; Or (4) 40-60%SiC, 10-30%h-BN, 20-50%Ti.
3, the preparation method who processes diphase ceramic material according to claim 1 and 2, it is characterized in that, may further comprise the steps: prepare burden in weight percentage ranges, ball milling becomes mixed powder, and is once sintered in the plasma activation stove then, temperature rise rate 200-500 ℃/min wherein, pressure 30-60MPa, vacuum tightness 0-10Pa, sintering temperature 800-1300 ℃, insulation 2-4min, last furnace cooling promptly.
4, the preparation method who processes diphase ceramic material according to claim 3 is characterized in that, and is described once sintered, 300-500 ℃/min of its temperature rise rate, pressure 30-50MPa, vacuum tightness 6-10Pa, sintering temperature 900-1200 ℃, insulation 2-4min.
5, according to the secondary hardening heat treating method of the diphase ceramic material processed of claim 3 preparation, it is characterized in that, the diphase ceramic material processed of preparation is machined into product, put into heat treatment furnace, at N 2Under the gas shiled, rise to 900-1200 ℃ with 5-10 ℃/min earlier, rise to 1600-1800 ℃ with 2-5 ℃/min again, insulation 2-3h, last furnace cooling gets final product.
6, according to the described secondary hardening heat treating method of processing diphase ceramic material of claim 5, it is characterized in that, in the heat treatment furnace, at N 2Under the gas shiled, rise to 1000-1200 ℃ with 5-7 ℃/min earlier, rise to 1600-1700 ℃ with 5 ℃/min again, insulation 2-3h, last furnace cooling.
CN2008100180615A 2008-04-25 2008-04-25 Machinable complex phase ceramic material, preparation and secondary hardening heat treatment method Expired - Fee Related CN101328059B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100180615A CN101328059B (en) 2008-04-25 2008-04-25 Machinable complex phase ceramic material, preparation and secondary hardening heat treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100180615A CN101328059B (en) 2008-04-25 2008-04-25 Machinable complex phase ceramic material, preparation and secondary hardening heat treatment method

Related Child Applications (3)

Application Number Title Priority Date Filing Date
CN2010101920756A Division CN101955357B (en) 2008-04-25 2008-04-25 Processable complex-phase ceramic material and preparation method thereof as well as secondary hardening heat treatment method
CN2010101920760A Division CN101956115B (en) 2008-04-25 2008-04-25 Processable complex phase ceramic material and preparation method and secondary hardening heat treatment method thereof
CN2010101920968A Division CN101955358B (en) 2008-04-25 2008-04-25 Processable Machinable complex-phase ceramic material and preparation method and secondary hardening heat treatment method thereof

Publications (2)

Publication Number Publication Date
CN101328059A true CN101328059A (en) 2008-12-24
CN101328059B CN101328059B (en) 2012-07-25

Family

ID=40204109

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100180615A Expired - Fee Related CN101328059B (en) 2008-04-25 2008-04-25 Machinable complex phase ceramic material, preparation and secondary hardening heat treatment method

Country Status (1)

Country Link
CN (1) CN101328059B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101565309B (en) * 2009-05-27 2012-01-04 西安交通大学 Method for preparing machinable Al-BN composite ceramic with improved late hardness
CN110526718A (en) * 2019-09-03 2019-12-03 武汉理工大学 A kind of B-Al-Ti series multi-phase ceramics and its low temperature densification sintering preparation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101565309B (en) * 2009-05-27 2012-01-04 西安交通大学 Method for preparing machinable Al-BN composite ceramic with improved late hardness
CN110526718A (en) * 2019-09-03 2019-12-03 武汉理工大学 A kind of B-Al-Ti series multi-phase ceramics and its low temperature densification sintering preparation method
CN110526718B (en) * 2019-09-03 2021-07-27 武汉理工大学 B-Al-Ti complex phase ceramic and low-temperature densification sintering preparation method thereof

Also Published As

Publication number Publication date
CN101328059B (en) 2012-07-25

Similar Documents

Publication Publication Date Title
CN101456737B (en) Boron carbide base composite ceramic and preparation method thereof
Ewais et al. Investigation of the effect of ZrO2 and ZrO2/Al2O3 additions on the hot-pressing and properties of equimolecular mixtures of α-and β-Si3N4
CN112851365B (en) Preparation method of silicon nitride-based complex phase conductive ceramic
Simonenko et al. ZrB 2/HfB 2–SiC Ceramics Modified by Refractory Carbides: An Overview
CN100355695C (en) Chromium carbide and carbon titanium nitride particle dispersion consolidated aluminium oxide base ceramic composite material and its preparation method
CN102976760A (en) RE2O3-added ZrB2-SiC composite ceramic material and preparation method thereof
CN110627507B (en) Low-temperature silicon carbide ceramic and preparation method and application thereof
CN101955357B (en) Processable complex-phase ceramic material and preparation method thereof as well as secondary hardening heat treatment method
Ye et al. Effect of addition of micron-sized TiC particles on mechanical properties of Si3N4 matrix composites
JP5062402B2 (en) Reaction sintered silicon nitride-based sintered body and method for producing the same
Liu et al. Enhancement mechanical properties of in-situ preparated B4C-based composites with small amount of (Ti3SiC2+ Si)
CN102731096A (en) Textured boride base ultra-high temperature ceramic material and its preparation method
CN101328059B (en) Machinable complex phase ceramic material, preparation and secondary hardening heat treatment method
CN111747748B (en) Ultrahigh-temperature heat-proof/insulation integrated ZrC/Zr 2 C complex phase material and preparation method thereof
CN101956115B (en) Processable complex phase ceramic material and preparation method and secondary hardening heat treatment method thereof
CN108503370A (en) A kind of single-phase silicon nitride ceramics and its SPS preparation processes
CN106747433B (en) Zirconia-based nano ceramic tool and die material and preparation method thereof
RU2399601C2 (en) Method of making non-shrinking structural ceramic article
Santos et al. α-SiAlON–SiC composites obtained by gas-pressure sintering and hot-pressing
CN101955358B (en) Processable Machinable complex-phase ceramic material and preparation method and secondary hardening heat treatment method thereof
EP2760807B1 (en) Composite silicon nitride body
Attia et al. Hot Pressed Si 3 N 4 Ceramics Using MgO–Al 2 O 3 as Sintering Additive for Vehicle Engine Parts
CN101565309B (en) Method for preparing machinable Al-BN composite ceramic with improved late hardness
Failla et al. Lightweight Alumina-B4c Composites for Structural and Functional Applications
RU2542073C1 (en) Method of producing non-shrinking nano-modified structural ceramic material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120725

Termination date: 20150425

EXPY Termination of patent right or utility model