CN101259022B - 射线照相设备 - Google Patents

射线照相设备 Download PDF

Info

Publication number
CN101259022B
CN101259022B CN2007101857695A CN200710185769A CN101259022B CN 101259022 B CN101259022 B CN 101259022B CN 2007101857695 A CN2007101857695 A CN 2007101857695A CN 200710185769 A CN200710185769 A CN 200710185769A CN 101259022 B CN101259022 B CN 101259022B
Authority
CN
China
Prior art keywords
image
carriage
scanning
data
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007101857695A
Other languages
English (en)
Other versions
CN101259022A (zh
Inventor
萩原明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Medical Systems Global Technology Co LLC
Original Assignee
GE Medical Systems Global Technology Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Medical Systems Global Technology Co LLC filed Critical GE Medical Systems Global Technology Co LLC
Publication of CN101259022A publication Critical patent/CN101259022A/zh
Application granted granted Critical
Publication of CN101259022B publication Critical patent/CN101259022B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B42/00Obtaining records using waves other than optical waves; Visualisation of such records by using optical means
    • G03B42/02Obtaining records using waves other than optical waves; Visualisation of such records by using optical means using X-rays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本发明涉及射线照相设备。为了通过针对处于在前向和后向上的对象相同位置上的切片平面执行图像重建而提高诊断效率,获得位置偏移量“dz”,该量代表沿前向和后向的体轴方向“z”上的在第一对象位置和第二对象位置之间的差别,其中第一对象位置是位于托架上的对象待成像区域在托架前向移动时所要移向的位置,而第二对象位置是位于托架上的对象待成像区域在托架后向移动时所要移向的从而使得对象待成像区域与第一对象位置相吻合的位置。然后,在前向路径图像和后向路径图像中的各个像素位置基于位置偏移量“dz”进行校正从而所述像素位置位于沿前向和后向的体轴方向“z”上的彼此相应的位置上。

Description

射线照相设备
技术领域
本发明涉及一种射线照相设备。尤其地,本发明涉及一种射线照相设备,用于通过在前向移动其上放置有对象的托架时执行扫描以及在与前向相反的后向移动托架时执行扫描,以图像重建前向路径图像和后向路径图像。
背景技术
诸如X射线CT(计算机断层造影术)设备的射线照相设备通过向待成像区域发射诸如X射线的射线并探测通过对象待成像区域的射线以获得待成像区域的投影数据从而执行对待成像区域的扫描。基于通过执行所述扫描而获得的投影数据,对通过待成像区域的切片平面上的切片图像进行图像重建。这种射线照相设备应用于宽泛的多种用途,包括医疗用途和工业用途。
在执行这种扫描中,由X射线CT设备上的扫描台架移动X射线管和多行X射线检测器从而使得它们以放置在托架上的对象的主体轴方向为中心绕着对象转动从而执行在对象待成像区域上的扫描。在那个时候,X射线管朝着对象的待成像区域发射,例如,沿通道方向径向延伸的锥形X射线,其位于沿绕着对象旋转的方向,并且沿行的方向,其沿旋转的轴设置。多行检测器中具有多个检测器元件,它们沿通道方向和行方向排列然后检测通过对象要成像区域的X射线从而因此产生投影数据。
在诸如轴向扫描方案、螺旋扫描方案等的扫描方案中执行这种扫描。
另外,已经计划一种往复扫描方案,其中在沿前进方向移动放置有对象的托架时以及在沿向后方向移动所述托架时在X射线所照射到的位置上进行扫描(例如,参见日本申请公开说明书No.2002-65661、日本申请公开说明书No.2005-137389以及日本申请公开说明书No.2002-95655)。
用于执行结合螺旋扫描方案的往复扫描方案中的扫描的方案通常称作螺旋往复扫描方案。另一方面,用于执行结合轴向扫描方案的往复扫描方案中的扫描的方案通常称作轴向往复扫描方案。
例如,基于通过执行这种扫描所获得的投影数据,多个切片图像而后被针对多个沿对象的主体轴的方向连续排列的轴面进行图像重建。在那时,在互相面对的投影数据元件上,以及每一个对应轴平面的切片图像上应用加权处理,所述轴面是具有在体轴方向上的垂线的垂直平面,所述切片图像根据Feldkamp-based图像重建技术被图像重建,例如通常称作三维反投影技术或锥形光束反投影技术。
发明内容
但是,当放置有对象的托架被移动时,有力沿着托架移动的方向被施加到对象上,引起所述对象相对于所述托架的移动。因此,在上述的往复扫描方案中执行扫描时,当托架被前向移动时对象所要移向的位置以及当托架沿着与前向相反的后向移动时对象所要移向的位置,可能彼此不同,即使托架视图在前向和后向移动之后到达同一位置,也是如此。因此,当试图显示利用通过在前向移动托架时执行扫描而获得的投影数据为切片平面进行图像重建的前向路径图像以及显示利用通过在后向移动托架时执行扫描而获得的投影数据在与前向路径图像相同的平面上进行的图像重建而产生的后向路径图像时,由于上述现象,即使所述托架位于沿前向和后向的方向上的同一位置上,实践中所述切片图像也可能在位于对象的彼此不同的位置的切片平面内被重建,从而很难准确显示所述图像。因此,由于不够精确的图像质量,想要提高诊断的效率比较困难。
尤其是为对象中包含诸如器官的的组织的切片平面对待成像区域执行往复扫描方案时,很难固定对象内的诸如器官的组织,即使对象被牢牢支撑在所述托架上,并因此,沿托架移动的方向对诸如器官的组织施加力,从而不言自明将导致上述的问题。
并且,当在往复扫描方案中执行扫描时,通常需要针对具有在托架前向和后向移动的方向上的垂线的轴面,图像重建多个前向路径图像和多个后向路径图像,使得所述图像交替地排列在对象待成像区域内的彼此不同的位置,并且之后,作为活动图像沿托架前向和后向移动的方向在显示屏幕上交替地显示前向路径图像和后向路径图像。由于根据这一方法,能够在前向和后向移动的方向获得许多前向路径图像和后向路径图像,从而在活动图像中能够以高分辨率显示图像帧。
但是,由于上述的现象,在实践中前向路径图像和后向路径图像有时会在不同于参照位置的轴面上被图像重建,并且因此,当他们作为帧被连续地和顺序地显示为活动图像时,对象内的器官等等,将显示为波动的,如同它在跳动。因此,由于不够精确的图像质量,有时候很难提高诊断的效率。
因此,本发明的目的在于提供一种射线照相设备,利用该设备可提高图像的质量从而能够提高诊断的效率。
为了实现上述目标,根据本发明的射线照相设备具有:包括上面放置有对象的托架的扫描工作台部件,用于移动所述托架;用于执行扫描的扫描部件,该扫描包括向在所述扫描工作台部件中移动的托架上放置的所述对象中待成像区域发射射线以及检测通过所述待成像区域的所述射线以便获得所述待成像区域的投影数据;以及数据处理部件,用于基于由所述扫描部件获得的投影数据对待成像区域的图像重建图像,所述扫描工作台部件相对于所述扫描部件前向和后向移动所述托架,所述扫描部件在所述托架前向移动时执行所述扫描以便获得第一组投影数据作为所述投影数据,并且在所述托架后向移动时执行所述扫描以便获得第二组投影数据作为所述投影数据,并且所述数据处理部件基于所述第一组投影数据对前向路径图像进行图像重建作为所述图像,并基于所述第二组投影数据对后向路径图像进行图像重建作为所述图像,其中所述数据处理部件包括位置偏移量(amount-of-positional-offset)获得部件,用于获得代表第一对象位置和第二对象位置之间沿所述前向和所述后向的方向上的差别的位置偏移量,所述第一对象位置是当所述托架在所述扫描工作台部件中前向移动时位于所述托架上的所述对象内的所述待成像区域所要移向的位置,并且所述第二对象位置是当所述托架在所述扫描工作台部件中后向移动时位于所述托架上的所述对象内的所述待成像区域所要移向的位置,使得所述对象内所述待成像区域与所述第一对象位置相符合,用于基于由所述位置偏移量获得部件获得的位置偏移量产生所述前向路径图像和所述后向路径图像,使得所述前向路径图像和所述后向路径图像内的相应的像素位置于沿所述前向和所述后向的方向上的相应于彼此的位置。
优选地,所述数据处理部件基于所述第一组投影数据对第一图像进行图像重建并基于所述第二组投影数据对第二图像进行图像重建,并且所述位置偏移量获得部件通过对由所述数据处理部件图像重建的所述第一图像和所述第二图像实施比较处理以计算所述位置偏移量。
优选地,所述数据处理部件通过基于由所述位置偏移量获取部件获得的所述位置偏移量,为校正而移动所述第一图像和所述第二图像至少一个中的像素位置,使得在所述第一图像和所述第二图像内相应像素位置位于所述待成像区域内的沿所述前向和所述后向的方向上彼此对应的位置,来产生所述第一图像和所述第二图像分别作为所述前向路径图像和所述后向路径图像。
优选地,所述数据处理部件针对沿所述托架前向移动的方向的平面图像重建所述第一图像,并且针对图像重建所述第一图像的平面图像重建所述第二图像。
优选地,所述数据处理部件通过基于所述第一组投影数据针对具有位于所述托架前向和后向移动所在的方向上的垂线的多个平面图像重建多个第三图像,然后对所述被图像重建的多个第三图像进行重定格式,来图像重建所述第一图像,并且通过基于所述第二组投影数据针对具有位于所述托架前向和后向移动所在的方向上的垂线的多个平面图像重建多个第四图像,然后对所述被图像重建的多个第四图像进行重定格式,来图像重建所述第二图像。
优选地,基于通过对所述数据处理部件图像重建的所述第一图像执行特征提取处理而提取出的第一特征提取区域的像素位置,以及通过对所述数据处理部件图像重建的所述第二图像执行特征提取处理而提取出的与所述第一图像中提取的所述第一特征提取区域匹配的第二特征提取区域的像素位置,所述位置偏移量获得部件计算所述位置偏移量。
优选地,该设备具有用于在其显示屏幕上显示由所述数据处理部件为所述待成像区域图像重建的图像的显示部件。
优选地,该设备具有用于在其显示屏幕上显示由所述数据处理部件为所述待成像区域进行图像重建的图像的显示部件;以及可由操作者输入输入数据的输入部件,其中所述数据处理部件基于所述第一组投影数据对第一图像进行图像重建并基于所述第二组投影数据对第二图像进行图像重建,所述显示部件在所述显示屏幕上显示所述第一图像和所述第二图像,所述输入部件由操作者输入在所述显示屏幕上显示的所述第一图像中的第一特定区域的像素位置,并且由操作者输入在所述显示屏幕上显示的所述第二图像中的相应于所述第一特定区域的第二特定区域的像素位置,并且所述位置偏移量获得部件基于通过所述输入部件输入的所述第一特定区域的像素位置和所述第二特定区域的像素位置通过计算而获得位置偏移的量。
优选地,该设备具有通过其由操作者输入输入数据的输入部件,其中所述输入部件由操作者作为输入数据输入关于位置偏移量的位置偏移量数据,并且所述位置偏移量获得部件基于通过所述输入部件输入的所述位置偏移量数据获得位置偏移量。
优选地,当基于所述第一组投影数据针对具有托架前向和后向移动所在的方向上的垂线的平面图像重建所述前向路径图像时,以及当基于所述第二组投影数据针对具有托架前向和后向移动所在的方向上的垂线的平面图像重建所述后向路径图像时,所述数据处理部件基于由所述位置偏移量获得部件获得的所述位置偏移量对所述前向路径图像和所述后向路径图像进行图像重建,使得所述前向路径图像和所述后向路径图像均在所述托架前向和后向移动所在的方向上符合所述对象的待成像区域的位置。
优选地,该设备具有用于在其显示屏幕上显示由数据处理部件对待成像区域图像重建的图像的显示部件,其中所述数据处理部件对多个所述前向路径图像和多个所述后向路径图像进行图像重建,从而在托架前向和后向移动的方向上他们被交错排列在所述对象待成像区域内的彼此不同位置上,并且所述显示部件沿托架前向和后向移动的方向上在所述显示屏幕上作为活动图像顺序交替显示由所述数据处理部件产生的所述前向路径图像和所述后向路径图像。
优选地,所述扫描工作台部件移动所述托架使得沿所述前向和所述后向的方向位于水平方向。
优选地,所述扫描工作台部件包括用于在其中接收在所述扫描工作台部件内移动的所述托架的成像空间,并具有用于向放置在所述成像空间中的所述托架上的所述对象发射所述射线的照明部件;以及检测由所述照明部件发射出的并通过所述对象的射线以便因此产生所述投影数据的检测部件。
优选地,所述照明部件发射X射线作为所述射线。
优选地,所述扫描部件以螺旋扫描方案执行所述扫描。
优选地,所述扫描部件以轴向扫描方案执行所述扫描。
根据本发明,提供一种具有提高的成像质量从而提高了诊断效率的射线成像设备。
附图说明
图1是显示根据本发明实施例1中的X射线CT设备1的整体构造的模块示意图。
图2是显示根据本发明实施例1中的X射线CT设备1的主要部件的示意图。
图3是显示根据本发明实施例1中的中央处理设备30的构造的模块示意图。
图4是显示根据本发明实施例1中的扫描工作台部件4的构造的透视图。
图5是显示根据本发明实施例1中的X射线CT设备1的操作的流程图。
图6是显示根据本发明实施例1中执行的扫描的侧视图。
图7是显示在根据本发明实施例1中,沿前向FD运动的位于托架401上的对象中某一区域与沿后向BD运动的位于托架401上的对象中所述区域之间的位置关系的示意图。
图8是显示根据本发明实施例1中的用于产生前向路径图像和后向路径图像的操作流程图。
图9是显示根据本发明实施例1中的在对象待成像区域内产生的前向路径图像和后向路径图像的示意图。
图10是显示根据本发明实施例1中的在对象待成像区域内产生的前向路径图像和后向路径图像的示意图。
图11是显示在根据本发明的实施例2中,获得在前向扫描中运动的和在后向扫描中运动的对象之间的位置偏移量的操作的流程图。
图12是显示在根据本发明的实施例2中,在前向扫描中运动的和在后向扫描中运动的对象之间的位置偏移量的示意图。
图13是显示在根据本发明的实施例3中,获得在前向扫描中运动的和在后向扫描中运动的对象之间的位置偏移量的操作的流程图。
图14是显示根据本发明实施例4的所产生前向路径图像和后向路径图像的示意图。
具体实施方式
<实施例1>
现对根据本发明的实施例1进行说明。
(设备的构造)
图1是根据本发明实施例1的X射线CT设备1的整体构造的模块示意图,以及图2是根据本发明实施例1的X射线CT设备1的主要部件的透视图。
如图1所示,X射线CT设备1具有扫描台架2、操作控制台3以及扫描工作台部件4。X射线CT设备1执行扫描,包括向对象体内待成像区域发射X射线,并检测通过对象体内待成像区域的X射线以便因此获得投影数据,该投影数据被用于图像重建对象体内待成像区域的图像。
现在介绍扫描台架2。
如图1所示,扫描台架2具有X射线管20、X射线管移动部件21、准直器22、X射线检测器23、数据收集部件24、X射线控制器25、准直器控制器26、旋转部件27以及台架控制器28。扫描台架2包括成像空间29,用于在其内接收在扫描工作台部件4内移动的托架401,在这一成像空间29内,执行扫描从而获得对象体内待成像区域的投影数据,在该扫描中X射线管20向对象体内待成像区域发射X射线并且X射线检测器23检测通过对象内待成像区域的X射线。在那时,根据将在后文中讨论的通过操作者控制台3指定的扫描条件,基于由操作者控制台3输出的控制信号CTL30a执行扫描以获得对象内待成像区域的投影数据,其中扫描包括向由扫描工作台部件4移动并接收进入成像空间29内的托架401上的对象体内待成像区域发射X射线以及检测通过对象体内待成像区域的X射线。
特别地,扫描台架2具有布置为彼此相对的X射线管20和X射线检测器23,两者之间间隔着放置有对象的成像空间29,如图2所示。准直器22设置在X射线管20和X射线检测器23之间,用于整形由X射线管20向成像空间29内的对象发射的X射线。扫描台架2执行扫描,包括通过围绕位于中心的对象旋转X射线管、准直器和X射线检测器23,围绕对象在每一个视角“v”,由X射线管20向对象发射X射线以在X射线检测器23检测通过对象的X射线,以便获得对象中待成像区域的投影数据。应当指出,视角“v”指X射线管20围绕对象旋转的角度,其中位于铅垂线方向(plumb direction)的y方向被定义为0°,如图1所示。
如下文将要详细介绍的那样,根据本实施例,扫描台架2在前向移动托架401时执行扫描以便因此获得第一组投影数据作为投影数据。随后,其在后向移动托架401时执行扫描以便因此获得第二组投影数据作为投影数据。特别地,当旋转部件27围绕对象旋转X射线管20和X射线检测器23时,扫描台架2执行前向路径扫描和后向路径扫描,在前向路径扫描中,X射线管20向被扫描工作台部件4沿对象体轴的“z”向前向移动的对象发射X射线,并且X射线检测器23检测通过对象的X射线,在后向路径扫描中,X射线管20向被扫描工作台部件4在与前向相反的后向移动的对象发射X射线,并且X射线检测器23检测通过对象的X射线。也就是说,扫描台架2以结合螺旋扫描方案的往复扫描方案执行扫描。
现一一介绍扫描台架2中的元件。
X射线管20例如是旋转阳极类型,用于向对象待成像区域发射X射线。X射线管20基于来自X射线控制器25的控制信号CTL251经由准直器22向对象待成像区域发射具有特定强度的X射线,如图2所示。X射线管20被旋转部件27以体轴方向“z”为中心绕对象旋转,并从围绕对象的圆周发射X射线,其中方向“z”沿扫描工作台部件4移动对象进入成像空间29内的方向。在那时,X射线管20发射在通道方向“i”以及在行方向“j”放射状发射的X射线,通道方向“i”即X射线管20被旋转部件27旋转的旋转方向,行方向“j”,即旋转的旋转轴方向。由X射线管20发射的X射线被准直器22定形为锥形,并且投射到X射线检测器23侧。
X射线管移动部件21基于由X射线控制器25输出的控制信号CTL252在行方向“j”移动X射线管20的发射中心,如图2所示。
准直器22设置在X射线管22和X射线检测器23之间,如图2所示。准直器22包括例如用于阻挡X射线的阻挡板,用于防止其穿透,并且,为通道方向“i”和行方向“j”中的每一个方向都提供两个这种阻挡板。准直器22基于来自准直器控制器26的控制信号CTL261在通道方向“i”和行方向“j”分别地移动两个阻挡板,以在这些方向阻断由X射线管20发射的X射线用于将它们定形为锥形,并调节X射线在对象上的照射覆盖范围。特别地,准直器22通过在通道方向“i”上移动阻挡板改变用于通过由X射线管20发射的X射线的孔的尺寸,以将X射线发射角度调节为预定的扇形角,并且也通过在行方向“j”上移动阻挡板来改变该孔的尺寸,以将X射线发射角度调节为预定的锥形角。
X射线检测器23检测由X射线管20发射且通过成像空间29中的对象体内待成像区域的X射线,以便因此获得待成像区域的投影数据。X射线检测器23,与X射线管20一起,被旋转部件27绕对象旋转。然后其检测X射线管20从围绕对象的圆周发射且经过对象体内待成像区域的X射线以产生投影数据。
在该实施例中,X射线检测器23具有多个布置在其内的检测器元件23a,如图2所示,用于检测由X射线管20发射出的X射线。X射线检测器23是通常称作多行X射线检测器的检测器,并且具有,例如,在通道方向“i”和行方向“j”二维排列成阵列的检测器元件23a,通道方向“i”沿X射线管20被旋转部件27绕成像空间29内的对象旋转的旋转方向,行方向“j”沿X射线管20被旋转部件27旋转时作为中心轴的旋转轴的方向。例如,X射线检测器23具有大约1,000个布置在通道方向“i”的检测器元件23a,和大约8个布置在行方向“j”的检测器元件23a。并且,X射线检测器23具有由多个二维布置的检测器元件23a形成的凹形且弯曲的检测面。
构成X射线检测器23的检测器元件23a由例如固态检测器制成,每一个都具有用于将X射线转换成光的闪烁体(未示出)和用于将被闪烁体转换而成的光转换成电荷的光电二极管(未示出)。应当指出,检测器元件23a并不限于此,并且其还可以是,例如,那些使用碲化镉(CdTe)的半导体类型或使用氙(Xe)气的电离室类型的检测器元件。并且,用于防止散射的X射线进入检测器元件23a的准直器(未示出)可在X射线检测器23的通道方向“i”提供。
数据收集部件24用于收集来自X射线检测器23的投影数据。数据收集部件24收集由X射线检测器23的检测器元件23a检测到的X射线投影数据,并将它们输出到操作控制台3。如图2所示,数据收集部件24具有选择/添加开关电路(MUX,ADD)241和模数转换器(ADC)242。选择/添加开关电路241根据来自中央处理设备30的控制信号CTL303选择来自X射线检测器23的检测器元件23a的投影数据或是将它们添加到不同的组合中,并将结果输出到模数转换器242。模数转换器242将在选择/添加开关电路241中被选择或添加到任意组合的投影数据由模拟信号转换成数字信号,并将它们输出到中央处理设备30以在存储设备61中进行存储。
X射线控制器25响应于来自中央处理设备30的控制信号CTL301输出控制信号CTL251至X射线管20,如图2所示,用于控制X射线的发射。X射线控制器25,例如,控制X射线管20的管电流、照射时间等等。X射线控制器25也响应于来自中央处理设备30的控制信号CTL301输出控制信号CTL252至X射线管移动部件21,用于控制在行方向“j”移动X射线管20的发射中心。
准直器控制器26响应于来自中央处理设备30的控制信号CTL302输出控制信号CTL261至准直器22,如图2所示,从而控制准直器22为X射线管20射向对象的X射线定形。
旋转部件27具有圆柱形状,其中成像空间29形成在其中心部分,如图1所示。例如,响应于来自台架控制器28的控制信号CTL28,旋转部件27驱动马达(未示出)从而以成像空间29内对象的体轴方向“z”为中心旋转。换句话说,旋转部件27在通道方向“i”旋转,以行方向“j”为旋转轴。旋转部件27上提供有X射线管20、X射线管移动部件21、准直器22、X射线检测器23、数据收集部件24、X射线控制器25和准直器控制器26,并且部件27支持这些组件。旋转部件27通过滑环(未示出)向这些组件供电。并且,旋转部件27绕着对象旋转这些组件以改变被带入到成像空间29中的对象和在旋转方向上的这些组件之间的相对位置关系。
台架控制器28基于来自操作控制台3中的中央处理设备30的控制信号CTL304将控制信号CTL28输出到旋转部件27,如图1和2所示,用于控制旋转部件27进行旋转。
现对操作控制台3进行说明。
操作控制台3具有中央处理设备30、输入设备41、显示设备51和存储设备61,如图1所示。
操作控制台3中的中央处理设备30基于由操作者通过输入设备41输入的指令执行多种处理。中央处理设备30包括计算机,其根据程序充当多种工具。
图3是显示根据本发明实施例1的中央处理设备30的构造的模块示意图。
如图3所示,中央处理设备30具有控制部件301、扫描条件建立部件302、图像重建部件303、位置偏移量获得部件304。这些部件将一一进行介绍。
控制部件301用于控制X射线CT设备1的多个组件。控制部件301基于由操作者通过输入设备41输入的指令对该多个组件进行控制。例如,控制部件30通过基于由操作者通过输入设备41输入的指令控制该多个组件使其根据由扫描条件建立部件302建立的扫描条件工作,从而执行扫描。特别地,控制部件301向扫描工作台部件4输出控制信号CTL30b,以承载和移动对象进入到成像空间29中。控制部件301还向台架控制器28输出控制信号CTL304以旋转扫描台架2中的旋转部件27。控制部件301还向X射线控制器25输出控制信号CTL301,以由X射线管20发射X射线。控制部件301还向准直器控制器26输出控制信号CTL302以控制准直器22为X射线定形。最后,控制部件301向数据收集部件24输出控制信号CTL303,以控制对由X射线检测器23中的检测器元件23a获得的投影数据进行收集。
扫描条件建立部件302基于由操作者通过输入设备41输入的扫描参数,建立用于操作所述多个组件执行扫描的扫描条件。例如,扫描条件建立部件302根据切片厚度、扫描开始位置、扫描结束位置、扫描螺距(scan pitch)、X射线束宽度、管电流值、管电压值等等,建立操作所述多个组件的扫描条件。
在本实施例中,扫描条件建立部件302制定扫描计划,从而扫描以包括前向扫描和后向扫描的螺旋往复扫描方案被执行,如早前所述的那样。然后扫描条件建立部件302输出代表所建立的扫描条件的数据到控制部件301用于控制所述多个组件。
图像重建部件303基于通过执行扫描由数据收集部件24收集的投影数据,为对象中待成像区域图像重建切片图像,作为包括多个像素的数字图像。例如,图像重建部件303通过执行扫描而获得的投影数据,为穿过对象的多个切片平面图像重建具有指定了CT值的像素值的图像。例如,锥形束反投影技术被用于执行图像重建。特别地,图像重建部件303使用相应于图像重建平面上的像素的多个投影数据元素,图像重建代表通过对象的横截面的图像。在那种情况下,图像重建部件303首先对由数据收集部件24收集的投影数据执行包括偏移校正、对数校正、X射线剂量校正、灵敏度校正等的预处理。然后图像重建部件303对预处理过的投影数据执行滤波处理。在那种情况下,它执行的滤波处理包括应用傅立叶变换,与图像重建函数进行卷积,并且而后进行逆傅立叶变换。之后,对滤波过的投影数据进行三维反投影处理并且然后进行后续处理以产生图像数据。
在该实施例中,前向路径图像基于在前向扫描中获得的第一组投影数据进行图像重建,而后向路径图像基于在后向扫描中获得的第二组投影数据进行图像重建。在那种情况下,基于由位置偏移量获得部件304获得到的位置偏移量,产生前向路径图像和后向路径图像,使得前向路径图像和后向路径图像中相应的像素位置在沿前向和后向的方向上位于彼此对应的位置。
在那种情况下,例如,基于在前向扫描中获得的第一组投影数据为沿体轴方向“z”的冠状平面图像重建第一冠状图像,其中托架401前向移动,第二冠状图像基于在后向扫描中获得的第二组投影数据针对第一冠状图像被图像重建时所针对的冠状平面进行图像重建,其将在下文做详细的讨论。
例如,首先基于第一组投影数据为多个轴向平面图像重建多个第一轴向图像,所述轴向平面具有位于托架401前向和后向移动的体轴方向“z”上的垂线,并且然后,例如,被图像重建的多个第一轴向图像被通过MPR(多平面重定格式(Multi-Planar Reformatting))处理进行重定格式,以便因此图像重建第一冠状图像。接下来,基于第二组投影数据为多个轴向平面图像重建多个第二轴向图像,所述轴向平面具有位于托架401前向和后向移动的体轴方向“z”上的垂线,并且然后,例如,被图像重建的多个第二轴向图像通过MPR处理被重定格式,以便因此图像重建第二冠状图像。应当指出,第一和第二冠状图像可以由MIP(最大强度投影)处理而不是MPR处理产生。并且,在这里图像可在三维图像中产生。
然后,在至少第一和第二冠状图像之一中的像素位置基于由位置偏移量获得部件304获得的位置偏移量进行用于校正的移动,使得第一冠状图像和第二冠状图像中的相应像素位置在沿着前向和后向的体轴方向“z”上处于待成像区域中彼此对应的位置,从而产生第一冠状图像和第二冠状图像,分别作为前向路径图像和后向路径图像。
位置偏移量获得部件304获得位置偏移量,该位置偏移量代表第一对象位置和第二对象位置之间在沿着前向和后向的体轴方向“z”上的差异,其中第一对象位置是当托架401在扫描工作台部件4中前向移动时置于托架401上的对象内待成像区域所要移动到的位置,第二对象位置是当托架401后向移动时置于托架401上的对象内待成像区域所要移动到的位置,使得对象内待成像区域与第一对象位置相吻合。
在本实施例中,位置偏移量获得部件304通过对由图像重建部件303图像重建的第一冠状图像和第二冠状图像应用比较处理来计算位置偏移量,其细节将在下文讨论。在那种情况下,位置偏移量获得部件304基于通过对第一图像重建的冠状图像执行特征提取而提取出的第一特征提取区域的像素位置和通过对第二图像重建冠状图像执行特征提取而提取出的与在第一冠状图像中提取的第一特征提取区域相匹配的第二特征提取区域的像素位置,来计算位置偏移量。
操作控制台3的输入设备41包括例如,键盘和鼠标。输入设备41基于由操作者所做的输入操作提供多种信息(诸如扫描参数和对象信息)以及指令到中央处理设备30。例如,在指定实际扫描条件时,输入设备41基于来自操作者的指令提供关于扫描开始位置、扫描结束位置、扫描螺距、X射线束宽、管电流值以及切片厚度的数据,作为扫描参数。
操作控制台3上的显示设备51包括,例如,CRT,用于基于来自中央处理设备30的命令在其显示屏幕上显示图像。例如,显示设备51在其显示屏上显示由图像重建部件303图像重建的图像。
操作控制台3上的存储设备61包括用于存储多种数据的存储器。存储设备61根据需要被中央处理设备30访问用于存取其存储的数据。
现对扫描工作台部件4进行介绍。
扫描工作台部件4将对象移入/移出成像空间29。
图4室显示根据本发明实施例1中的扫描工作台部件4的构造透视图。
如图4所示,扫描工作台部件4具有托架401和托架移动部件402。
扫描工作台部件4的托架401具有沿水平面形成的顶面,其上放置有对象,并支持所述对象在该顶面上。例如,对象仰卧在工作台上并被扫描工作台部件4上的托架401支撑。
扫描工作台部件4中的托架移动部件402具有水平移动部件402a用于在水平方向H沿对象体轴的方向“z”移动托架401,以及垂直移动部件402b用于在垂至于水平方向H的铅垂方向V移动托架401,并且托架移动部件402基于来自中央处理设备30的控制信号CTL30b移动托架401以便将对象移动进入到成像空间29内。
在本实施例中,扫描工作台部件4使得托架401在前向FD和后向BD上往复运动,如图6所示,以相应于扫描条件建立部件302所建立的扫描条件以往复扫描方案执行扫描。
(操作)
现对在本实施例中的X射线CT设备1的操作进行介绍。
图5是显示根据本发明实施例1中的X射线CT设备1的操作的流程图。
首先,执行扫描条件的确定,如图5(S11)所示。
在这一步骤中,操作者在显示设备51的显示屏上观察通过执行侦察扫描而产生的侦察图像,并向输入设备41输入用于对对象待成像区域执行扫描的扫描参数。例如,操作者通过键盘输入操作或图标输入操作向输入设备41输入包括扫描方案、扫描开始位置、扫描结束位置、扫描螺距、X射线束宽、管电流值、切片厚度、工作台速度、螺旋螺距、噪声指标、初始加速度、结束加速度、成像部分名称等等的扫描参数。基于操作者所做的输入操作,输入设备41向中央处理设备30输出扫描参数。基于操作者通过输入设备41输入的扫描参数,中央处理设备30的扫描条件建立部件302建立用于操作多个组件执行扫描的扫描条件。在本实施例中,扫描条件建立部件302制定扫描计划从而扫描以螺旋往复扫描方案被执行。
接下来,执行扫描,如图5(S21)所示。
在这一步骤中,操作者向输入设备41输入启动扫描的命令,以引起控制部件301控制所述多个组件开始对对象进行扫描。所述扫描根据如上文所述建立的扫描条件进行。
图6是显示根据本发明的实施例1中所执行的扫描的侧视图。
如图6所示,扫描工作台部件4移动沿水平方向H延伸的、顶面上放置有对象的托架401,该移动在扫描台架2中的成像空间中沿体轴方向“z”在前向FD和后向BD进行。在这种情况下,扫描台架2以螺旋扫描方案执行扫描,包括向位于托架401上的对象发射X射线和检测通过对象的待成像区域的X射线。
特别地,如图1和2所示,当旋转部件27绕对象旋转X射线管20和X射线检测器23时,扫描台架2执行前向扫描,其中X射线管20向位于托架401上的对象发射X射线,托架401由扫描工作台部件4在沿对象体轴方向“z”的前向FD上移动,并且X射线检测器23检测通过对象的X射线。
而后,扫描台架2执行后向扫描,其中X射线管20向由扫描工作台部件4在与前向FD相反的后向BD上移动的对象发射X射线,并且检测通过对象的X射线。扫描台架2从而根据扫描计划反复执行前向扫描和后向扫描。
特别地,如图6所示,当在托架401上放置的对象的体轴方向“z”从前向移动开始位置Cs1到前向移动结束位置Ce1沿前向FD移动托架401时,执行前向扫描。第一组投影数据从而被获得作为投影数据。在这种情况下,通过在托架401前向FD移动时执行扫描,要作为投影数据获得的第一组多个投影数据元素在托架401在前向FD移动的过程中与相应的托架位置相关联地获得。
从而,如图6所示,当在位于托架401上的对象的体轴方向“z”上从后向移动开始位置Cs2至后向移动结束位置Ce2沿后向方向BD移动托架401时执行后向扫描。在本实施例中,如图6所示,从托架401在前向扫描中移动所沿的前向移动结束位置Ce1到前向移动开始位置Cs1执行后向扫描。第二组投影数据从而被获得作为投影数据。在那时,通过在托架401后向BD移动时执行扫描,所要获得作为投影数据的第二组多个投影数据元素在托架401后向BD移动过程中与相应的托架位置相关联地被获得。
图7是显示根据本发明的实施例1中,沿前向FD运动的位于托架401上的对象中的区域与沿后向BD运动的位于托架401上的对象中的所述区域之间的位置关系示意图。在图7中,示出沿托架401上放置的对象的体轴方向“z”的平面,其中图7(a)示出在前向方向FD的运动,而图7(b)示出在后向方向BD的运动。
如图7(a)和7(b)所示,当托架401前向FD移动时,移动的对象的位置(例如,OP1、OP2)与当托架401在与前向FD相反的后向BD移动时移动的对象的位置(例如,FP1、FP2)有时不同,从而使得对象体内诸如器官的组织在前向FD和后向BD之间位于体轴方向“z”上的不同位置,例如,如图7所示,即使试图在前向FD和后向BD移动之间将托架401移动成位于相同的位置也是如此,因为有力在托架401移动时沿体轴方向“z”被施加到对象上并且对象可能相对于托架401移动。
也就是说,即使与在托架401前向FD移动时所获得的所述多个第一组投影数据相关的托架位置,与在托架后向BD移动时所获得的所述多个第二组投影数据相关的托架位置彼此相同(见图6),所述位置相对于扫描台架2在对象的体轴方向“z”也会彼此不同,从而导致相对于对象的一定量的位置偏移“dz”的位置偏移,如图7所示。
接下来,执行图像重建,如图5(S31)所示。
在这一步骤,图像重建部件303基于由数据收集部件24通过执行上文所述的扫描而获得到的投影数据,为对象待成像区域图像重建切片图像,作为包含多个像素的数字图像。
在本实施例中,对象待成像区域的前向路径图像基于在前向扫描中获得的第一组投影数据进行图像重建,而对象待成像区域的后向路径图像基于在后向扫描中获得的第二组投影数据进行图像重建。
在这里基于由位置偏移量获得部件304获得的位置偏移量“dz”产生前向路径图像和后向路径图像,使得在前向路径图像和后向路径图像中的相应像素位置处于在沿前向和后向的方向上彼此相应的位置。
图8是显示根据本发明实施例1中的用于产生前向路径图像和后向路径图像的操作流程图。图9和10显示根据本发明的实施例1中在对象待成像区域的前向路径图像和后向路径图像的产生。
在产生前向路径图像和后向路径图像过程中,首先,多个第一轴向图像IA1基于来自前向扫描的第一组投影数据进行图像重建,并且多个第二轴向图像IA2基于来自后向扫描的第二组投影数据进行图像重建,如图8(S111)所示。
在这一步骤中,所述多个第一轴向图像IA1根据在前向扫描中获得的第一组投影数据针对多个轴向平面xy(具有位于托架401前向FD移动时所沿体轴方向“z”的垂线)进行图像重建,轴向平面FA11,...,FA1i,...,FA1n,分别对应于从第一托架位置C1至第n托架位置Cn以规则间隔排列的多个托架位置C1,...,Ci,...,Cn,如图9(a)所示。例如,产生以0.625mm的间隔排列的多个第一轴向图像IA1。也就是说,多个第一轴向图像IA1针对对象待成像区域R1被图像重建,所述对象在托架401放置的对象的体轴方向“z”上从前向移动开始位置Cs1到前向移动结束位置Ce1沿前向FD移动。
并且,根据在后向扫描中获得的第二组投影数据针对具有位于体轴方向“z”的垂线的轴向平面xy,图像重建所述多个第二轴向图像IA2,轴向平面FA21,...,FA2i,...,FA2n,分别对应于从第一托架位置C1至第n托架位置Cn产生第一轴向图像的多个托架位置C1,...,Ci,...,Cn,如图9(b)所示。在那时,当随着托架沿前向FD从在托架401上放置的对象体轴方向“z”上的第n托架位置Cn到第一托架位置C1移动而执行后向扫描时,在体轴方向“z”上产生具有一定位置偏移量“dz”的位置偏移,如先前参照图7所述的那样。因此,针对从在对象上执行前向扫描所针对的第一待成像区域R1移动了该位置偏移量的第二待成像区域R2执行扫描,如图9(b)所示。因此,在执行后向扫描过程中,实际上针对轴向平面FA21,...,FA2i,...,FA2n图像重建所述多个第二轴向图像IA2,所述轴向平面FA21,...,FA2i,...,FA2n从产生第一轴向图像IA1的轴向平面FA11,...,FA1i,...,FA1n偏移,在体轴方向“z”位置偏移量为“dz”。
接下来,如图8所示,由对多个第一轴向图像IA1进行重定格式而获得第一冠状图像IS1,并且,由对多个第二轴向图像IA2进行重定格式而获得第二冠状图像IS1(S121)。
在这一步骤中,通过对多个第一轴向图像IA1执行重定格式处理而由重定格式获得第一冠状图像IS1。通过对多个第二轴向图像IA2执行重定格式处理而由重定格式获得第二冠状图像IS2。
特别地,如图9(a)所示,针对冠状平面FS1执行MPR(多平面重定格式)处理作为重定格式处理,以便产生如图9(c)所示的第一冠状图像IS1,其中冠状平面FS1是沿托架401前向FD移动的体轴方向“z”的平面xz。
并且,如图9(b)所示,针对相应于冠状平面FS1的冠状平面FS2执行MPR处理作为重定格式处理,以便在托架401后向BD移动时所沿的体轴方向“z”产生第二冠状图像IS2,如图9(c)所示,其中冠状平面FS2是沿托架401后向BD移动的体轴方向“z”的平面xz,并且对于平面FS1由重定格式获得第一冠状图像IS1。
在那时,如图9(c)所示,由于在体轴“z”上发生的位置偏移,第一冠状图像IS1和第二冠状图像IS2的相应像素位置(对应于对象体内诸如器官的组织),相对彼此偏移一定的位置偏移量“dz”。
接下来,如图8所示,获得在前向扫描中移动的对象和在后向扫描中移动的对象之间的位置偏移量“dz”(S131)。
在这一步骤中,位置偏移量获得部件304获得位置偏移量“dz”,其代表在第一对象位置和第二对象位置之间的沿前向FD和后向BD的体轴方向“z”上的差,其中第一对象位置是当托架401在扫描工作台部件4中前向FD移动时位于移动的托架401上的对象的待成像区域所要移到的位置,以及第二对象位置是当托架401后向BD移动以使对象内待成像区域与第一对象位置相吻合时位于移动的托架401上的对象待成像区域所要移到的位置。
在该实施例中,位置偏移量获得部件304通过对由图像重建部件303图像重建的第一冠状图像IS1和第二冠状图像IS2实施比较处理,从而计算位置偏移量“dz”。
在那时,如图10(a)所示,基于通过对第一图像重建的冠状图像IS1执行特征提取处理而提取出的第一特征提取区域TR1的像素位置,并且基于通过对第二图像重建的冠状图像IS2执行特征提取处理而提取的与第一冠状图像IS1中提取出的第一特征提取区域TR1相匹配的第二特征提取区域TR2的像素位置,计算位置偏移量“dz”。
特别地,如图10(a)所示,例如,最初以如下方式提取第一特征提取区域TR1:通过对第一冠状图像IS1执行特征提取处理以便提取对象内血管与组织交叉的部分作为特征部分。同样地,通过对第二冠状图像IS2执行特征提取处理以提取第二特征提取区域TR2,以便与在第一冠状图像IS1中提取出的第一特征提取区域TR1相符合。
然后,将位置偏移量“dz”计算为距离,该距离代表在体轴方向“z”上的在第一冠状图像IS1中提取出的第一特征提取区域TR1的像素位置与在第二冠状图像IS2中提取的匹配第一特征提取区域TR1的第二特征提取区域TR2的像素位置之间的差。
接下来,如图8所示,第一冠状图像IS1与第二冠状图像IS2配准从而使得它们在对象体轴方向“z”上彼此吻合(S141)。
在这一步骤中,基于由位置偏移量获得部件304获得到的位置偏移的量“dz”,第一冠状图像IS1和第二冠状图像IS2中至少一个中的像素位置被偏移以进行校正,使得在第一冠状图像IS1和第二冠状图像IS2中的相应像素位置在沿前向FD和后向BD的体轴方向“z”上位于待成像区域中彼此对应的位置。然后,经过这种校正的第一冠状图像IS1和第二冠状图像IS2被产生,分别作为前向路径图像和后向路径图像。
特别地,如图10(b)所示,例如,根据上述计算出的位置偏移的量“dz”,第二冠状图像IS2中的像素位置相对于第一冠状图像IS 1中的像素位置在体轴方向“z”上移动。从而,第一冠状图像IS1和像素位置偏移了的第二冠状图像IS2被产生,分别作为前向路径图像和后向路径图像。
然后,显示设备51在其显示屏上显示这样产生的前向路径图像和后向路径图像用于诊断。
如前所述,根据该实施例,位置偏移量获得部件304获得代表第一对象位置和第二对象位置之间的在沿前向FD和后向BD的体轴方向“z”上的差异的位置偏移量“dz”,其中所述第一对象位置是指当托架401在扫描工作台部件4中前向FD移动时位于移动的托架401上的对象待成像区域所要移到的位置,以及第二对象位置是当托架401后向BD移动以使对象体内待成像区域与第一对象位置相吻合时位于移动的托架401上的对象待成像区域所要移到的位置。然后,基于由位置偏移量获得部件304获得到的位置偏移的量“dz”,对前向路径图像和后向路径图像进行校正,从而在前向路径图像和后向路径图像中的相应的像素位置在沿前向FD和后向BD的体轴方向“z”上位于彼此对应的位置上。从而,根据本实施例,切片图像在前向FD和后向针对位于同一位置的切片平面进行重建;因此,很容易实现图像质量以及诊断效率的提高。
并且,根据本实施例,基于第一组投影数据对第一冠状图像IS1进行图像重建,基于第二组投影数据对第二冠状图像IS2进行图像重建,并且对经过图像重建的第一冠状图像IS1和第二冠状图像IS2实施比较处理,以便计算位置偏移量。此时,基于在前向扫描中获得到的第一组投影数据,针对具有在托架401前向FD和后向BD移动所沿的体轴方向“z”的垂线的多个轴向平面,图像重建多个第一轴向图像IA1,而后,对图像重建的多个第一轴向图像IA1重定格式,以便图像重建第一冠状图像IS1。并且,基于在后向扫描中获得的第二组投影数据,针对具有托架401的体轴方向“z”的垂线的多个轴向平面图像重建多个第二轴向图像IA2,而后,图像重建的多个第二轴向图像IA2被重定格式以图像重建第二冠状图像IS2。之后,基于通过在第一冠状图像IS1上执行特征提取处理而提取的第一特征提取区域TR1的像素位置,并基于通过在第二冠状图像IS2上执行特征提取处理而提取的与第一冠状图像IS1中提取的第一特征提取区域TR1相吻合的第二特征提取区域TR2的像素位置,计算位置偏移量。然后,第一冠状图像IS1和第二冠状图像IS2中至少一个中的像素位置基于如上所述的自动计算的位置偏移量偏移以进行校正,使得第一冠状图像IS1和第二冠状图像IS2中的相应像素位置定位在沿前向FD和后向BD的体轴方向“z”上的待成像区域中的彼此对应的位置上。然后,产生第一冠状图像IS1和第二冠状图像IS2,分别作为前向路径图像和后向路径图像。根据该实施例,在前向FD和后向移动过程中发生的位置偏移的量因此被自动测量,而后,可基于所测量到的位置偏移量针对在前向FD和后向中位于对象体内同一位置的切片平面校正切片图像;因此,很容易实现图像质量以及诊断效率的提高。
<实施例2>
现在介绍根据本发明的第二实施例。
该实施例在获得在前向扫描中移动和后向扫描中移动的对象之间的位置偏移量的步骤(图8中示出的实施例1的步骤S131)上与实施例1有所不同。除了这一点,该实施例与实施例1相似。因此,其余的部分不再赘述。
图11是显示在根据本发明的实施例2中,获得在前向扫描中运动和在后向扫描中运动的对象之间的位置偏移量的操作流程图。图12是显示在根据本发明的实施例2中的在前向扫描中运动和在后向扫描中运动的对象之间的位置偏移量的示意图。
在获得在前向扫描中移动和在后向扫描中移动的对象之间的位置偏移量的过程中,显示设备51在其显示屏上并排显示第一冠状图像IS1和第二冠状图像IS2,如图11所示(S211)。
在这一步骤中,如图12(a)所示,显示设备51在其显示屏上并排显示通过如实施例1中的重定格式所获得的第一冠状图像IS1和第二冠状图像IS2。
接下来,如图11所示,输入第一冠状图像IS1中的第一特定区域TR11的像素位置,并且输入第二冠状图像IS2中的相应于第一特定区域TR11的第二特定区域TR21的像素位置(S221)。
在这一步骤中,如图12(b)所示,操作者观察显示在显示设备51的显示屏上的第一冠状图像IS1,并且利用输入设备41中的指点设备输入第一冠状图像IS1中的第一特定区域TR11的像素位置。然后显示设备51在其显示屏上显示第一冠状图像IS1,其叠加了第一标记图像M1以指示第一特定区域TR11的输入像素位置。例如,对象体内血管与组织交叉部分的像素位置被作为第一特定区域TR11输入。同样地,操作者而后观察显示在显示设备51的显示屏上的第二冠状图像IS2,并且利用输入设备41中的指点设备输入与第一冠状图像IS1中输入的第一特定区域TR11相应的第二冠状图像IS2中的区域的像素位置,作为第二特定区域TR21。然后显示设备51在其显示屏上显示第二冠状图像IS2,其叠加了第二标记图像M2以指示第二特定区域TR21的输入像素位置。
接下来,由第一特定区域TR11的像素位置和第二特定区域TR21的像素位置计算位置偏移量“dz”(S231)。
在这一步骤中,位置偏移量获得部件304基于通过输入设备41输入的第一特定区域TR11的像素位置和第二特定区域TR21的像素位置,计算位置偏移量“dz”。特别地,如图12(b)所示,位置偏移量“dz”作为距离计算,该距离代表在第一冠状图像IS 1中输入的第一特定区域TR11的像素位置和在第二冠状图像IS2中输入的相应于第一特定区域TR11的第二特定区域TR21的像素位置之间在体轴方向“z”上的差别。
而后,第一冠状图像IS1与第二冠状图像IS2进行配准从而它们在对象的体轴方向“z”上彼此吻合,如在实施例1中那样(图8中的S141)。
如上所述,根据该实施例,显示设备41在其显示屏上显示在前向扫描中获得的第一冠状图像IS1和在后向扫描中获得的第二冠状图像IS2。然后,观察显示在显示屏上的第一冠状图像IS1和第二冠状图像IS2的操作者,通过输入设备输入第一冠状图像IS1中的第一特定区域TR11的像素位置,并通过输入设备41输入与第一特定区域TR11相应的第二冠状图像IS2中的第二特定区域TR21的像素位置。然后,位置偏移量获得部件304,基于通过输入设备41输入的第一特定区域TR11和第二特定区域TR21的像素位置,计算位置偏移量“dz”。如在实施例1中的那样,在用作前向路径图像的第一冠状图像IS1中和用作后向路径图像的第二冠状图像IS2中的相应像素位置,基于由位置偏移量获得部件304获得的位置偏移量“dz”被校正,从而它们在沿前向FD和后向BD的体轴方向“z”上位于彼此对应的位置上。因此,根据该实施例,如在实施例1中那样,可针对在前向FD和后向方向上位于对象内同一位置的切片平面,图像重建切片图像;因此,很容易实现图像质量以及诊断效率的提高。
<实施例3>
现对根据本发明的实施例3进行介绍。
该实施例在获得在前向扫描中移动和在后向扫描中移动的对象之间的位置偏移量的步骤(图8中示出的实施例1的步骤S131)上与实施例1有所不同。除了这一点,该实施例与实施例1相似。因此,其余的部分不再赘述。
图13是显示在根据本发明的实施例3中,获得在前向扫描中运动的对象和在后向扫描中运动的对象之间的位置偏移量的操作流程图。
在获得在前向扫描中移动和在后向扫描中移动的对象之间的位置偏移量的过程中,由操作者通过输入设备输入有关位置偏移量的位置偏移量数据,作为输入数据,如图13所示(S311)。
在这一步骤中,例如,输入操作者事先测得的关于位置偏移量的位置偏移量数据。
接下来,获得位置偏移量“dz”(S321)。
在这一步骤中,如上所述通过输入设备41输入的位置偏移量数据由位置偏移量获得部件304接收,以获得该数据作为位置偏移量“z”。
而后,第一冠状图像IS1与第二冠状图像IS2进行配准从而它们在对象的体轴方向“z”上彼此吻合,如在实施例1中那样(图8中的S141)。
如上所述,根据该实施例,由操作者通过输入设备作为输入数据输入关于位置偏移量的位置偏移量数据,并且位置偏移量获得部件304基于通过输入设备41输入的位置偏移量数据获得位置偏移量“dz”。如在实施例1中的那样,在用作前向路径图像的第一冠状图像IS1中和用作后向路径图像的第二冠状图像IS2中的相应像素位置,基于由位置偏移量获得部件304获得到的位置偏移量“dz”被校正,从而它们在沿前向FD和后向BD的体轴方向“z”上位于彼此对应的位置。因此,根据该实施例,如同在实施例1中那样,可针对在前向FD和后向中位于对象体内的同一位置的切片平面对切片图像进行图像重建;因此,很容易实现图像质量以及诊断效率的提高。
<实施例4>
现对根据本发明的实施例4进行说明。
在该实施例中,多个轴向图像被图像重建,使得前向路径图像和后向路径图像在托架401前向FD和后向移动所沿的体轴方向“z”上的对象体内待成像区域中的彼此不同的位置交替排列。然后显示设备51沿托架401前向FD和后向移动所沿的体轴方向“z”,在其显示屏上顺序地交替显示前向路径图像和后向路径图像作为活动图像。除了这一点,该实施例与实施例1相似。因此,其余的部分不再赘述。
图14是显示根据本发明实施例4所产生的前向路径图像和后向路径图像的示意图。
在产生前向路径图像时,如图14(a)所示,基于在前向扫描中获得的第一组投影数据,针对具有在托架401前向FD和后向BD移动所沿的体轴方向“z”上的垂线的多个轴向平面,图像重建多个前向路径图像FI1,...,FIi,...,FIn
在那时,如图14(a)所示,该多个前向路径图像FI1,...,FIi,...,FIn被针对与具有在体轴方向“z”上的垂线的平面xy相对应的多个轴向平面FA11,...,FA1i,...,FA1n进行图像重建,轴向平面FA11,...,FA1i,...,FA1n分别相应于从第一托架位置C1至第n托架位置Cn以规则间隔排列的托架位置C1,...,Ci,...,Cn中奇数编号的那些。
在产生后向路径图像时,如图14(b)所示,基于在后向扫描中获得的第二组投影数据,被针对与具有在托架401前向FD和后向BD移动所沿的体轴方向“z”上的垂线的平面xy相对应的多个轴向平面,图像重建多个后向路径图像BI12,...,BI1i-1,...,BI1n-1
在那时,如图14(b)所示并与实施例1不同,为了制作包含相结合的前向路径图像和后向路径图像的活动图像,该多个后向路径图像BI12,...,BI1i-1,...,BI1n-1被图像重建,使得前向路径图像FI1,...,FIi,...,FIn和后向路径图像BI12,...,BI1i-1,...,BI1n-1被交替排列在托架前向FD和后向移动所沿的体轴方向“z”上彼此不同的位置。也就是说,如图14(b)所示,该多个后向路径图像BI12,...,BI1n-1针对具有在体轴方向“z”上的垂线的平面xy进行图像重建,轴向平面FA12,...,FA1n-1分别相应于从第一托架位置C1至第n托架位置Cn以规则间隔排列的托架位置C1,...,Ci,...,Cn中偶数编号的那些。
虽然如图14(a)和(b)所示,在这种情况下,该多个前向路径图像FI1,...,FIi,...,FIn和多个后向路径图像BI12,...,BI1i-1,...,BI1n-1被交替图像重建,使得它们相应于从第一托架位置C1至第n托架位置Cn以规则间隔排列的托架位置,但是该多个前向路径图像FI1,...,FIi,...,FIn和多个后向路径图像BI12,...,BI1i-1,...,BI1n-1之间的相对位置关系并不对应于从第一托架位置C1至第n托架位置Cn以规则间隔排列的托架位置C1,C2,...,Ci,...,Cn-1,Cn,如图14(a)和(b)所示,因为如前文针对图7所述,在前向扫描和后向扫描之间在对象的体轴方向“z”上存在位置偏移。因此,如前所述,当前向路径图像FI1,...,FIi,...,FIn和后向路径图像BI12,...,BI1i-1,...,BI1n-1被沿着体轴“z”作为活动图像交替顺序地显示在显示屏上时,对象内的诸如器官的组织将被显示为波动的,好像其在跳动一样。
因此,在该实施例中,前向路径图像FI1,...,FIi,...,FIn和后向路径图像BI12,...,BI1i-1,...,BI1n-1基于根据实施例1等的由位置偏移量获得部件304获得的位置偏移量“dz”配准,使得它们在体轴方向“z”上与对象待成像区域中相应的位置相对应。
例如,如在图14(b)中以实线指出的,基于第二组投影数据为轴向平面FA22,...,FA2i-1,...,FA2n-1图像重建多个轴向图像,并且该多个轴向图像作为后向路径图像BI22,...,BI2i-1,...,BI2n-1产生,所述轴向平面FA22,...,FA2i-1,...,FA2n-1从上述后向路径图像BI12,...,BI1i-1,...,BI1n-1被图像重建所针对的轴向平面FA12,...,FA1i-1,...,FA1n-1偏移,对应于在体轴方向“z”上的位置偏移量“dz”,偏移。例如,通过应用诸如插值处理的数据处理产生所述图像。
然后,如图14(c)所示,显示设备51在其显示屏上作为活动图像显示被配准的前向路径图像FI1,...,FIi,...,FIn和后向路径图像BI22,...,BI2i-1,...,BI2n-1,这些图像作为沿体轴方向“z”交替排列的帧。
也就是说,如图14(c)所示,图像被以序列交替而连续地显示,所述序列例如是前向路径图像FA11,后向路径图像BI22,...,后向路径图像BI2i-1,前向路径图像FIi,...,后向路径图像BI2n-1,以及前向路径图像FIn
如上所述,在该实施例中,基于由位置偏移量获得部件304获得到的位置偏移的量“dz”,前向路径图像FI1,...,FIi,...,FIn和后向路径图像BI12,...,BI1i-1,...,BI1n-1被配准,使得它们与体轴方向“z”上对象待成像区域中的相应位置相对应。然后,配准的前向路径图像FI1,...,FIi,...,FIn和后向路径图像BI22,...,BI2i-1,...,BI2n-1被作为活动图像显示,这些图像作为沿体轴方向“z”交替排列的帧。因此,在该实施例中,前向路径图像FI1,...,FIi,...,FIn和后向路径图像BI12,...,BI1i-1,...,BI1n-1在它们被对应于对象的参照位置彼此配准之后再被图像重建;因此,当它们被连续且顺序地显示为活动图像中的帧时,避免了将在对象体内的器官等等显示为波动仿佛其在跳动一样的情况。因此,该实施例很容易实现图像质量和诊断效率的提高。
应当指出,在前述的实施例中,X射线CT设备1对应于根据本发明的射线照相设备。在上述实施例中,扫描台架2对应于本发明的扫描部件。在前述实施例中,显示设备51对应于本发明的显示部件。
并且,在实施本发明时,不限于上述实施例,并且可进行多种改变。
例如,前述实施例阐明了将X射线用作辐射的情况;但是本发明并不限于此。例如,也可使用诸如伽玛射线的辐射。
并且,上述实施例阐述了扫描以螺旋往复扫描方案执行扫描的情况;但是本发明并不限于此。例如,本发明可用于以轴向往复扫描方案执行扫描的情况。
另外,上述实施例阐述了前向路径图像和后向路径图像在冠状平面和轴向平面上产生的情况;但是本发明并不限于此。例如,本发明还可用于在矢状平面或倾斜平面上产生图像的情况。
另外,虽然上述实施例阐述了根据通过MPR处理产生的图像为前向扫描和后向扫描之间的对象自动测量位置偏移量“dz”的情况,但是所述偏移量可利用诸如由MIP处理产生的图像或三维图像来测量。

Claims (9)

1.一种射线照相设备(1),具有:
包括上面放置有对象的托架(401)的扫描工作台部件(4),用于移动所述托架(401);
用于执行扫描的扫描部件(2),该扫描包括向在所述扫描工作台部件(4)中移动的托架(401)上放置的所述对象中待成像区域发射射线,以及检测通过所述待成像区域的所述射线以便获得所述待成像区域的投影数据;以及
数据处理部件(30),用于基于由所述扫描部件(2)获得的所述投影数据图像重建所述待成像区域的图像,
所述扫描工作台部件(4)相对于所述扫描部件(2)前向和后向移动所述托架(401),
所述扫描部件(2)在所述托架(401)前向移动时执行所述扫描以便获得第一组投影数据作为所述投影数据,并且在所述托架(401)后向移动时执行所述扫描以便获得第二组投影数据作为所述投影数据,并且
所述数据处理部件(30)基于所述第一组投影数据图像重建前向路径图像,并基于所述第二组投影数据图像重建后向路径图像,其中所述前向路径图像和所述后向路径图像通过以下操作获得:分别基于所述第一组投影数据与所述第二组投影数据图像重建第一图像与第二图像;通过对所述第一图像和所述第二图像应用比较处理而计算位置偏移量;基于所获得的位置偏移量,为校正而移动所述第一图像和所述第二图像的至少一个中的像素位置,使得所述第一图像和所述第二图像中的相应像素位置位于在所述待成像区域中沿所述前向和所述后向的方向上相互对应的位置;从而将经校正的第一图像与第二图像分别作为所述前向路径图像与所述后向路径图像,
其中所述数据处理部件(30)包括:
位置偏移量获得部件(304),用于获得位置偏移量,该位置偏移量代表第一对象位置和第二对象位置之间在沿所述前向和所述后向的方向上的差别,所述第一对象位置是当所述托架(401)在所述扫描工作台部件(4)中前向移动时位于所述托架(401)上的所述对象内所述待成像区域所要移到的位置,并且所述第二对象位置是当所述托架(401)在所述扫描工作台部件(4)中后向移 动时位于所述托架(401)上的所述对象内所述待成像区域所要移到的、使得所述对象内所述待成像区域与所述第一对象位置相符合的位置。
2.根据权利要求1所述的射线照相设备(1),其中:
所述位置偏移量获得部件(304)计算所述位置偏移量。
3.根据权利要求1或2所述的射线照相设备(1),其中:
所述数据处理部件(30)针对沿所述托架(401)在所述前向移动的方向的平面图像重建所述第一图像,并且针对所述第一图像被图像重建的平面图像重建所述第二图像。
4.根据权利要求3所述的射线照相设备(1),其中:
所述数据处理部件(30)通过基于所述第一组投影数据针对具有位于所述托架(401)前向和后向移动所在的方向上的垂线的多个平面图像重建多个第三图像,然后对所述被图像重建的多个第三图像进行重定格式,来图像重建所述第一图像,并且通过基于所述第二组投影数据针对具有位于所述托架(401)前向和后向移动所在的方向上的垂线的多个平面图像重建多个第四图像,然后对所述被图像重建的多个第四图像进行重定格式,来图像重建所述第二图像。
5.根据权利要求1或2所述的射线照相设备(1),其中:
基于通过对所述数据处理部件(30)图像重建的所述第一图像执行特征提取处理而提取出的第一特征提取区域的像素位置,以及通过对所述数据处理部件(30)图像重建的所述第二图像执行特征提取处理而提取出的与所述第一图像中提取的所述第一特征提取区域匹配的第二特征提取区域的像素位置,所述位置偏移量获得部件(304)计算所述位置偏移量。
6.根据权利要求1所述的射线照相设备(1),具有:
用于在其显示屏幕上显示由所述数据处理部件(30)为所述待成像区域图像重建的图像的显示部件;以及
可由操作者输入输入数据的输入部件,
其中所述显示部件在所述显示屏幕上显示所述第一图像和所述第二图像,
所述输入部件由操作者输入在所述显示部件上显示的所述第一图像中第一特定区域的像素位置,并且由操作者输入在所述显示部件上显示的所述第二图像中相应于所述第一特定区域的第二特定区域的像素位置,和
所述位置偏移量获得部件(304)基于通过所述输入部件输入的所述第一特 定区域的像素位置和所述第二特定区域的像素位置计算所述位置偏移量,而获得所述位置偏移量。
7.根据权利要求1所述的射线照相设备(1),其中:
当基于所述第一组投影数据针对具有托架(401)前向和后向移动所在的方向上的垂线的平面图像重建所述前向路径图像时,以及当基于所述第二组投影数据针对具有托架(401)前向和后向移动所在的方向上的垂线的平面图像重建所述后向路径图像时,所述数据处理部件(30)基于由所述位置偏移量获得部件(304)获得的所述位置偏移量对所述前向路径图像和所述后向路径图像进行图像重建,使得所述前向路径图像和所述后向路径图像均在所述托架(401)前向和后向移动所在的方向上符合所述对象中待成像区域的位置。
8.根据权利要求6所述的射线照相设备(1),具有:
用于在其显示屏幕上显示由数据处理部件(30)为所述待成像区域图像重建的图像的显示部件,
其中所述数据处理部件(30)图像重建多个所述前向路径图像和多个所述后向路径图像,使得它们在托架(401)前向和后向移动所在的方向上被交替排列在所述对象中待成像区域内彼此不同的位置,并且
所述显示部件沿托架(401)前向和后向移动所在的方向,在所述显示屏幕上作为活动图像顺序交替显示由所述数据处理部件(30)产生的所述前向路径图像和所述后向路径图像。
9.根据权利要求1-2、6-8中任一项所述的射线照相设备(1),其中:所述扫描部件(2)
包括用于在其中接收在所述扫描工作台部件(4)内移动的所述托架(401)的成像空间,并且
具有:用于向放置在所述成像空间中所述托架(401)上的所述对象发射X射线的照明部件;以及检测从所述照明部件发射出并且通过所述对象的所述射线以便因此产生所述投影数据的检测部件。 
CN2007101857695A 2006-12-11 2007-12-11 射线照相设备 Expired - Fee Related CN101259022B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006333788A JP5022690B2 (ja) 2006-12-11 2006-12-11 放射線撮影装置
JP2006-333788 2006-12-11
JP2006333788 2006-12-11

Publications (2)

Publication Number Publication Date
CN101259022A CN101259022A (zh) 2008-09-10
CN101259022B true CN101259022B (zh) 2011-06-08

Family

ID=39542806

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101857695A Expired - Fee Related CN101259022B (zh) 2006-12-11 2007-12-11 射线照相设备

Country Status (3)

Country Link
US (1) US7949087B2 (zh)
JP (1) JP5022690B2 (zh)
CN (1) CN101259022B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5184834B2 (ja) * 2007-07-18 2013-04-17 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X線ct装置
US8744039B2 (en) * 2008-07-04 2014-06-03 Hitachi Medical Corporation X-ray CT apparatus
CN101917137A (zh) * 2010-07-06 2010-12-15 上海淘科网络技术有限公司 太阳能光伏发电***网络监控管理平台
JP6125206B2 (ja) * 2011-12-02 2017-05-10 東芝メディカルシステムズ株式会社 X線画像診断装置
JP6309250B2 (ja) 2012-11-14 2018-04-11 キヤノンメディカルシステムズ株式会社 X線ct装置、x線ct装置の制御プログラム
CN104414670B (zh) * 2013-08-29 2019-03-29 Ge医疗***环球技术有限公司 一种校正ct二维重建图像失真的方法、装置及ct机
US9965875B2 (en) * 2016-06-21 2018-05-08 Carestream Health, Inc. Virtual projection image method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5833607A (en) * 1996-03-25 1998-11-10 Siemens Corporate Research, Inc. Automatic full-leg mosaic and display for peripheral angiography
CN1346980A (zh) * 2000-09-26 2002-05-01 株式会社岛津制作所 Ct装置
CN1442116A (zh) * 2002-03-06 2003-09-17 Ge医疗***环球技术有限公司 X-射线ct设备和控制它的方法
CN1614506A (zh) * 2003-11-04 2005-05-11 Ge医疗***环球技术有限公司 X射线计算机体层摄影成像方法和装置
CN1647759A (zh) * 2004-01-29 2005-08-03 西门子公司 对准和重叠医疗成像的系列拍摄中的图像数据的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2676576B2 (ja) * 1992-11-19 1997-11-17 株式会社日立メディコ X線ct装置
US5448607A (en) * 1994-02-08 1995-09-05 Analogic Corporation X-ray tomography system with gantry pivot and translation control
JPH08117218A (ja) * 1994-10-25 1996-05-14 Ge Yokogawa Medical Syst Ltd 画像間演算方法およびct装置
US6266453B1 (en) * 1999-07-26 2001-07-24 Computerized Medical Systems, Inc. Automated image fusion/alignment system and method
JP2002065661A (ja) 2000-08-24 2002-03-05 Ge Medical Systems Global Technology Co Llc X線ctシステムおよびその操作コンソールおよびその制御方法
JP4175791B2 (ja) * 2001-08-20 2008-11-05 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 画像生成方法およびx線ct装置
US6496560B1 (en) * 2001-11-21 2002-12-17 Koninklijke Philips Electronics, N.V. Motion correction for perfusion measurements
JP3870105B2 (ja) * 2002-02-22 2007-01-17 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 逆投影方法およびx線ct装置
US6816567B2 (en) * 2002-07-15 2004-11-09 Ge Medical System Global Technology Company, Llc System and method for acquiring x-ray data
US6628743B1 (en) * 2002-11-26 2003-09-30 Ge Medical Systems Global Technology Company, Llc Method and apparatus for acquiring and analyzing cardiac data from a patient
JP4253497B2 (ja) * 2002-12-03 2009-04-15 株式会社東芝 コンピュータ支援診断装置
JP4339202B2 (ja) * 2004-07-30 2009-10-07 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X線ct装置
JP4629415B2 (ja) * 2004-11-26 2011-02-09 株式会社日立メディコ 画像表示システム、画像表示方法及び画像表示プログラム
JP4772355B2 (ja) * 2005-03-29 2011-09-14 株式会社東芝 X線診断装置
WO2007008530A1 (en) * 2005-07-08 2007-01-18 Wisconsin Alumni Research Foundation Backprojection reconstruction method for ct imaging
US8098911B2 (en) * 2006-12-05 2012-01-17 Siemens Aktiengesellschaft Method and system for registration of contrast-enhanced images with volume-preserving constraint

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5833607A (en) * 1996-03-25 1998-11-10 Siemens Corporate Research, Inc. Automatic full-leg mosaic and display for peripheral angiography
CN1346980A (zh) * 2000-09-26 2002-05-01 株式会社岛津制作所 Ct装置
CN1442116A (zh) * 2002-03-06 2003-09-17 Ge医疗***环球技术有限公司 X-射线ct设备和控制它的方法
CN1614506A (zh) * 2003-11-04 2005-05-11 Ge医疗***环球技术有限公司 X射线计算机体层摄影成像方法和装置
CN1647759A (zh) * 2004-01-29 2005-08-03 西门子公司 对准和重叠医疗成像的系列拍摄中的图像数据的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JP特开2003-126074A 2003.05.07
JP特开2004-236929A 2004.08.26
JP特开平10-127615A 1998.05.19

Also Published As

Publication number Publication date
US7949087B2 (en) 2011-05-24
JP2008142354A (ja) 2008-06-26
CN101259022A (zh) 2008-09-10
JP5022690B2 (ja) 2012-09-12
US20080152076A1 (en) 2008-06-26

Similar Documents

Publication Publication Date Title
CN101259022B (zh) 射线照相设备
CN100563567C (zh) 利用多个偏移x-射线发射点成像的方法和***
US6574296B2 (en) Computer tomography unit and method for operating same
US6373916B1 (en) X-ray CT apparatus
CN1169000C (zh) 一种多角度预筛分层析x射线照相***和方法
CN105361900B (zh) 静态实时ct成像***及其成像控制方法
CN102106740B (zh) X射线复式断层扫描成像***及方法
EP2273257B1 (en) Imaging system using a straight-line trajectory scan and method thereof
CN105264361B (zh) 高分辨率计算机断层扫描
US7349520B2 (en) X-ray CT scanner and image-data generating method
CN100479754C (zh) 射线照相***
CN1853570A (zh) Ct成像方法和***
CN1413558A (zh) X-射线ct装置
CN100409810C (zh) X射线ct设备和成像方法
CN106132302A (zh) 包括多个x射线源的x射线成像设备
CN102056545A (zh) 用于计算机断层摄影成像的扫描仪设备和方法
CN104198506A (zh) 小角度自摆式大型多层螺旋ct设备和检查方法
JP2004160218A (ja) X線コンピュータ断層装置、x線コンピュータ断層装置制御方法、及びx線コンピュータ断層撮影プログラム
CN1480099A (zh) 对周期性运动检查对象的测量方法及成像医学检查设备
WO2007067529A2 (en) Apparatus and method for providing a near-parallel projection from helical scan data
CN1418599A (zh) 荧光检查计算机断层方法
CN106659454B (zh) X射线ct装置以及x射线ct图像的拍摄方法
US7688939B2 (en) Object rotation for CT data acquisition
US9689812B2 (en) Systems and methods for generating two-dimensional images from projection data
JP3748305B2 (ja) X線ct装置及び画像処理装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110608

Termination date: 20161211