CN101271173A - 太赫兹液芯光纤 - Google Patents

太赫兹液芯光纤 Download PDF

Info

Publication number
CN101271173A
CN101271173A CNA2008100239708A CN200810023970A CN101271173A CN 101271173 A CN101271173 A CN 101271173A CN A2008100239708 A CNA2008100239708 A CN A2008100239708A CN 200810023970 A CN200810023970 A CN 200810023970A CN 101271173 A CN101271173 A CN 101271173A
Authority
CN
China
Prior art keywords
optical fiber
core layer
organic solvent
liquid
terahertz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008100239708A
Other languages
English (en)
Inventor
许伟伟
周雷
金飚兵
吴培亨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CNA2008100239708A priority Critical patent/CN101271173A/zh
Publication of CN101271173A publication Critical patent/CN101271173A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

本发明公开了一种太赫兹液芯光纤,包括外部的包层和内部的芯层,其中包层材料为聚四氟乙烯,芯层材料为非极性高碳烃类有机溶剂、弱极性高碳烃类有机溶剂或上述两者有机溶剂的混合物。上述芯层材料可以是高碳烷烃有机溶剂,特别是主要成分为高碳烷烃的石蜡油,很适合作为芯层材料。聚四氟乙烯在该波段的折射率变化小且数值略小,与芯层材料形成了相对光疏和光密关系,又具备损耗小,力学性能好,化学性能稳定等优点,因而可以作为太赫兹液芯光纤的包层材料。采用这两种材料制成的液芯光纤不仅在传输过程中光线损耗低,而且材料获取方便便于引入实际应用,且生产成本低廉,此外由于芯层为液体,相对普通光纤更易弯曲,安装也更方便。

Description

太赫兹液芯光纤
一、技术领域
本发明涉及一种光纤传输线,具体是一种液芯光纤结构太赫兹波传输线。
二、背景技术
自从上个世纪八、九年代太赫兹(THz)概念被提出以来,太赫兹技术受到了广泛的关注。太赫兹谱学和成像在生物、医药、化学化工、天文学、地球科学和安全防卫等方面的应用都展现了非常好的前景;太赫兹雷达和通信,已经在理论上得到论证比现有的微波雷达和通信更具优势。美国、日本等发达国家纷纷将太赫兹技术列为21世纪最重要的科学技术之一,投诸了大量的人力物力,开展对太赫兹技术各个环节的研发工作。其主要包括:太赫兹电磁波的产生即太赫兹源、太赫兹电磁波的传输即太赫兹传输线和太赫兹电磁波的检测。本发明的内容即属于太赫兹传输线范畴。
目前比较受到关注的太赫兹传输线有圆形和矩形金属波导、蓝宝石光纤、平行板、带状塑料、光子晶体光纤、金属线。但以上传输结构都存在的不同的缺陷,如:高损耗、高造价和过于复杂的制造工艺。针对与此,本发明提出一种低损耗、低造价、易弯曲且易于引入实际使用的太赫兹电磁波传输结构:太赫兹液芯光纤。
液芯光纤根据的是电磁波在不同介质中传播时的全反射原理。其功能部分结构主要是由光密介质(液态)填充的芯层和光疏介质(固态)制作的包层。芯层的尺寸取决于对于光纤的具体技术要求如单模或多模传输、传输能量的强弱和传输频率,液态光纤的制造工艺日益成熟,而制作太赫兹液态光纤的关键在于找到在太赫兹波段透光率高、折射率变化小的液态芯层材料和与之相匹配的固态包层材料。
三、发明内容
本发明所要解决的技术问题是克服现有技术的不足,提供一种低损耗、低造价、易弯曲且易于引入实际使用的太赫兹液芯光纤。
本发明所述的太赫兹液芯光纤,包括外部的包层和内部的芯层,所述包层材料为聚四氟乙烯,芯层材料为非极性高碳烃类有机溶剂、弱极性高碳烃类有机溶剂或上述两者有机溶剂的混合物。
上述芯层材料可以是高碳烷烃有机溶剂,特别是主要成分为高碳烷烃的石蜡油,其具有价格低廉、不易挥发的优点,很适合作为芯层材料。
芯层的直径根据单模传输条件:
d<2.4048*λ/π/(n1 2-n2 2)0.5
式中λ为波长,n1和n2分别为芯层和包层材料在传输波段的折射率,如果用十二烷做芯层,聚四氟乙烯做包层,d应当小于478微米。
本发明通过太赫兹谱学技术测量了某些非极性或弱极性有机溶剂在太赫兹波段(0.2-3THz)的折射率和消光系数。测量结果表明非极性或弱极性的烃类有机溶剂单质和混合物在该波段的折射率变化很小,透光性能优秀,适宜作为太赫兹液芯光纤的芯层材料。其中,主要成分为高碳烷烃、馏出温度为300℃的化学纯石蜡油因其价格低廉且不易挥发推荐为首选。同时测量了聚四氟乙烯(Teflon)在相同波段的折射率和消光系数。聚四氟乙烯在该波段的折射率变化小且数值略小,与芯层材料形成了相对光疏和光密关系,又具备损耗小,力学性能好,化学性能稳定等优点,因而可以作为太赫兹液芯光纤的包层材料。经验证,采用这两种材料制成的液芯光纤不仅在传输过程中光线损耗低,而且材料获取方便便于引入实际应用,且生产成本低廉,此外由于芯层为液体,相对普通光纤更易弯曲,安装也更方便。
四、附图说明
图1是芯层材料为十二烷,包层材料为聚四氟乙烯传输波段为1THz-2THz的单模液芯波导结构示例图,
图2是太赫兹波段聚四氟乙烯的折射率(实线)和正十二烷烃有机溶剂(虚线)的折射率。
五、具体实施方式
如图1所示,本发明所述的太赫兹液芯光纤,包括外部的包层1和内部的芯层2,其中包层1的材料为聚四氟乙烯,芯层2的材料为非极性高碳烃类有机溶剂、弱极性高碳烃类有机溶剂或上述两者有机溶剂的混合物,在本实施例中芯层材料采用了正十二烷烃有机溶剂。包层材料厚度不影响传输效果,芯层直径根据单模传输条件d<2.4048*λ/π/(n1 2-n2 2)0.5,应该小于478微米,λ为波长,n1和n2分别为芯层和包层材料在传输波段的折射率。
图2是太赫兹波段聚四氟乙烯的折射率(实线)和正十二烷烃有机溶剂(虚线)的折射率,由图可以看出,两者在相同波段下的折射。其中聚四氟乙烯的折射率变化小且数值相对正十二烷烃有机溶剂略小,与正十二烷烃有机溶剂形成了相对光疏和光密关系,同时聚四氟乙烯又具备损耗较小,力学性能好,化学性能稳定等优点,因而可以作为太赫兹液芯光纤的包层材料。

Claims (3)

1、一种太赫兹液芯光纤,包括外部的包层和内部的芯层,其特征是:所述包层材料为聚四氟乙烯,芯层材料为非极性高碳烃类有机溶剂、弱极性高碳烃类有机溶剂或上述两者有机溶剂的混合物。
2、根据权利要求1所述的太赫兹液芯光纤,其特征是:所述芯层材料为高碳烷烃有机溶剂。
3、根据权利要求2所述的太赫兹液芯光纤,其特征是:所述高碳烷烃有机溶剂为石蜡油。
CNA2008100239708A 2008-04-23 2008-04-23 太赫兹液芯光纤 Pending CN101271173A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2008100239708A CN101271173A (zh) 2008-04-23 2008-04-23 太赫兹液芯光纤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2008100239708A CN101271173A (zh) 2008-04-23 2008-04-23 太赫兹液芯光纤

Publications (1)

Publication Number Publication Date
CN101271173A true CN101271173A (zh) 2008-09-24

Family

ID=40005252

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008100239708A Pending CN101271173A (zh) 2008-04-23 2008-04-23 太赫兹液芯光纤

Country Status (1)

Country Link
CN (1) CN101271173A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103155271A (zh) * 2010-10-12 2013-06-12 皇家飞利浦电子股份有限公司 用于太赫兹辐射的线型波导
CN104614092A (zh) * 2015-02-12 2015-05-13 哈尔滨理工大学 液芯光纤模间干涉温度传感器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103155271A (zh) * 2010-10-12 2013-06-12 皇家飞利浦电子股份有限公司 用于太赫兹辐射的线型波导
CN104614092A (zh) * 2015-02-12 2015-05-13 哈尔滨理工大学 液芯光纤模间干涉温度传感器

Similar Documents

Publication Publication Date Title
Liu et al. Independently tunable triple Fano resonances based on MIM waveguide structure with a semi-ring cavity and its sensing characteristics
Nagel et al. Low-index discontinuity terahertz waveguides
Zhou et al. Fully suspended slot waveguides for high refractive index sensitivity
Yang et al. Circular hole ENZ photonic crystal fibers exhibit high birefringence
Liu et al. Surface plasmon resonance sensor based on U-shaped photonic quasi-crystal fiber
Nguema et al. Broadband terahertz transmission within the air channel of thin-wall pipe
Zhang et al. All fiber compact bending sensor with high sensitivity based on a multimode fiber embedded chirped long-period grating
Jiang et al. Design and simulation of a GST-based metasurface with strong and switchable circular dichroism
Mei et al. A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities
Yang et al. In-fiber refractive index sensor based on single eccentric hole-assisted dual-core fiber
Rohimah et al. Tunable multiple Fano resonances based on a plasmonic metal-insulator-metal structure for nano-sensing and plasma blood sensing applications
Zhu et al. Compact, broadband, and low-loss silicon photonic arbitrary ratio power splitter using adiabatic taper
Qu et al. Surface plasmon resonance-based silicon dual-core photonic crystal fiber polarization beam splitter at the mid-infrared spectral region
Zhu et al. Detecting the temperature of ethanol based on Fano resonance spectra obtained using a metal-insulator-metal waveguide with SiO 2 branches
Guo et al. Temperature sensor using an optical fiber coupler with a thin film
Guo et al. Tapered multicore fiber interferometer for refractive index sensing with graphene enhancement
Wu et al. Compact and ultra-broadband all-silicon TM-pass and TE-reflected polarizer using grating based weakly coupled nanowires
Mridha et al. Active terahertz two-wire waveguides
Shi et al. Side-coupled liquid sensor and its array with magneto-optical photonic crystal
Xu et al. Dual-band topological rainbows in Penrose-triangle photonic crystals
Badri et al. Coupling silica waveguides to photonic crystal waveguides through a multilayered Luneburg lens
CN102338905B (zh) 一种传输太赫兹波的光纤
Zhang et al. All-silicon TM polarizer covering the 1260–1675 nm bandwidth using a band engineered subwavelength grating waveguide
Djavid et al. Photonic crystal power dividers using L-shaped bend based on ring resonators
Zhao et al. Compact in-line optical notch filter based on an asymmetric microfiber coupler

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080924