CN101314465B - 分支型碳纳米管的制备方法 - Google Patents

分支型碳纳米管的制备方法 Download PDF

Info

Publication number
CN101314465B
CN101314465B CN2007100748101A CN200710074810A CN101314465B CN 101314465 B CN101314465 B CN 101314465B CN 2007100748101 A CN2007100748101 A CN 2007100748101A CN 200710074810 A CN200710074810 A CN 200710074810A CN 101314465 B CN101314465 B CN 101314465B
Authority
CN
China
Prior art keywords
carbon nanotubes
branch type
type carbon
buffer layer
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2007100748101A
Other languages
English (en)
Other versions
CN101314465A (zh
Inventor
罗春香
刘亮
姜开利
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Hongfujin Precision Industry Shenzhen Co Ltd
Priority to CN2007100748101A priority Critical patent/CN101314465B/zh
Priority to US11/978,071 priority patent/US8821975B2/en
Priority to JP2008141721A priority patent/JP4880644B2/ja
Publication of CN101314465A publication Critical patent/CN101314465A/zh
Application granted granted Critical
Publication of CN101314465B publication Critical patent/CN101314465B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition

Abstract

本发明涉及一种分支型碳纳米管的制备方法,其包括以下步骤:提供一基底;形成一缓冲层于该基底的表面;形成一催化剂层于该缓冲层的表面,在碳纳米管的生长温度下,该催化剂层与上述缓冲层的材料是互不浸润的;将表面形成有缓冲层及催化剂层的基底置于一反应炉内;加热使反应炉的温度达到一预定温度,先通入保护气退火一段时间后,再往反应炉内通入碳源气,反应一段时间即得到分支型碳纳米管。该方法制备的分支型碳纳米管的产率可达到50%。

Description

分支型碳纳米管的制备方法
技术领域
本发明涉及一种碳纳米管的制备方法,尤其涉及一种分支型碳纳米管的制备方法。
背景技术
碳纳米管(CNTs)自90年代初由日本学者Iijima发现以来(Iijima S.,Nature,1991,354(7),56-58),立即引起科学界及产业界的极大重视,是近年来国际科学研究的热点。碳纳米管由六元环组成的石墨片层结构卷曲而形成的同心圆筒构成。分支型碳纳米管因其三维管状结构而具有独特的电学开关性及导热性。随着现代电子工艺更一步地微型化,分支型碳纳米管可作为电极材料、聚合物增强剂、晶体管或电化学产品而广泛地应用于纳米尺度的晶体管、放大器或电极材料等方面。
现有的制备分支型碳纳米管的方法有电弧放电法及化学气相沉积法(Chemical Vapor Deposition,CVD)。其中,通过电弧放电法制备的分支型碳纳米管的产率极低,从而限制了该方法的推广。目前,CVD法为制备分支型碳纳米管的主要方法。该方法为利用含有分支型通孔的模板,在通孔中生长分支型碳纳米管,或者利用挥发性有机金属化合物在高温下分解而得到分支型碳纳米管。然而,利用模板的方法制备分支型碳纳米管过程复杂,且所得到的碳纳米管的质量较差;利用有机金属化合物分解的方法制备分支型碳纳米管,由于金属催化剂是在气相下分解,不容易实现分支型碳纳米管的定位生长,不利于碳纳米管于微电子器件中的应用。
有鉴于此,提供一种可实现定位生长、有利于后期应用的分支型碳纳米管的简单制备方法是必要的。
发明内容
以下以实施例说明一种分支型碳纳米管的制备方法,其包括以下步骤:
提供一基底;形成一缓冲层于该基底的表面;采用镀膜的方法形成一催化剂层于该缓冲层的表面,该催化剂层的材料为金、银、铜、铂或铅,在碳纳米管的生长温度下,该催化剂层与上述缓冲层的材料是互不浸润的;将表面形成有缓冲层及催化剂层的基底置于一反应炉内;加热使反应炉的温度达到一预定温度,催化剂熔化收缩成球形催化剂颗粒,且该球形催化剂颗粒在缓冲层表面具有流动性,先通入保护气退火一段时间后,所述球形催化剂颗粒位于碳纳米管的生长顶端,再往反应炉内通入碳源气,反应一段时间即得到分支型碳纳米管。
与现有技术相比,该分支型碳纳米管的制备方法具有以下优点:(1)以乙炔、甲烷、乙烯等纯碳氢气体为碳源气,降低了生产成本;(2)采用镀膜的方法制备催化剂层,因此可利用光刻等方法以实现碳纳米管的定位生长;(3)制备出的分支型碳纳米管多数顶端包覆有金、银、铂等导电性佳的金属,从而提高了碳纳米管与电路的电性连接,有利于碳纳米管的后期应用;(4)该方法制备的碳纳米管的产率可达到50%。
附图说明
图1是本发明实施例中分支型碳纳米管的制备过程示意图。
图2是本发明实施例中所形成的分支型碳纳米管的扫描电子显微镜(SEM)照片。
图3是本发明实施例中分支型碳纳米管的生长过程示意图。
具体实施方式
下面将结合附图对本发明实施例作进一步的详细说明。
请参阅图1,本发明提供一种分支型碳纳米管的生长方法,具体包括以下步骤:
步骤一:首先提供一基底10,并在该基底10的一表面沉积一缓冲层12。基底10的材料可为硅、玻璃、石英等。该缓冲层12为通过热沉积、电子束蒸镀或溅射等方法形成的氧化铝、二氧化硅等材料,该缓冲层12的厚度为大于1纳米(nm)。
在本实施例中,基底10的材料为硅,缓冲层12为通过电子束蒸镀法形成于基底10上的厚度约为10nm的氧化铝层。
步骤二:形成一催化剂层14于缓冲层12的表面。催化剂层14为通过热沉积、电子束蒸镀、或溅射等方法形成的金、银、铜、铂、铅等导电性佳的金属材料。该催化剂层的厚度为0.5nm至1.5nm。在碳纳米管的生长温度下,催化剂层14与缓冲层12的材料是互不浸润的。
在本实施例中,催化剂层14为通过电子束蒸镀法形成于缓冲层12上的厚度为1nm的金层。
步骤三:将表面依次形成有缓冲层12与催化剂层14的基底10置于一反应炉内。该反应炉为现有CVD法中常用的管式反应炉,反应炉的直径约为1英寸。
步骤四:加热反应炉到一预定温度,先通入保护气退火一段时间后,再通入碳源气反应一段时间,可在缓冲层12的表面,沿平行于基底10表面的方向生长出分支型碳纳米管16。
本实施例中,反应炉温度为880~950℃(摄氏度),优选为900~950℃。该炉温是由催化剂的种类来决定的,催化剂不同,炉温会相差较大。保护气包括氩气与氢气,其中氩气的流量为0~140立方厘米/分钟(sccm),氢气的流量约为200sccm。通入保护气退火的时间为10-30分钟。通过氢气主要是还原催化剂,以保持其催化活性。优选地,氩气与氢气流量比为140∶200,反应时间为25分钟。碳源气为乙炔、甲烷、乙烯、一氧化碳或乙醇等气体,通入碳源气的流量为10~50sccm,反应时间为5分钟至30分钟。优选地,以乙炔作为碳源气,流量为10~25sccm,反应时间为15分钟。
请参阅图2及图3,在本发明所提供的分支型碳纳米管16的制备过程中,分支型碳纳米管16的具体生长过程如下:
催化剂层14的在反应炉温度的作用下熔化,由于催化剂层14与缓冲层12不浸润,熔化的催化剂收缩成球形催化剂颗粒,且在缓冲层12的表面具有流动性。碳源气在熔化的催化剂颗粒表面分解、析出碳原子,从而沿平行于基底10的方向生长出碳纳米管。催化剂颗粒位于碳纳米管的生长顶端。当两个碳纳米管的生长顶端的催化剂颗粒相遇时,两个较小的催化剂颗粒可合并成一个较大的催化剂颗粒,而后再从较大的催化剂颗粒上生长出新的碳纳米管,即可得到Y型的分支型碳纳米管16(如图2(a)及图3(a)所示)。如果,该Y型的分支型碳纳米管16的生长顶端的催化剂颗粒再与另一碳纳米管的催化剂颗粒相遇,则可得到多极的Y型的分支型碳纳米管16(如图3(b)所示)。同理,当两个碳纳米管的催化剂颗粒头对头地正面相遇即得到⊥字型或十型的分支型碳纳米管16(如图3(c)及图3(d)所示);当多个碳纳米管的催化剂颗粒同时相遇即得到多分支型的分支型碳纳米管16(如图3(e)所示);当一个碳纳米管的催化剂颗粒与另一碳纳米管的侧壁相遇可得到L型的分支型碳纳米管16(如图2(b)及图3(f)所示)。该方法制备的分支型碳纳米管的产率为30%~50%。
该方法制备的分支型碳纳米管16通过组装将碳纳米管与电子电路的电极相连,从而保证碳纳米管与电路良好的欧姆接触。另外,由于采用镀膜方法制备催化剂,故可实现分支型碳纳米管16的定位生长,有利于碳纳米管器件有选择地定向的制备。
与现有技术相比,该分支型碳纳米管的制备方法具有以下优点:(1)以乙炔、甲烷、乙烯等纯碳氢气体为碳源气,降低了生产成本;(2)采用镀膜的方法制备催化剂层,因此可利用光刻等方法以实现碳纳米管的定位生长;(3)制备出的分支型碳纳米管多数顶端包覆有金、银、铂等导电性佳的金属,从而提高了碳纳米管与电路的电性连接,有利于碳纳米管的后期应用;(4)该方法制备的碳纳米管的产率可达到50%。
另外,本领域技术人员还可在本发明精神内做其它变化。当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (7)

1.一种分支型碳纳米管的制备方法,其包括以下步骤:
提供一基底;
形成一缓冲层于该基底的表面;
采用镀膜的方法形成一催化剂层于该缓冲层的表面,该催化剂层的材料为金、银、铜、铂或铅,在碳纳米管的生长温度下,该催化剂层与上述缓冲层的材料是互不浸润的;
将表面形成有缓冲层及催化剂层的基底置于一反应炉内;
加热使反应炉的温度达到一预定温度,催化剂熔化收缩成球形催化剂颗粒,且该球形催化剂颗粒在缓冲层表面具有流动性;
先通入保护气退火一段时间;
往反应炉内通入碳源气,所述球形催化剂颗粒位于碳纳米管的生长顶端,反应一段时间即得到分支型碳纳米管。
2.如权利要求1所述的分支型碳纳米管的制备方法,其特征在于该缓冲层的材料为氧化铝或二氧化硅。
3.如权利要求1所述的分支型碳纳米管的制备方法,其特征在于该缓冲层的厚度大于1纳米。
4.如权利要求1所述的分支型碳纳米管的制备方法,其特征在于该催化剂层的厚度为0.5纳米至1.5纳米。
5.如权利要求1所述的分支型碳纳米管的制备方法,其特征在于该预定温度是由催化剂的种类来决定的。
6.如权利要求1所述的分支型碳纳米管的制备方法,其特征在于碳源气为乙炔、甲烷、乙烯、一氧化碳或乙醇中的一种或多种。
7.如权利要求1所述的分支型碳纳米管的制备方法,其特征在于该碳纳米管沿着缓冲层的表面生长。
CN2007100748101A 2007-06-01 2007-06-01 分支型碳纳米管的制备方法 Active CN101314465B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007100748101A CN101314465B (zh) 2007-06-01 2007-06-01 分支型碳纳米管的制备方法
US11/978,071 US8821975B2 (en) 2007-06-01 2007-10-26 Method for making branched carbon nanotubes
JP2008141721A JP4880644B2 (ja) 2007-06-01 2008-05-29 分岐型カーボンナノチューブの成長方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007100748101A CN101314465B (zh) 2007-06-01 2007-06-01 分支型碳纳米管的制备方法

Publications (2)

Publication Number Publication Date
CN101314465A CN101314465A (zh) 2008-12-03
CN101314465B true CN101314465B (zh) 2011-03-23

Family

ID=40088573

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007100748101A Active CN101314465B (zh) 2007-06-01 2007-06-01 分支型碳纳米管的制备方法

Country Status (3)

Country Link
US (1) US8821975B2 (zh)
JP (1) JP4880644B2 (zh)
CN (1) CN101314465B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769814B (zh) * 2008-12-05 2015-07-01 清华大学 发声装置
US9111658B2 (en) * 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
BRPI1016242A2 (pt) 2009-04-24 2016-04-26 Applied Nanostructured Sols material de controle de assinatura baseado em cnt.
JP5448708B2 (ja) * 2009-10-16 2014-03-19 日立造船株式会社 カーボンナノチューブ生成用基板
JP5374354B2 (ja) 2009-12-25 2013-12-25 日東電工株式会社 カーボンナノチューブ複合構造体および粘着部材
US9167736B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
US9163354B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
CN101880035A (zh) 2010-06-29 2010-11-10 清华大学 碳纳米管结构
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same
US20170267532A1 (en) * 2014-12-22 2017-09-21 Sht Smart High-Tech Ab Multi-functionalized carbon nanotubes
CN109898054A (zh) * 2019-03-25 2019-06-18 杭州英希捷科技有限责任公司 一种基于碳纳米管阵列的新型芯片热界面材料的制备方法
CN110534384B (zh) * 2019-07-26 2020-07-17 宁波工程学院 一种Au纳米颗粒修饰枝状TiO2纳米棒阵列作为场发射阴极材料的应用
JP2022020433A (ja) * 2020-07-20 2022-02-01 Eneos株式会社 導電性熱可塑性エラストマー組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118727A1 (en) * 2001-12-25 2003-06-26 Jyh-Ming Ting Method for fabrication of carbon nanotubes having multiple junctions
US20050238566A1 (en) * 2004-04-22 2005-10-27 Clemson University Novel synthesis of branched carbon nanotubes
WO2006057833A3 (en) * 2004-11-12 2006-07-13 Tees The Florida Internat Univ Method of synthesizing y-junction single-walled carbon nanotubes and products formed thereby
CN1918067A (zh) * 2004-02-09 2007-02-21 Kh化学有限公司 Y-型枝化碳纳米管的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6325909B1 (en) 1999-09-24 2001-12-04 The Governing Council Of The University Of Toronto Method of growth of branched carbon nanotubes and devices produced from the branched nanotubes
JP4212258B2 (ja) 2001-05-02 2009-01-21 富士通株式会社 集積回路装置及び集積回路装置製造方法
US6837928B1 (en) * 2001-08-30 2005-01-04 The Board Of Trustees Of The Leland Stanford Junior University Electric field orientation of carbon nanotubes
JP3791601B2 (ja) 2002-02-08 2006-06-28 日本電気株式会社 ナノグラファイト構造体の作製方法
KR100759547B1 (ko) 2002-07-29 2007-09-18 삼성에스디아이 주식회사 연료전지용 탄소나노튜브, 그 제조방법 및 이를 채용한연료전지
US20090068461A1 (en) 2003-10-16 2009-03-12 The University Of Akron Carbon nanotubes on carbon nanofiber substrate
KR101001744B1 (ko) 2004-12-27 2010-12-15 삼성전자주식회사 탄소 나노 튜브를 이용한 광전 변환 전극 및 이를 구비한태양 전지
US7871591B2 (en) * 2005-01-11 2011-01-18 Honda Motor Co., Ltd. Methods for growing long carbon single-walled nanotubes
JP2007175205A (ja) 2005-12-27 2007-07-12 Ogasaka Sukii Seisakusho:Kk 雪上滑走ボード用滑走面材および雪上滑走ボード

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118727A1 (en) * 2001-12-25 2003-06-26 Jyh-Ming Ting Method for fabrication of carbon nanotubes having multiple junctions
CN1918067A (zh) * 2004-02-09 2007-02-21 Kh化学有限公司 Y-型枝化碳纳米管的制备方法
US20050238566A1 (en) * 2004-04-22 2005-10-27 Clemson University Novel synthesis of branched carbon nanotubes
WO2006057833A3 (en) * 2004-11-12 2006-07-13 Tees The Florida Internat Univ Method of synthesizing y-junction single-walled carbon nanotubes and products formed thereby

Also Published As

Publication number Publication date
JP2008297197A (ja) 2008-12-11
US8821975B2 (en) 2014-09-02
CN101314465A (zh) 2008-12-03
JP4880644B2 (ja) 2012-02-22
US20080299308A1 (en) 2008-12-04

Similar Documents

Publication Publication Date Title
CN101314465B (zh) 分支型碳纳米管的制备方法
Liu et al. Chirality-controlled synthesis and applications of single-wall carbon nanotubes
TW593730B (en) Process of direct low-temperature growth of carbon nanotubes on a substrate
US7687109B2 (en) Apparatus and method for making carbon nanotube array
US7682658B2 (en) Method for making carbon nanotube array
Sun et al. Direct chemical-vapor-deposition-fabricated, large-scale graphene glass with high carrier mobility and uniformity for touch panel applications
US6764874B1 (en) Method for chemical vapor deposition of single walled carbon nanotubes
US20110014368A1 (en) Carbon nanotube growth at reduced temperature via catalytic oxidation
JP2005534515A (ja) ナノスケール構造物を所定位置に合成する方法
JP2004284938A (ja) 炭素ナノチューブの製造方法
US20060067872A1 (en) Method of preparing catalyst base for manufacturing carbon nanotubes and method of manufacturing carbon nanotubes employing the same
JP2019521943A (ja) 炭素溶接構造の単層カーボンナノチューブフレキシブル透明導電性フィルム及びその調製方法
CN1434480A (zh) 电子器件
US20040109815A1 (en) Carbon nanotube array and method for making same
KR20070048943A (ko) 가지형 나노 와이어의 제조방법
Wang et al. How a solid catalyst determines the chirality of the single-wall carbon nanotube grown on it
Li et al. Kinetics-controlled growth of metallic single-wall carbon nanotubes from CoRe x nanoparticles
TWI312380B (zh)
US20080203884A1 (en) Field emission cathode and method for fabricating same
Tsai et al. Tubes on tube—a novel form of aligned carbon nanotubes
KR101679693B1 (ko) 탄소나노튜브 제조방법 및 하이브리드 탄소나노튜브 복합체
TWI408246B (zh) 分枝型奈米碳管之製備方法
US20140199546A1 (en) Multi-branched n-doped carbon nanotubes and the process for making same
JP2018083169A (ja) カーボンナノチューブ集合体製造用触媒基材とカーボンナノチューブ集合体の製造方法
KR20120005683A (ko) 브랜치드 나노와이어의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CI01 Publication of corrected invention patent application

Correction item: Patentee|Address|Co-patentee

Correct: Tsinghua University|100084 Tsinghua Foxconn nanometer science and technology research center, Tsinghua University, Beijing, Haidian District 310|Hongfujin Precision Industry (Shenzhen) Co., Ltd.

False: Hongfujin Precision Industry (Shenzhen) Co., Ltd.|518109 Guangdong city of Shenzhen province Baoan District Longhua Town Industrial Zone tabulaeformis tenth East Ring Road No. 2 two

Number: 12

Volume: 27

CI03 Correction of invention patent

Correction item: Patentee|Address|Co-patentee

Correct: Tsinghua University|100084 Tsinghua Foxconn nanometer science and technology research center, Tsinghua University, Beijing, Haidian District 310|Hongfujin Precision Industry (Shenzhen) Co., Ltd.

False: Hongfujin Precision Industry (Shenzhen) Co., Ltd.|518109 Guangdong city of Shenzhen province Baoan District Longhua Town Industrial Zone tabulaeformis tenth East Ring Road No. 2 two

Number: 12

Page: The title page

Volume: 27

ERR Gazette correction

Free format text: CORRECT: PATENTEE; ADDRESS; CO-PATENTEE; FROM: HONGFUJIN PRECISION INDUSTRY (SHENZHEN) CO., LTD.;518109 NO. 2, EAST RING 2ND ROAD, YOUSONG 10TH INDUSTRIAL ZONE, LONGHUA TOWN, BAOAN DISTRICT, SHENZHEN CITY, GUANGDONG PROVINCE TO: TSINGHUA UNIVERSITY;100084 310#, TSINGHUA-FOXCONN NANOTECHNOLOGY RESEARCH CENTER, TSINGHUA UNIVERSITY, HAIDIAN DISTRICT, BEIJING; HONGFUJIN PRECISION INDUSTRY (SHENZHEN) CO., LTD.