CN101293112A - Method for preparing biological activity glass nano-fibre cluster - Google Patents

Method for preparing biological activity glass nano-fibre cluster Download PDF

Info

Publication number
CN101293112A
CN101293112A CNA2008100289887A CN200810028988A CN101293112A CN 101293112 A CN101293112 A CN 101293112A CN A2008100289887 A CNA2008100289887 A CN A2008100289887A CN 200810028988 A CN200810028988 A CN 200810028988A CN 101293112 A CN101293112 A CN 101293112A
Authority
CN
China
Prior art keywords
solution
catalyst
preparation
days
biological activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100289887A
Other languages
Chinese (zh)
Other versions
CN101293112B (en
Inventor
陈晓峰
郭常亮
赵娜如
王迎军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN2008100289887A priority Critical patent/CN101293112B/en
Publication of CN101293112A publication Critical patent/CN101293112A/en
Application granted granted Critical
Publication of CN101293112B publication Critical patent/CN101293112B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Compositions (AREA)

Abstract

The invention relates to a preparation method of a bioactive glass nanofiber cluster, which is characterized in that A solution which is composed of tetraethyl orthosilicate and triethyl phosphate and B solution which is composed of calcium nitrate tetrahydrate, deionized water, a template agent and a catalyst are firstly prepared, the B solution is slowly dropped into the A solution to form a sol, the sol forms a gel by aging for 4 to 7 days, the gel is dried for 2 to 3 days at the temperature of 80 to 140 DEG C, and finally the nanofiber cluster material is obtained by heat treatment and solidification process at 400 to 700 DEG C and grinding. The weight percentage of the components of the nanofiber cluster is that: 60 to 80 percent of SiO2, 36 to 16 percent of CaO and 4 percent of P2O5. The bioactive glass nanofiber cluster prepared by the invention is composed of nano-fibers that are regularly arranged, thus showing good biological mineralization characteristics in simulated physiological solution and being used in the fields such as bone tissue repair and bone tissue engineering.

Description

A kind of preparation method of biological activity glass nano-fibre cluster
Technical field
The present invention relates to a kind of method that is used to prepare the inorganic particle of biomedical materials field, be specifically related to a kind of method for preparing biological activity glass nano-fibre cluster.
Background technology
Bioactivity glass is a kind of important biological material, but mostly is micron level by the bioactive glass particle of conventional high-temperature fusion method preparation, and introduces impurity easily in preparation process.And have a chemical uniformity of special nanometer microstructure, high specific surface area, regulatable composition and structure and molecular level by the bioactivity glass of so-gel method preparation.This material has good biomineralization performance in simulated body fluid.Cytology and zoopery show that also it has good bone repair ability.And the template self-assembly process is a kind of Technology for preparing extraordinary nano material.The inorganic matter component that natural bone tissue comprises is the acicular nanometer apatite with given shape, and from the angle of nano bionic, people wish that the nano material for preparing has some specific microscopic patterns simultaneously, to investigate its biology performance.Can prepare in conjunction with sol-gel and template self-assembly process and to have extraordinary nano-bioactive glass material.
Summary of the invention
The objective of the invention is to overcome the prior art above shortcomings, a kind of preparation method of biological activity glass nano-fibre cluster is provided, the biological activity glass nano-fibre cluster that the present invention makes is formed by nanofiber is regularly arranged, in simulated body fluid, show good biomineralization characteristic, can be used on bone tissue restoration and bone tissue engineer field.The present invention is achieved by the following technical solutions.
A kind of preparation method of biological activity glass nano-fibre cluster comprises the steps:
(1) with tetraethoxysilance and tricresyl phosphate second fat wiring solution-forming A; With four water-calcium nitrate, catalyst, deionized water and template wiring solution-forming B; B solution is slowly added in the A solution, stir the colloidal sol that the back obtains transparent stable homogeneous; The molar percentage that described tetraethoxysilance, tricresyl phosphate second fat and four water-calcium nitrate account for these three kinds of material total amounts is respectively 60~80%, 4% and 16~36%, the mol ratio of deionized water and ethyl orthosilicate is 8~12: 1, and described catalyst is acidic catalyst or base catalyst;
The at room temperature static ageing of colloidal sol that (2) will obtain in step (1) 4~7 days is fully carried out hydrolysis-condensation reaction, forms wet gel;
(3) wet gel that obtains in the step (2) is placed 80~140 ℃ of drying baker 2~3 days, obtain xerogel after the solvent evaporation;
(4) xerogel that obtains in the step (3) is placed cabinet-type electric furnace, obtain the micron particles that the bioactive sol-gel glass nano-fibre cluster is reunited and formed through 400~700 ℃ of heat treatment for solidification technologies, after grinding, obtain final biological activity glass nano-fibre cluster.
In the said method, catalyst is an acidic catalyst described in the step (1), and the pH value of solution B is 1~3.
In the said method, catalyst is a base catalyst described in the step (1), and the pH value of solution B is 10~14;
In the said method, described acidic catalyst is hydrochloric acid or Fluohydric acid. etc.
In the said method, described base catalyst is an ammonia etc.
In the said method, described template is the tween series non-ionic surfactants, and concentration is 0.5~3 * 10 -2Mol/L.
Preparation principle of the present invention be with the immiscible tetraethoxysilance of water, tricresyl phosphate second fat under the effect of catalyst hydrochloric acid or ammonia, fully hydrolysis in water, and four water-calcium nitrate dissolving fully in water, these raw materials react on molecular level, mix evenly; Process in hydrolysis forms countless micelles, and micelle is regularly arranged under the effect of template; Along with the carrying out of polycondensation reaction forms Si-O-Si and P-O network structure in wet gel, calcium ion and solvent are as network intermediate uniform distribution wherein; Through super-dry and heat treatment process, solvent evaporation, and template is burnt, and finally forms product, described nano-fibre cluster constituent mass percentage ratio is SiO2 60~80%, CaO 36~16%, P2O5 4%.
With respect to prior art, the present invention has following advantage and remarkable result: the present invention is in conjunction with sol-gel process and template self-assembly process, and the biological activity glass nano-fibre cluster of preparation is made up of regularly arranged nanofiber.The bioactivity glass material of preparation is not only nano material, and has the microscopic appearance of specific linearity, will more help in the bone tissue restoration application in engineering.
Description of drawings
The present invention is further described below in conjunction with drawings and Examples.
Fig. 1 is the typical microscopic appearance figure of product in the embodiment of the invention.
The specific embodiment
Nano-cluster is made up of regularly arranged nano wire as seen from Figure 1.
Embodiment 1
(1) earlier with a certain amount of tetraethoxysilance, tricresyl phosphate second fat wiring solution-forming A; With a certain amount of four water-calcium nitrate, hydrochloric acid, deionized water, tween template, wiring solution-forming B is 1 with the hydrochloric acid conditioning solution pH value, and template concentration is 0.5 * 10 -2Mol/L; B solution is slowly added in the A solution, stir the colloidal sol that the back obtains transparent stable homogeneous; Wherein, the molar percentage that tetraethoxysilance, tricresyl phosphate second fat and four water-calcium nitrate account for these three kinds of material total amounts is respectively 60%, 4% and 36%, and the mol ratio of deionized water and ethyl orthosilicate is 12: 1;
The at room temperature static ageing of colloidal sol that (4) will obtain in step (3) 4 days is fully carried out hydrolysis-condensation reaction, forms wet gel;
(5) wet gel that obtains in the step (4) is placed 140 ℃ of drying baker 2 days, obtain xerogel after the solvent evaporation;
(6) xerogel that obtains in the step (5) is placed cabinet-type electric furnace, obtain the micron particles that the bioactive sol-gel glass nano-fibre is reunited and formed through 500 ℃ of heat treatment for solidification technologies, after grinding, obtain final biological activity glass nano-fibre cluster.
Embodiment 2
(1) earlier with a certain amount of tetraethoxysilance, tricresyl phosphate second fat wiring solution-forming A; With a certain amount of four water-calcium nitrate, Fluohydric acid., deionized water, tween template, wiring solution-forming B is 3 with Fluohydric acid. regulator solution pH value, and template concentration is 1.5 * 10 -2Mol/L; B solution is slowly added in the A solution, stir the colloidal sol that the back obtains transparent stable homogeneous; Wherein, the molar percentage that tetraethoxysilance, tricresyl phosphate second fat and four water-calcium nitrate account for these three kinds of material total amounts is respectively 70%, 4% and 26%, and the mol ratio of deionized water and ethyl orthosilicate is 11: 1;
The at room temperature static ageing of colloidal sol that (4) will obtain in step (3) 5 days is fully carried out hydrolysis-condensation reaction, forms wet gel;
(5) wet gel that obtains in the step (4) is placed 80 ℃ of drying baker 3 days, obtain xerogel after the solvent evaporation;
(6) xerogel that obtains in the step (5) is placed cabinet-type electric furnace, obtain the micron particles that the bioactive sol-gel glass nano-fibre is reunited and formed through 700 ℃ of heat treatment for solidification technologies, after grinding, obtain final biological activity glass nano-fibre cluster.
Embodiment 3
(1) earlier with a certain amount of tetraethoxysilance, tricresyl phosphate second fat wiring solution-forming A; With a certain amount of four water-calcium nitrate, ammonia, deionized water, tween template, wiring solution-forming B is 10 with base catalyst regulator solution pH value, and template concentration is 3 * 10 -2Mol/L; B solution is slowly added in the A solution, stir the colloidal sol that the back obtains transparent stable homogeneous; Wherein, the molar percentage that tetraethoxysilance, tricresyl phosphate second fat and four water-calcium nitrate account for these three kinds of material total amounts is respectively 80%, 4% and 16%, and the mol ratio of deionized water and ethyl orthosilicate is 8: 1;
The at room temperature static ageing of colloidal sol that (4) will obtain in step (3) 7 days is fully carried out hydrolysis-condensation reaction, forms wet gel;
(5) wet gel that obtains in the step (4) is placed 100 ℃ of drying baker 2 days, obtain xerogel after the solvent evaporation;
(6) xerogel that obtains in the step (5) is placed cabinet-type electric furnace, obtain the micron particles that the bioactive sol-gel glass nano-fibre is reunited and formed through 400 ℃ of heat treatment for solidification technologies, after grinding, obtain final biological activity glass nano-fibre cluster.
Embodiment 4
(1) earlier with a certain amount of tetraethoxysilance, tricresyl phosphate second fat wiring solution-forming A; With a certain amount of four water-calcium nitrate, sodium hydroxide, deionized water, tween template, wiring solution-forming B is 14 with base catalyst regulator solution pH value, and template concentration is 2 * 10 -2Mol/L; B solution is slowly added in the A solution, stir the colloidal sol that the back obtains transparent stable homogeneous; Wherein, the molar percentage that tetraethoxysilance, tricresyl phosphate second fat and four water-calcium nitrate account for these three kinds of material total amounts is respectively 65%, 4% and 31%, and the mol ratio of deionized water and ethyl orthosilicate is 9: 1;
The at room temperature static ageing of colloidal sol that (4) will obtain in step (3) 6 days is fully carried out hydrolysis-condensation reaction, forms wet gel;
(5) wet gel that obtains in the step (4) is placed 120 ℃ of drying baker 2.5 days, obtain xerogel after the solvent evaporation;
(6) xerogel that obtains in the step (5) is placed electric furnace, obtain the micron particles that the bioactive sol-gel glass nano-fibre is reunited and formed, after grinding, obtain final biological activity glass nano-fibre cluster through 600 ℃ of heat treatment for solidification technologies.
Embodiment 5
(1) earlier with a certain amount of tetraethoxysilance, tricresyl phosphate second fat wiring solution-forming A; With a certain amount of four water-calcium nitrate, nitric acid, deionized water, tween template, wiring solution-forming B is 2 with base catalyst regulator solution pH value, and template concentration is 2.5 * 10 -2Mol/L; B solution is slowly added in the A solution, stir the colloidal sol that the back obtains transparent stable homogeneous; Wherein, the molar percentage that tetraethoxysilance, tricresyl phosphate second fat and four water-calcium nitrate account for these three kinds of material total amounts is respectively 75%, 4% and 21%, and the mol ratio of deionized water and ethyl orthosilicate is 10: 1;
The at room temperature static ageing of colloidal sol that (4) will obtain in step (3) 4.5 days is fully carried out hydrolysis-condensation reaction, forms wet gel;
(5) wet gel that obtains in the step (4) is placed 100 ℃ of drying baker 2.5 days, obtain xerogel after the solvent evaporation;
(6) xerogel that obtains in the step (5) is placed electric furnace, obtain the micron particles that the bioactive sol-gel glass nano-fibre is reunited and formed, after grinding, obtain final biological activity glass nano-fibre cluster through 650 ℃ of heat treatment for solidification technologies.
Embodiment 6
(1) earlier with a certain amount of tetraethoxysilance, tricresyl phosphate second fat wiring solution-forming A; With a certain amount of four water-calcium nitrate, ammonia, deionized water, tween template, wiring solution-forming B is 12 with base catalyst regulator solution pH value, and template concentration is 2.5 * 10 -2Mol/L; B solution is slowly added in the A solution, stir the colloidal sol that the back obtains transparent stable homogeneous; Wherein, the molar percentage that tetraethoxysilance, tricresyl phosphate second fat and four water-calcium nitrate account for these three kinds of material total amounts is respectively 65%, 4% and 31%, and the mol ratio of deionized water and ethyl orthosilicate is 8.5: 1;
The at room temperature static ageing of colloidal sol that (4) will obtain in step (3) 5.5 days is fully carried out hydrolysis-condensation reaction, forms wet gel;
(5) wet gel that obtains in the step (4) is placed 95 ℃ of drying baker 2.5 days, obtain xerogel after the solvent evaporation;
(6) xerogel that obtains in the step (5) is placed electric furnace, obtain the micron particles that the bioactive sol-gel glass nano-fibre is reunited and formed, after grinding, obtain final biological activity glass nano-fibre cluster through 550 ℃ of heat treatment for solidification technologies.

Claims (6)

1, a kind of preparation method of biological activity glass nano-fibre cluster is characterized in that comprising the steps:
(1) with tetraethoxysilance and tricresyl phosphate second fat wiring solution-forming A; With four water-calcium nitrate, catalyst, deionized water and template wiring solution-forming B; B solution is slowly added in the A solution, and the back that stirs obtains the colloidal sol of transparent stable homogeneous; The molar percentage that described tetraethoxysilance, tricresyl phosphate second fat and four water-calcium nitrate account for these three kinds of material total amounts is respectively 60~80%, 4% and 16~36%, the mol ratio of deionized water and ethyl orthosilicate is 8~12: 1, and described catalyst is acidic catalyst or base catalyst;
The at room temperature static ageing of colloidal sol that (2) will obtain in step (1) 4~7 days is fully carried out hydrolysis-condensation reaction, forms wet gel;
(3) wet gel that obtains in the step (2) is placed 80~140 ℃ of drying baker 2~3 days, obtain xerogel after the solvent evaporation;
(4) xerogel that obtains in the step (3) is placed cabinet-type electric furnace, obtain the micron particles that the bioactive sol-gel glass nano-fibre cluster is reunited and formed through 400~700 ℃ of heat treatment for solidification technologies, after grinding, obtain final biological activity glass nano-fibre cluster.
2, preparation method according to claim 1 is characterized in that catalyst is an acidic catalyst described in the step (1), and the pH value of solution B is 1~3.
3, preparation method according to claim 1 is characterized in that catalyst is a base catalyst described in the step (1), and the pH value of solution B is 10~14;
4, preparation method according to claim 2 is characterized in that described acidic catalyst is hydrochloric acid or Fluohydric acid..
5, preparation method according to claim 3 is characterized in that described base catalyst is an ammonia.
6, according to each described preparation method of claim 1~5, it is characterized in that described template is the tween series non-ionic surfactants, concentration is 0.5~3 * 10 -2Mol/L.
CN2008100289887A 2008-06-24 2008-06-24 Method for preparing biological activity glass nano-fibre cluster Expired - Fee Related CN101293112B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100289887A CN101293112B (en) 2008-06-24 2008-06-24 Method for preparing biological activity glass nano-fibre cluster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100289887A CN101293112B (en) 2008-06-24 2008-06-24 Method for preparing biological activity glass nano-fibre cluster

Publications (2)

Publication Number Publication Date
CN101293112A true CN101293112A (en) 2008-10-29
CN101293112B CN101293112B (en) 2012-05-09

Family

ID=40063818

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100289887A Expired - Fee Related CN101293112B (en) 2008-06-24 2008-06-24 Method for preparing biological activity glass nano-fibre cluster

Country Status (1)

Country Link
CN (1) CN101293112B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101921061A (en) * 2010-08-06 2010-12-22 中国科学院化学研究所 Method for preparing phosphosilicate based glass
CN102923957A (en) * 2012-11-30 2013-02-13 浙江理工大学 Method for producing ordered mesoporous bioactive microcrystal glass
CN104225660A (en) * 2014-09-12 2014-12-24 华南理工大学 Bioactive glass fibre-polycaprolactone composite film as well as preparation method and application of same
CN104288830A (en) * 2014-09-12 2015-01-21 华南理工大学 Micro-nano rod-shaped bioactive glass and preparation method and application thereof
CN105130202A (en) * 2015-07-24 2015-12-09 苏州荣昌复合材料有限公司 Bio-active glass fiber and production method thereof
CN107162388A (en) * 2017-06-30 2017-09-15 西安交通大学 A kind of method using dendroid polyethyleneimine as template and the big hole bioactive glass nano-cluster of catalyst preparation
CN113121107A (en) * 2019-12-31 2021-07-16 深圳市绎立锐光科技开发有限公司 Preparation method of micro-optical glass device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5874101A (en) * 1997-04-14 1999-02-23 Usbiomaterials Corp. Bioactive-gel compositions and methods
CN1253391C (en) * 2003-12-22 2006-04-26 复旦大学 Nano mesoporous and mesoporous-macroporous composite biological glass and its preparing method
CN1974448B (en) * 2006-12-01 2010-05-12 华南理工大学 Preparation process of bioactive sol-gel glass fiber

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101921061B (en) * 2010-08-06 2012-01-11 中国科学院化学研究所 Method for preparing phosphosilicate based glass
CN101921061A (en) * 2010-08-06 2010-12-22 中国科学院化学研究所 Method for preparing phosphosilicate based glass
CN102923957B (en) * 2012-11-30 2014-12-31 浙江理工大学 Method for producing ordered mesoporous bioactive microcrystal glass
CN102923957A (en) * 2012-11-30 2013-02-13 浙江理工大学 Method for producing ordered mesoporous bioactive microcrystal glass
CN104288830B (en) * 2014-09-12 2017-10-20 华南理工大学 A kind of micro-nano bar-shaped bioactivity glass and preparation method and application
CN104288830A (en) * 2014-09-12 2015-01-21 华南理工大学 Micro-nano rod-shaped bioactive glass and preparation method and application thereof
CN104225660B (en) * 2014-09-12 2016-10-05 华南理工大学 Bioactive glass fiber-polycaprolactone composite membrane and preparation method and application
CN104225660A (en) * 2014-09-12 2014-12-24 华南理工大学 Bioactive glass fibre-polycaprolactone composite film as well as preparation method and application of same
CN105130202A (en) * 2015-07-24 2015-12-09 苏州荣昌复合材料有限公司 Bio-active glass fiber and production method thereof
CN105130202B (en) * 2015-07-24 2018-08-24 苏州荣昌复合材料有限公司 A kind of bioactive glass fiber and preparation method thereof
CN107162388A (en) * 2017-06-30 2017-09-15 西安交通大学 A kind of method using dendroid polyethyleneimine as template and the big hole bioactive glass nano-cluster of catalyst preparation
CN113121107A (en) * 2019-12-31 2021-07-16 深圳市绎立锐光科技开发有限公司 Preparation method of micro-optical glass device
CN113121107B (en) * 2019-12-31 2024-05-03 深圳市绎立锐光科技开发有限公司 Preparation method of micro-optical glass device

Also Published As

Publication number Publication date
CN101293112B (en) 2012-05-09

Similar Documents

Publication Publication Date Title
CN101293112B (en) Method for preparing biological activity glass nano-fibre cluster
Owens et al. Sol–gel based materials for biomedical applications
Zheng et al. Porous bioactive glass micro-and nanospheres with controlled morphology: Developments, properties and emerging biomedical applications
Zheng et al. Sol-gel processing of bioactive glass nanoparticles: A review
Izquierdo-Barba et al. High-performance mesoporous bioceramics mimicking bone mineralization
CN101314039B (en) Biological activity glass mesoporous microsphere and preparation method thereof
Pirzada et al. Hybrid silica–PVA nanofibers via sol–gel electrospinning
CN105796478B (en) Assembled by nano-colloid particle, high intensity, selfreparing, injectable composite colloid gel rubber material and its preparation method and application
Migneco et al. A guided walk through the world of mesoporous bioactive glasses (MBGs): Fundamentals, processing, and applications
CN108083618A (en) A kind of micro-nano bioactivity glass microballoon prepared using microemulsion technology and preparation method thereof
Vallet-Regí et al. Nanostructure of Bioactive Sol− Gel Glasses and Organic− Inorganic Hybrids
Padilla et al. High specific surface area in nanometric carbonated hydroxyapatite
John et al. Designing of macroporous magnetic bioscaffold based on functionalized methacrylate network covered by hydroxyapatites and doped with nano-MgFe2O4 for potential cancer hyperthermia therapy
CN104288830A (en) Micro-nano rod-shaped bioactive glass and preparation method and application thereof
CN101786639A (en) Mesoporous silicon dioxide molecular sieve and preparation method thereof
CN101491690A (en) Preparation method of nano-micron hydroxylapatite powder
CN100584389C (en) Hollow ball shaped nanometer hydroxylapatite material and the preparing method
Nassar et al. Biomaterials and sol–gel process: a methodology for the preparation of functional materials
CN106115642A (en) A kind of large scale hydroxyapatite porous microsphere material and preparation method thereof
Lu et al. One-dimensional hydroxyapatite materials: preparation and applications
CN110272209A (en) Boron-doping bioactivity glass microballoon and the preparation method and application thereof
Xie et al. Facile synthesis and in vitro bioactivity of radial mesoporous bioactive glass with high phosphorus and calcium content
Das et al. Bioactive Molecules release and cellular responses of alginate-tricalcium phosphate particles hybrid gel
CN109574507A (en) A kind of nano-level sphere bioactivity glass and preparation method thereof
Hu et al. The effects of Sr concentration on physicochemical properties, bioactivity and biocompatibility of sub-micron bioactive glasses spheres

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120509

Termination date: 20210624