CN101286775A - 采用增强信号检测的多天线空间复用*** - Google Patents

采用增强信号检测的多天线空间复用*** Download PDF

Info

Publication number
CN101286775A
CN101286775A CNA2007100958913A CN200710095891A CN101286775A CN 101286775 A CN101286775 A CN 101286775A CN A2007100958913 A CNA2007100958913 A CN A2007100958913A CN 200710095891 A CN200710095891 A CN 200710095891A CN 101286775 A CN101286775 A CN 101286775A
Authority
CN
China
Prior art keywords
signal
module
prime
detection
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007100958913A
Other languages
English (en)
Inventor
陈鹏
金勇鹤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Samsung Telecommunications Technology Research Co Ltd
Samsung Electronics Co Ltd
Original Assignee
Beijing Samsung Telecommunications Technology Research Co Ltd
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Samsung Telecommunications Technology Research Co Ltd, Samsung Electronics Co Ltd filed Critical Beijing Samsung Telecommunications Technology Research Co Ltd
Priority to CNA2007100958913A priority Critical patent/CN101286775A/zh
Priority to KR1020097015681A priority patent/KR101413929B1/ko
Priority to JP2009554460A priority patent/JP5037634B2/ja
Priority to PCT/KR2008/002054 priority patent/WO2008127035A1/en
Priority to EP20080741299 priority patent/EP2132893B1/en
Priority to US12/527,644 priority patent/US8199863B2/en
Publication of CN101286775A publication Critical patent/CN101286775A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0631Receiver arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0656Cyclotomic systems, e.g. Bell Labs Layered Space-Time [BLAST]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0238Channel estimation using blind estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03114Arrangements for removing intersymbol interference operating in the time domain non-adaptive, i.e. not adjustable, manually adjustable, or adjustable only during the reception of special signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0669Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种采用增强信号检测的多天线空间复用***,包括:编码调制模块(101),用于对比特信息进行编码与调制;信号发送模块(102),用于对已调信号进行发送;接收信号模块(201),进行信号接收;信号形式变换模块(202),用于对信道矩阵H与接收信号向量r进行形式变换;信号检测模块(203),用于对接收信号进行检测;信号重构模块(204)用于对203模块的检测结果进行重构,得到已检测信号;解调译码模块(205),用于对204模块的输出进行解调译码,输出比特信息。相比于ZF及ZF SIC检测方法,本发明***的BER及FER性能提升显著。考虑到本发明***的性能提升及实现复杂度,相比于以上检测方法,本发明的***更为优越。

Description

采用增强信号检测的多天线空间复用***
技术领域
本发明涉及多天线通信***中的信息传输领域,特别涉及多天线信号的发送与检测技术。
背景技术
利用多天线空间复用BLAST技术,可以在有限的频谱资源条件下,有效提升数据传输速率。
现有BLAST检测算法分为线性检测(包括迫零检测ZF、最小均方误差检测MMSE等)与非线性检测(包括迫零加干扰抵消检测ZF-SIC、最小均方误差加干扰抵消检测MMSE-SIC等)。
线性检测方法实现相对简单,但性能相对较差。相比于线性检测,非线性检测方法可有效提升***性能,但迭代干扰抵消带来的复杂度的显著提升是将非线性检测付诸实际的难点所在。
以下对线性与非线性BLAST检测算法做简要说明。
线性检测算法
设接收信号为
r=Hs+n,
其中,H为N×M信道矩阵,s为M维发送信号矢量,r为N维接收信号矢量,n为N维独立高斯白噪声矢量,M与N分别为***发送与接收天线数目。
对于ZF迫零检测算法,
s ^ ZF = ( H H H ) - 1 H H r = s + ( H H H ) - 1 H H n .
对于MMSE最小均方误差检测算法,
s ^ MMSE = ( H H H + σ 2 I ) - 1 H H r = s + ( H H H + σ 2 I ) - 1 H H n .
其中,
Figure A20071009589100051
Figure A20071009589100052
分别为不同算法下已检测信号的M维矢量。
非线性检测算法
相比于线性检测,非线性技术以运算复杂度的增加为代价,可有效提升***性能。
以下简要说明BLAST非线性检测算法中的顺序干扰抵消算法。该算法的基本原理是在检测当前信号的过程中将来自于已检测成分的干扰去掉,从而减小干扰对较小信噪比数据的影响,该原理类似于判决反馈均衡。
以下说明检测过程:
对于ZF-SIC检测器,定义
Figure A20071009589100053
对于MMSE-SIC检测器,定义
Figure A20071009589100054
进行以下过程一,可以得到一个判决信号:
过程一 k i = arg min | | ( G i ) j | | 2 ⇒ w k i = ( G i ) k i ⇒ y k i = w k i T r i ⇒ a ^ k i = Q ( y k i )
其中,k1,k2,…,kM为检测过程中对发送天线的排序。
然后,进行以下过程二,将已检测信号的影响从接收信号中减去,并确定新的伪逆阵,确定新的判决顺序。
过程二
这样形成了一个循环过程,循环进行过程一及过程二,直到i=M。至此,所有信号均判决完毕,循环过程结束。
BLAST线性检测方法实现相对简单,但性能相对较差。相比于线性检测,非线性检测方法可有效提升***性能,但迭代干扰抵消带来的复杂度的显著提升是将非线性检测付诸实际的难点所在。
发明内容
本发明提供了一种采用增强信号检测的BLAST***。该***复杂度与采用传统线性检测器的BLAST***接近,但性能优于采用顺序干扰抵消非线性检测器的BLAST***。
为实现上述目的,一种采用增强信号检测的多天线空间复用***,包括:
编码调制模块,用于对比特信息进行编码与调制;
信号发送模块,用于对已调信号进行发送;
接收信号模块,进行信号接收;
信号形式变换模块,用于对信道矩阵H与接收信号向量r进行形式变换;
信号检测模块,用于对接收信号进行检测;
信号重构模块用于对203模块的检测结果进行重构,得到已检测信号
Figure A20071009589100061
解调译码模块,用于对204模块的输出进行解调译码,输出比特信息。
相比于ZF及ZF SIC检测方法,本发明***的BER及FER性能提升显著。考虑到本发明***的性能提升及实现复杂度,相比于以上检测方法,本发明的***更为优越。
附图说明
图1是本发明提出***发送端***架构;
图2是本发明提出***接收端***架构与信号流程;
图3是实施例1误帧率(FER)性能;
图4是误比特率(BER)性能。
具体实施方式
本发明提出***的架构与信号流程如图1及图2所示。
以下对该***架构加以说明:
编码调制模块:该模块对比特信息进行编码与调制。
信号发送模块:该模块对已调信号进行发送。该模块遵循以下准则:待发送信号为s,设准静态衰落信道H在相邻时间块T1与T2内保持恒定。在时间块T1内,发送信号 s T 1 = Re ( s ) + jIm ( s ) , 在时间块T2内,发送信号 s T 2 = Im ( s ) + jRe ( s ) . 其中Re(s)表示复信号实部,Im(s)表示复信号虚部。
接收信号模块:该模块进行信号接收, r T 1 = H s T 1 + n T 1 , r T 2 = H s T 2 + n T 2 .
信号形式变换模块:该模块对信道矩阵H与接收信号向量r进行形式变换: H 1 = Re ( H ) Im ( H ) , H 2 = - Im ( H ) Re ( H ) , r T 1 ′ = Re ( r T 1 ) Im ( r T 1 ) , r T 2 ′ = Re ( r T 2 ) Im ( r T 2 ) .
信号检测模块:该模块对接收信号进行检测: Re ( s ~ ) = 0.5 × H 1 + H 2 + r T 1 ′ r T 2 ′ , Im ( s ~ ) = 0.5 × H 1 + H 2 + r T 2 ′ r T 1 ′ . 其中为已检测信号实部,
Figure A200710095891000712
为已检测信号虚部。
信号重构模块:该模块对信号检测结果进行重构,得到已检测信号
Figure A200710095891000713
重构准则为: s ~ = Re ( s ~ ) + jIm ( s ~ ) .
解调译码模块:该模块对已检测信号进行解调译码,输出比特信息。
由以上过程,在该***进行信号检测的过程中,将伪逆检测矩阵由传统检测算法中的
Figure A200710095891000715
退化为
Figure A200710095891000717
这将极大减少检测过程中的噪声抬升,从而实现***性能的显著提升。同时该***的复杂度相对于传统线性检测算法没有明显提升,且复杂度远低于顺序干扰抵消非线性检测算法。
以下对本发明提出***的信号流程合理性予以证明:
在以下证明过程中,[]+表示矩阵伪逆,[]H表示矩阵转置共轭。
在***接收端,设 r T 1 = H s T 1 + n T 1 , r T 2 = H s T 2 + n T 2
Figure A200710095891000720
对式(1)进行等价变换
r T 1 ′ = Re ( r T 1 ) Im ( r T 1 ) Re ( H ) - Im ( H ) Im ( H ) Re ( H ) Re ( s T 1 ) Im ( s T 1 ) + Re ( n T 1 ) Im ( n T 2 )
= Re ( H ) Im ( H ) Re ( s ) + - Im ( H ) Re ( H ) Im ( s ) + Re ( n T 1 ) Im ( n T 1 ) - - - ( 2 )
r T 2 ′ = Re ( r T 2 ) Im ( r T 2 ) = Re ( H ) - Im ( H ) Im ( H ) Re ( H ) Re ( s T 2 ) Im ( s T 2 ) + Re ( n T 2 ) Im ( n T 2 )
= Re ( H ) Im ( H ) Im ( s ) + - Im ( H ) Re ( H ) Re ( s ) + Re ( n T 2 ) Im ( n T 2 ) - - - ( 3 )
H 1 + r T 1 ′ = Re ( H ) Im ( H ) + Re ( r T 1 ) Im ( r T 1 ) = Re ( H ) Im ( H ) + ( Re ( H ) Im ( H ) Re ( s ) + - Im ( H ) Re ( H ) Im ( s ) + Re ( n T 1 ) Im ( n T 1 ) ) - - - ( 4 )
= Re ( s ) + Re ( H ) Im ( H ) + - Im ( H ) Re ( H ) Im ( s ) + Re ( H ) Im ( H ) + Re ( n T 1 ) Im ( n T 1 )
H 2 + r T 1 ′ = - Im ( H ) Re ( H ) + Re ( r T 1 ) Im ( r T 1 ) = - Im ( H ) Re ( H ) + ( Re ( H ) Im ( H ) Re ( s ) + - Im ( H ) Re ( H ) Im ( s ) + Re ( n T 1 ) Im ( n T 1 ) ) - - - ( 5 )
= - Im ( H ) Re ( H ) + Re ( H ) Im ( H ) Re ( s ) + Im ( s ) + - Im ( H ) Re ( H ) + Re ( n T 1 ) Im ( n T 1 )
H 1 + r T 2 ′ = Re ( H ) Im ( H ) + Re ( r T 2 ) Im ( r T 2 ) = Re ( H ) Im ( H ) + ( Re ( H ) Im ( H ) Im ( s ) + - Im ( H ) Re ( H ) Re ( s ) + Re ( n T 1 ) Im ( n T 1 ) ) - - - ( 6 )
= Im ( s ) + Re ( H ) Im ( H ) + - Im ( H ) Re ( H ) Re ( s ) + Re ( H ) Im ( H ) + Re ( n T 1 ) Im ( n T 1 )
H 2 + r T 2 ′ = - Im ( H ) Re ( H ) + Re ( r T 1 ) Im ( r T 1 ) = - Im ( H ) Re ( H ) + ( Re ( H ) Im ( H ) Im ( s ) + - Im ( H ) Re ( H ) Re ( s ) + Re ( n T 1 ) Im ( n T 1 ) ) - - - ( 7 ) (7)
= - Im ( H ) Re ( H ) + Re ( H ) Im ( H ) Im ( s ) + Re ( s ) + - Im ( H ) Re ( H ) + Re ( n T 1 ) Im ( n T 1 )
以下证明
Re ( H ) Im ( H ) + - Im ( H ) Re ( H ) = - - Im ( H ) Re ( H ) + Re ( H ) Im ( H ) - - - ( 8 )
Re ( H ) Im ( H ) + - Im ( H ) Re ( H )
= ( Re H ( H ) I m H ( H ) Re ( H ) Im ( H ) ) - 1 Re H ( H ) Im H ( H ) - Im ( H ) Re ( H ) - - - ( 9 )
= [ Re H ( H ) Re ( H ) + Im H ( H ) Im ( H ) ] - 1 [ - R e H ( H ) Im ( H ) + Im H ( H ) Re ( H ) ]
- Im ( H ) Re ( H ) + Re ( H ) Im ( H )
= ( - Im H ( H ) Re H ( H ) - Im ( H ) Re ( H ) ) - 1 - Im H ( H ) Re H ( H ) Re ( H ) Im ( H ) - - - ( 10 )
= [ Im H ( H ) Im ( H ) + Re H ( H ) Re ( H ) ] - 1 [ - Im H ( H ) Re ( H ) + Re H ( H ) Im ( H ) ]
由式(9)及式(10),式(8)得证。
0.5 × H 1 + H 2 + r T 1 ′ r T 2 ′ = 0.5 × [ H 1 + r T 1 ′ + H 2 + r T 2 ′ ]
= 0.5 × ( Re ( s ) ) + Re ( H ) Im ( H ) + - Im ( H ) Re ( H ) Im ( s ) + Re ( H ) Im ( H ) + Re ( n T 1 ) Im ( n T 1 ) + - - - ( 11 )
- Im ( H ) Re ( H ) + Re ( H ) Im ( H ) Im ( s ) + Re ( s ) + - Im ( H ) Re ( H ) + Re ( n T 1 ) Im ( n T 1 ) )
由式(8)及式(11),可以得到
Re ( s ~ ) = 0.5 × H 1 + H 2 + r T 1 ′ r T 2 ′ - - - ( 12 )
同理可得
Im ( s ~ ) = 0.5 × H 1 + H 2 + r T 2 ′ r T 1 ′ - - - ( 13 )
则已检测信号
s ~ = Re ( s ~ ) + JIm ( s ~ ) - - - ( 14 )
本实施例采用了4发4收天线组成的多天线BLAST通信***。信道为准静态平坦瑞利衰落信道。在连续时间块T1及T2内,设信道保持恒定。在该实施例内,分别对本发明所提***、采用ZF检测及ZF SIC检测器的BLAST***性能进行了仿真。为保证性能对比的公平性,在发送端,本发明所提***采用16QAM调制,ZF及ZF SIC算法发送端均采用QPSK调制。仿真中,所有算法均采用1/3Turbo编译码。

Claims (6)

1.一种采用增强信号检测的多天线空间复用***,包括:
编码调制模块(101),用于对比特信息进行编码与调制;
信号发送模块(102),用于对已调信号进行发送;
接收信号模块(201),进行信号接收;
信号形式变换模块(202),用于对信道矩阵H与接收信号向量r进行形式变换;
信号检测模块(203),用于对接收信号进行检测;
信号重构模块(204)用于对203模块的检测结果进行重构,得到已检测信号
Figure A2007100958910002C1
解调译码模块(205),用于对204模块的输出进行解调译码,输出比特信息。
2.按权利要求1所述的***,其特征在于所述信号发送模块发送信号遵循以下准则:
待发送信号为s,设准静态衰落信道H在相邻时间块T1与T2内保持恒定;
在时间块T1内,发送信号 s T 1 = Re ( s ) + jIm ( s ) ;
在时间块T2内,发送信号 s T 2 = Im ( s ) + jRe ( s ) , 其中Re(s)表示复信号实部,Im(s)表示复信号虚部。
3.按权利要求1所述的***,其特征在于对信道矩阵H和接收信号向量r进行变换的规则为:
H 1 = Re ( H ) Im ( H ) , H 2 = - Im ( H ) Re ( H ) , r T 1 ′ = Re ( r T 1 ) Im ( r T 1 ) , r T 2 ′ = Re ( r T 2 ) Im ( r T 2 ) .
4.按权利要求1所述的***,其特征在于所述信号检测模块对接收信号进行检测的规则为:
Re ( s ~ ) = 0.5 × H 1 + H 2 + r T 1 ′ r T 2 ′ , Im ( s ~ ) = 0.5 × H 1 + H 2 + r T 2 ′ r T 1 ′ , 其中
Figure A2007100958910003C3
为已检测信号实部,
Figure A2007100958910003C4
为已检测信号虚部。
5.按权利要求1所述的方法,其特征在于所述信号重构模块对信号检测结果进行重构的规则为:
Im ( s ~ ) = 0.5 × H 1 + H 2 + r T 2 ′ r T 1 ′ .
6.按权利要求1所述的通信***,其特征在于所述天线为多发多收天线。
CNA2007100958913A 2007-04-12 2007-04-12 采用增强信号检测的多天线空间复用*** Pending CN101286775A (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CNA2007100958913A CN101286775A (zh) 2007-04-12 2007-04-12 采用增强信号检测的多天线空间复用***
KR1020097015681A KR101413929B1 (ko) 2007-04-12 2008-04-11 향상 신호 검출을 이용한 다중 안테나 공간 다중화 시스템 및 그 방법
JP2009554460A JP5037634B2 (ja) 2007-04-12 2008-04-11 向上信号検出を使用する多重アンテナ空間多重化システム
PCT/KR2008/002054 WO2008127035A1 (en) 2007-04-12 2008-04-11 Multiple-antenna space multiplexing system using enhancement signal detection
EP20080741299 EP2132893B1 (en) 2007-04-12 2008-04-11 Multiple-antenna space multiplexing system using enhancement signal detection
US12/527,644 US8199863B2 (en) 2007-04-12 2008-04-11 Multiple-antenna space multiplexing system using enhancement signal detection and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2007100958913A CN101286775A (zh) 2007-04-12 2007-04-12 采用增强信号检测的多天线空间复用***

Publications (1)

Publication Number Publication Date
CN101286775A true CN101286775A (zh) 2008-10-15

Family

ID=39864087

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007100958913A Pending CN101286775A (zh) 2007-04-12 2007-04-12 采用增强信号检测的多天线空间复用***

Country Status (6)

Country Link
US (1) US8199863B2 (zh)
EP (1) EP2132893B1 (zh)
JP (1) JP5037634B2 (zh)
KR (1) KR101413929B1 (zh)
CN (1) CN101286775A (zh)
WO (1) WO2008127035A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199964B (zh) * 2008-03-31 2015-10-21 高通股份有限公司 可靠地发送控制信号的方法

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9288089B2 (en) 2010-04-30 2016-03-15 Ecole Polytechnique Federale De Lausanne (Epfl) Orthogonal differential vector signaling
US9300503B1 (en) 2010-05-20 2016-03-29 Kandou Labs, S.A. Methods and systems for skew tolerance in and advanced detectors for vector signaling codes for chip-to-chip communication
US9564994B2 (en) 2010-05-20 2017-02-07 Kandou Labs, S.A. Fault tolerant chip-to-chip communication with advanced voltage
US9288082B1 (en) 2010-05-20 2016-03-15 Kandou Labs, S.A. Circuits for efficient detection of vector signaling codes for chip-to-chip communication using sums of differences
US9985634B2 (en) 2010-05-20 2018-05-29 Kandou Labs, S.A. Data-driven voltage regulator
US9479369B1 (en) 2010-05-20 2016-10-25 Kandou Labs, S.A. Vector signaling codes with high pin-efficiency for chip-to-chip communication and storage
US9106238B1 (en) 2010-12-30 2015-08-11 Kandou Labs, S.A. Sorting decoder
US9401828B2 (en) 2010-05-20 2016-07-26 Kandou Labs, S.A. Methods and systems for low-power and pin-efficient communications with superposition signaling codes
US9251873B1 (en) 2010-05-20 2016-02-02 Kandou Labs, S.A. Methods and systems for pin-efficient memory controller interface using vector signaling codes for chip-to-chip communications
US9071476B2 (en) 2010-05-20 2015-06-30 Kandou Labs, S.A. Methods and systems for high bandwidth chip-to-chip communications interface
US9450744B2 (en) 2010-05-20 2016-09-20 Kandou Lab, S.A. Control loop management and vector signaling code communications links
US9596109B2 (en) 2010-05-20 2017-03-14 Kandou Labs, S.A. Methods and systems for high bandwidth communications interface
US9362962B2 (en) 2010-05-20 2016-06-07 Kandou Labs, S.A. Methods and systems for energy-efficient communications interface
US9246713B2 (en) 2010-05-20 2016-01-26 Kandou Labs, S.A. Vector signaling with reduced receiver complexity
US8593305B1 (en) 2011-07-05 2013-11-26 Kandou Labs, S.A. Efficient processing and detection of balanced codes
US9077386B1 (en) 2010-05-20 2015-07-07 Kandou Labs, S.A. Methods and systems for selection of unions of vector signaling codes for power and pin efficient chip-to-chip communication
US9124557B2 (en) 2010-05-20 2015-09-01 Kandou Labs, S.A. Methods and systems for chip-to-chip communication with reduced simultaneous switching noise
US9667379B2 (en) 2010-06-04 2017-05-30 Ecole Polytechnique Federale De Lausanne (Epfl) Error control coding for orthogonal differential vector signaling
US9275720B2 (en) 2010-12-30 2016-03-01 Kandou Labs, S.A. Differential vector storage for dynamic random access memory
US9268683B1 (en) 2012-05-14 2016-02-23 Kandou Labs, S.A. Storage method and apparatus for random access memory using codeword storage
WO2014124450A1 (en) 2013-02-11 2014-08-14 Kandou Labs, S.A. Methods and systems for high bandwidth chip-to-chip communications interface
CN105379170B (zh) 2013-04-16 2019-06-21 康杜实验室公司 高带宽通信接口方法和***
WO2014210074A1 (en) 2013-06-25 2014-12-31 Kandou Labs SA Vector signaling with reduced receiver complexity
US9106465B2 (en) 2013-11-22 2015-08-11 Kandou Labs, S.A. Multiwire linear equalizer for vector signaling code receiver
US9806761B1 (en) 2014-01-31 2017-10-31 Kandou Labs, S.A. Methods and systems for reduction of nearest-neighbor crosstalk
US9100232B1 (en) 2014-02-02 2015-08-04 Kandou Labs, S.A. Method for code evaluation using ISI ratio
US9369312B1 (en) 2014-02-02 2016-06-14 Kandou Labs, S.A. Low EMI signaling for parallel conductor interfaces
US9363114B2 (en) 2014-02-28 2016-06-07 Kandou Labs, S.A. Clock-embedded vector signaling codes
US11240076B2 (en) 2014-05-13 2022-02-01 Kandou Labs, S.A. Vector signaling code with improved noise margin
US9509437B2 (en) 2014-05-13 2016-11-29 Kandou Labs, S.A. Vector signaling code with improved noise margin
US9148087B1 (en) 2014-05-16 2015-09-29 Kandou Labs, S.A. Symmetric is linear equalization circuit with increased gain
US9112550B1 (en) 2014-06-25 2015-08-18 Kandou Labs, SA Multilevel driver for high speed chip-to-chip communications
EP3138253A4 (en) 2014-07-10 2018-01-10 Kandou Labs S.A. Vector signaling codes with increased signal to noise characteristics
US9432082B2 (en) 2014-07-17 2016-08-30 Kandou Labs, S.A. Bus reversable orthogonal differential vector signaling codes
KR102243423B1 (ko) 2014-07-21 2021-04-22 칸도우 랩스 에스에이 다분기 데이터 전송
EP3175592B1 (en) 2014-08-01 2021-12-29 Kandou Labs S.A. Orthogonal differential vector signaling codes with embedded clock
US9674014B2 (en) 2014-10-22 2017-06-06 Kandou Labs, S.A. Method and apparatus for high speed chip-to-chip communications
EP3314835B1 (en) 2015-06-26 2020-04-08 Kandou Labs S.A. High speed communications system
US9557760B1 (en) 2015-10-28 2017-01-31 Kandou Labs, S.A. Enhanced phase interpolation circuit
US9577815B1 (en) 2015-10-29 2017-02-21 Kandou Labs, S.A. Clock data alignment system for vector signaling code communications link
US10055372B2 (en) 2015-11-25 2018-08-21 Kandou Labs, S.A. Orthogonal differential vector signaling codes with embedded clock
WO2017132292A1 (en) 2016-01-25 2017-08-03 Kandou Labs, S.A. Voltage sampler driver with enhanced high-frequency gain
CN115085727A (zh) 2016-04-22 2022-09-20 康杜实验室公司 高性能锁相环
US10003454B2 (en) 2016-04-22 2018-06-19 Kandou Labs, S.A. Sampler with low input kickback
WO2017190102A1 (en) 2016-04-28 2017-11-02 Kandou Labs, S.A. Low power multilevel driver
US10153591B2 (en) 2016-04-28 2018-12-11 Kandou Labs, S.A. Skew-resistant multi-wire channel
US10333741B2 (en) 2016-04-28 2019-06-25 Kandou Labs, S.A. Vector signaling codes for densely-routed wire groups
US9906358B1 (en) 2016-08-31 2018-02-27 Kandou Labs, S.A. Lock detector for phase lock loop
US10411922B2 (en) 2016-09-16 2019-09-10 Kandou Labs, S.A. Data-driven phase detector element for phase locked loops
US10200188B2 (en) 2016-10-21 2019-02-05 Kandou Labs, S.A. Quadrature and duty cycle error correction in matrix phase lock loop
US10372665B2 (en) 2016-10-24 2019-08-06 Kandou Labs, S.A. Multiphase data receiver with distributed DFE
US10200218B2 (en) 2016-10-24 2019-02-05 Kandou Labs, S.A. Multi-stage sampler with increased gain
US10666297B2 (en) 2017-04-14 2020-05-26 Kandou Labs, S.A. Pipelined forward error correction for vector signaling code channel
CN110945830B (zh) 2017-05-22 2022-09-09 康杜实验室公司 多模式数据驱动型时钟恢复电路
US10116468B1 (en) 2017-06-28 2018-10-30 Kandou Labs, S.A. Low power chip-to-chip bidirectional communications
US10686583B2 (en) 2017-07-04 2020-06-16 Kandou Labs, S.A. Method for measuring and correcting multi-wire skew
US10693587B2 (en) 2017-07-10 2020-06-23 Kandou Labs, S.A. Multi-wire permuted forward error correction
US10203226B1 (en) 2017-08-11 2019-02-12 Kandou Labs, S.A. Phase interpolation circuit
US10467177B2 (en) 2017-12-08 2019-11-05 Kandou Labs, S.A. High speed memory interface
US10326623B1 (en) 2017-12-08 2019-06-18 Kandou Labs, S.A. Methods and systems for providing multi-stage distributed decision feedback equalization
KR102498475B1 (ko) 2017-12-28 2023-02-09 칸도우 랩스 에스에이 동기식으로 스위칭된 다중 입력 복조 비교기
US10554380B2 (en) 2018-01-26 2020-02-04 Kandou Labs, S.A. Dynamically weighted exclusive or gate having weighted output segments for phase detection and phase interpolation
WO2024049482A1 (en) 2022-08-30 2024-03-07 Kandou Labs SA Pre-scaler for orthogonal differential vector signalling

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6058105A (en) * 1997-09-26 2000-05-02 Lucent Technologies Inc. Multiple antenna communication system and method thereof
US6996195B2 (en) * 1999-12-22 2006-02-07 Nokia Mobile Phones Ltd. Channel estimation in a communication system
US6961388B2 (en) * 2001-02-01 2005-11-01 Qualcomm, Incorporated Coding scheme for a wireless communication system
KR100446753B1 (ko) 2002-12-26 2004-09-01 엘지전자 주식회사 이동통신 단말기의 적응 변조 코딩 장치
KR100580840B1 (ko) 2003-10-09 2006-05-16 한국전자통신연구원 다중 입력 다중 출력 시스템의 데이터 통신 방법
GB2408898B (en) * 2003-12-02 2006-08-16 Toshiba Res Europ Ltd Improved communications apparatus and methods
KR100580843B1 (ko) * 2003-12-22 2006-05-16 한국전자통신연구원 V―blast에서 채널전달함수행렬 처리장치 및 그의처리방법
US7542743B2 (en) * 2005-09-30 2009-06-02 Broadcom Corporation Maximum likelihood detection for MIMO receivers
JP4680036B2 (ja) * 2005-11-09 2011-05-11 独立行政法人情報通信研究機構 受信装置および受信方法
FI20075083A0 (fi) * 2007-02-06 2007-02-06 Nokia Corp Ilmaisumenetelmä ja -laite monivuo-MIMOa varten

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199964B (zh) * 2008-03-31 2015-10-21 高通股份有限公司 可靠地发送控制信号的方法

Also Published As

Publication number Publication date
EP2132893B1 (en) 2015-05-20
WO2008127035A1 (en) 2008-10-23
JP2010521919A (ja) 2010-06-24
KR20090128378A (ko) 2009-12-15
US20100104047A1 (en) 2010-04-29
EP2132893A1 (en) 2009-12-16
JP5037634B2 (ja) 2012-10-03
EP2132893A4 (en) 2014-04-30
KR101413929B1 (ko) 2014-07-01
US8199863B2 (en) 2012-06-12

Similar Documents

Publication Publication Date Title
CN101286775A (zh) 采用增强信号检测的多天线空间复用***
CN1943133B (zh) 利用多输入多输出方案的移动通信***中编码/解码时空块代码的装置与方法
US8358990B2 (en) Method and device for transmitting a signal in a multi-antenna system, signal, and method for estimating the corresponding transmission channels
CN1973448A (zh) 用于偶数发送天线的全分集、全速率空时区块编码的装置和方法
US8842755B2 (en) Process for decoding ALAMOUTI block code in an OFDM system, and receiver for the same
CN101010889B (zh) 针对两个发送天线进行满分集满速率时空块编码的装置和方法
KR100780364B1 (ko) 성능 향상된 시공간 블록 부호화 장치 및 방법
CN101488775B (zh) 一种td-scdma***中的空间复用方法和装置
CN102932041A (zh) 协作多点传输中异步空时码编解码方法
KR100767218B1 (ko) 코딩 이득 향상위한 시공간 블록 부호화 장치 및 방법
CN101944942A (zh) 一种低复杂度自适应传输的多天线传输方法及***
CN103856298A (zh) 一种低复杂度最小距离收发信端编译码构建方法
CN101631002B (zh) 一种无需信道信息的mimo空时编解码***与方法
CN101785213B (zh) 无线通信网络中多中继站联合中继的方法和装置
Yu et al. Transmit antenna shuffling for quasi-orthogonal space-time block codes with linear receivers
Chiu et al. Transmit beamforming with analog channel state information feedback
KR20230152294A (ko) 다중 안테나 신호를 위한 송신 및 검출 기술
KR101378266B1 (ko) 통신 시스템에서 신호를 디코딩하는 수신기 및 방법
CN101053230B (zh) 空间时间频率分组编码的装置和方法
Khaparde et al. Performance Comparison of STBC & STBC-SM with Various Modulation Techniques
Han et al. An improved group detection algorithm for ML-STTC in wireless communication systems
Chaudhary et al. Hybrid MIMO-OFDM system with application to Image transmission
Xing et al. Channel estimation using orthogonal superimposed pilot for MIMO systems
Ahn et al. Heterogeneous constellation based QOSTBC for improving detection property of QRD-MLD
Kaur et al. Simulation of MIMO Antenna Systems in Simulink

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20081015