CN101254467A - Precipitating-hydrothermal preparation with high visible light catalytic activity nano CdxZn1-xS photocatalyst - Google Patents

Precipitating-hydrothermal preparation with high visible light catalytic activity nano CdxZn1-xS photocatalyst Download PDF

Info

Publication number
CN101254467A
CN101254467A CNA2008100603785A CN200810060378A CN101254467A CN 101254467 A CN101254467 A CN 101254467A CN A2008100603785 A CNA2008100603785 A CN A2008100603785A CN 200810060378 A CN200810060378 A CN 200810060378A CN 101254467 A CN101254467 A CN 101254467A
Authority
CN
China
Prior art keywords
nano
high visible
powder
nitrate
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008100603785A
Other languages
Chinese (zh)
Inventor
王智宇
祖胜男
樊先平
钱国栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CNA2008100603785A priority Critical patent/CN101254467A/en
Publication of CN101254467A publication Critical patent/CN101254467A/en
Pending legal-status Critical Current

Links

Images

Abstract

The invention discloses a deposition-hydrothermal method for preparing a nano-sized CdxZn<1-x>S photocatalyst with high visible-light photocatalytic activity. The method includes the following steps: 1) adding dropwise a mixed solution of cadmium nitrate and zinc nitrate into a sodium sulfide solution, stirring at a medium rate for 0.5-3 hours, maintaining the temperature at 10-40 DEG C to obtain a nano-sized powdery precursor precipitate; 2) placing the nano-sized powdery precursor precipitate in a reaction vessel, raising the temperate at a rate of 1-5 DEG C/min up to 150-240 DEG C, maintaining the temperature, allowing hydrothermal reactions for 12-24 hours, stopping the hydrothermal reactions, naturally cooling down to room temperature, taking out the reaction products, washing with the deionized water and the anhydrous alcohol for 3-4 times, drying at 50-80 DEG C in a vacuum drying oven to obtain a solid solution of nano-sized CdxZn<1-x>S photocatalyst. The production method is carried out in water phase with easy operation and low cost. The product has uniform distribution of particle size, the forbidden band width and optical properties thereof are controlled by changing components, and the product has high visible-light photocatalytic activity and good prospects in industrial application.

Description

Has high visible light catalytic activity nano Cd xZn 1-xPrecipitation-the hydrothermal preparing process of S photochemical catalyst
Technical field
The present invention relates to a kind of nanometer Cd that forms solid solution xZn 1-xPrecipitation-the hydrothermal preparing process of S photochemical catalyst, this powder possesses high visible light catalytic activity.
Background technology
In recent decades, because environmental pollution and energy crisis are on the rise, people have carried out extensive studies for the environmental protection treatment technology of exploring novel practical.The conductor photocatalysis technology provides opportunity for the solution of this problem, and wherein studying many is titanium dioxide.Because TiO 2Energy gap big (Eg ≈ 3.0-3.2ev), its absorption spectrum be in the black light district (λ<400nm), low to the utilization rate of sunshine, be necessary the photochemical catalyst of development of new.
Semi-conductor nano particles causes that recently the binary sulphur of people's very big concern, especially second family is the research of metallic compound.Mainly be because it has nonlinear optics and fluorescent effect, quantum size effect and some other important physics and chemical property.
Ternary compound Cd xZn 1-xS is by changing its chemical composition, and it absorbs band edge can be extended to green glow from ultraviolet light, therefore can obtain continuously adjustable optical property.Cd xZn 1-xS as the catalyst of photocatalysis Decomposition aquatic products hydrogen under a kind of visible light, also can be applied to highdensity optical recording and short-wave laser diode, Cd xZn 1-xThe S film is obtaining application widely as the broad-band gap window material aspect heterojunction solar battery and the photoconductive device.Because Cd xZn 1-xThe S energy gap can be regulated and control along with chemical composition, will be a kind of potentiality material that has higher catalytic activity under visible light.
Current C d xZn 1-xThe method that adopts for preparing that S is nanocrystalline has: sintering process, hydro-thermal method, microemulsion method, organic solvent high-temperature synthesis.Obviously, the system dispersing uniformity poor, need starvation, high temperature crystallization, poisonous reagent or complicated shortcomings such as synthesis device to make Cd by these methods preparations xZn 1-xThe S photochemical catalyst has unstable properties, production technology is difficult to shortcomings such as control and cost height, has limited it to promote the use of, therefore must the new preparation technology of exploitation.
Summary of the invention
The object of the invention provide a kind of easy, have a high visible light catalytic activity nano Cd reliably, cheaply xZn 1-xPrecipitation-the hydrothermal preparing process of S photochemical catalyst.
Comprise the steps:
1) nano-powder forerunner precipitated liquid preparation:
The mixed solution that will contain cadmium nitrate, zinc nitrate dropwise adds in the sodium sulfide solution, and middling speed stirs 0.5~3h, and mixeding liquid temperature is 10 ℃~40 ℃, obtains nano-powder pioneer precipitated liquid;
2) preparation of nano-powder under the hydrothermal condition:
Above-mentioned nano-powder pioneer precipitated liquid is put into reactor, be warming up to 150~240 ℃ of insulations with the speed of 1~5 ℃/min and carry out hydro-thermal reaction, after 12~24h reaction, stop heating, the question response still takes out after being as cold as room temperature naturally, with deionized water and absolute ethanol washing 3~4 times, put into vacuum drying chamber in 50~80 ℃ of dryings, obtain forming the nanometer Cd of solid solution xZn 1-xThe S photochemical catalyst.
Zinc nitrate in the described step 1): the mol ratio of cadmium nitrate is 1: (0.1~3), cadmium nitrate+zinc nitrate: the mol ratio of vulcanized sodium is 1: (1~1.2), the concentration of cadmium nitrate are 10 -5~10 -1Every liter of mole.
The beneficial effect that the present invention has:
1, the nanometer Cd that under precipitation-hydrothermal condition, synthesizes xZn 1-xThe S homogeneous grain diameter forms the solid solution structure, and cadmium ion enters into the ZnS lattice;
2, by selecting suitable composition and preparation condition, can control the composition ratio and the grain size of solid solution, obtain energy gap and optical property according to the adjustable Cd of composition xZn 1-xThe nano-powder of S;
3, nanometer Cd xZn 1-xThe preparation technology of S is simple, and cost is low;
4, have high visible light catalytic activity, greatly improved the solar energy utilization ratio, the organic pollution of certain kind of effectively degrading.
Description of drawings
Fig. 1 is nano-photocatalyst Cd among the embodiment 1 0.15Zn 0.85The SEM picture of S;
Fig. 2 is nano-photocatalyst Cd xZn 1-xThe diffuse reflectance spectra of S (a → f:x=0,0.15,0.25,0.5,0.75,1).
The specific embodiment
Elaborate below in conjunction with embodiment:
Has high visible light catalytic activity nano Cd xZn 1-xPrecipitation-the hydrothermal preparing process of S photochemical catalyst is to utilize first post precipitation hydrothermal condition to prepare the method for nano-powder, use inorganic salts such as cadmium nitrate, zinc nitrate, vulcanized sodium to be raw material, obtained being uniformly dispersed, energy gap and optical property with composition adjustable and have a high visible light catalytic activity nano Cd xZn 1-xThe S powder.
Embodiment 1
The mixed solution that will contain 0.0075mol cadmium nitrate and 0.0425mol zinc nitrate splashes in the solution that contains 0.06mol vulcanized sodium gradually, overall solution volume is remained on about 80ml, mixeding liquid temperature is 10 ℃, behind the stirring 1.5h, obtains nano-powder pioneer precipitation;
Above-mentioned nano-powder pioneer precipitation is put into reactor, be warming up to 180 ℃ of insulations with the speed of 1 ℃/min and carry out hydro-thermal reaction, after the 24h reaction, stop heating, the question response still takes out after being as cold as room temperature naturally, with deionized water and absolute ethanol washing 3 times, put into vacuum drying chamber in 80 ℃ of dryings, obtained forming the nanometer Cd of solid solution xZn 1-xThe S photochemical catalyst.
This nanometer Cd xZn 1-xThe S photochemical catalyst is to consist of Cd 0.15Zn 0.85The solid solution of S.We are set at the catalytic organism object with the methyl orange solution of the 20mg/L of 10ml, are catalyst with the powder 20mg of above-mentioned preparation, are light source with the German Ou Silang HQI-BT 400W/D of company metal halide lamp, have carried out the photocatalysis experiment.
X-ray diffraction analysis (XRD) shows: gained Cd xZn 1-xThe S nano-powder is a zincblende lattce structure; At visible light according to (after carrying out the photocatalytic degradation experiment of 60min under the λ>400nm), finding nanometer Cd xZn 1-xThe S powder can reach 96% to the degradation rate of methyl orange.Illustrated that the cadmium doping reduces the energy gap of zinc sulphide, makes its absorption spectrum red shift to visible region, thereby can degrade to organic matter under visible light.
Embodiment 2
The mixed solution that will contain 0.005mol cadmium nitrate and 0.045mol zinc nitrate splashes in the solution that contains 0.06mol vulcanized sodium gradually, and overall solution volume is remained on about 80ml, and mixeding liquid temperature is 40 ℃, behind the stirring 2.5h, obtains nano-powder pioneer precipitation;
Above-mentioned nano-powder pioneer precipitation is put into reactor, be warming up to 200 ℃ of insulations with the speed of 5 ℃/min and carry out hydro-thermal reaction, after the 20h reaction, stop heating, the question response still takes out after being as cold as room temperature naturally, with deionized water and absolute ethanol washing 3 times, put into vacuum drying chamber in 80 ℃ of dryings, obtained forming the nanometer Cd of solid solution xZn 1-xThe S photochemical catalyst.Get off to test its photocatalysis performance with experiment condition identical among the embodiment 1.
Compare with P25 (Degussa), obtained the photocatalysis effect similar to embodiment 1.
Embodiment 3
The mixed solution that will contain 0.00625mol cadmium nitrate and 0.01875mol zinc nitrate splashes in the solution that contains 0.025mol vulcanized sodium gradually, overall solution volume is remained on about 80ml, mixeding liquid temperature is 15 ℃, behind the stirring 3h, obtains nano-powder pioneer precipitation;
Above-mentioned nano-powder pioneer precipitation is put into reactor, be warming up to 240 ℃ of insulations with the speed of 2 ℃/min and carry out hydro-thermal reaction, after the 12h reaction, stop heating, the question response still takes out after being as cold as room temperature naturally, with deionized water and absolute ethanol washing 3 times, put into vacuum drying chamber in 50 ℃ of dryings, obtained forming the nanometer Cd of solid solution xZn 1-xThe S photochemical catalyst.Get off to test its photocatalysis performance with experiment condition identical among the embodiment 1.
Compare with P25 (Degussa), obtained the photocatalysis effect similar to embodiment 1.
Embodiment 4
The mixed solution that will contain 0.00625mol cadmium nitrate and 0.01875mol zinc nitrate splashes in the solution that contains 0.03mol vulcanized sodium gradually, overall solution volume is remained on about 80ml, mixeding liquid temperature is 25 ℃, behind the stirring 0.5h, obtains nano-powder pioneer precipitation;
Above-mentioned nano-powder pioneer precipitation is put into reactor, be warming up to 200 ℃ of insulations with the speed of 2 ℃/min and carry out hydro-thermal reaction, after the 18h reaction, stop heating, the question response still takes out after being as cold as room temperature naturally, with deionized water and absolute ethanol washing 4 times, put into vacuum drying chamber in 60 ℃ of dryings, obtained forming the nanometer Cd of solid solution xZn 1-xThe S photochemical catalyst.Get off to test its photocatalysis performance with experiment condition identical among the embodiment 1.
Compare with P25 (Degussa), obtained the photocatalysis effect similar to embodiment 1.
Embodiment 5
The mixed solution that will contain 0.01875mol cadmium nitrate and 0.00625mol zinc nitrate splashes in the solution that contains 0.0285mol vulcanized sodium gradually, overall solution volume is remained on about 80ml, mixeding liquid temperature is 15 ℃, behind the stirring 2.5h, obtains nano-powder pioneer precipitation;
Above-mentioned nano-powder pioneer precipitation is put into reactor, be warming up to 150 ℃ of insulations with the speed of 5 ℃/min and carry out hydro-thermal reaction, after the 22h reaction, stop heating, the question response still takes out after being as cold as room temperature naturally, with deionized water and absolute ethanol washing 4 times, put into vacuum drying chamber in 60 ℃ of dryings, obtained forming the nanometer Cd of solid solution xZn 1-xThe S photochemical catalyst.Get off to test its photocatalysis performance with experiment condition identical among the embodiment 1.
Compare with P25 (Degussa), obtained the photocatalysis effect similar to embodiment 1.

Claims (2)

1. one kind has high visible light catalytic activity nano Cd xZn 1-xPrecipitation-the hydrothermal preparing process of S photochemical catalyst is characterized in that comprising the steps:
1) nano-powder forerunner precipitated liquid preparation:
The mixed solution that will contain cadmium nitrate, zinc nitrate dropwise adds in the sodium sulfide solution, and middling speed stirs 0.5~3h, and mixeding liquid temperature is 10 ℃~40 ℃, obtains nano-powder pioneer precipitated liquid;
2) preparation of nano-powder under the hydrothermal condition:
Above-mentioned nano-powder pioneer precipitated liquid is put into reactor, be warming up to 150~240 ℃ of insulations with the speed of 1~5 ℃/min and carry out hydro-thermal reaction, after 12~24h reaction, stop heating, the question response still takes out after being as cold as room temperature naturally, with deionized water and absolute ethanol washing 3~4 times, put into vacuum drying chamber in 50~80 ℃ of dryings, obtain forming the nanometer Cd of solid solution xZn 1-xThe S photochemical catalyst.
2. a kind of high visible light catalytic activity nano Cd that has according to claim 1 xZn 1-xPrecipitation-the hydrothermal preparing process of S photochemical catalyst is characterized in that the zinc nitrate in the described step 1): the mol ratio of cadmium nitrate is 1: (0.1~3), cadmium nitrate+zinc nitrate: the mol ratio of vulcanized sodium is 1: (1~1.2), the concentration of cadmium nitrate are 10 -5~10 -1Every liter of mole.
CNA2008100603785A 2008-04-11 2008-04-11 Precipitating-hydrothermal preparation with high visible light catalytic activity nano CdxZn1-xS photocatalyst Pending CN101254467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2008100603785A CN101254467A (en) 2008-04-11 2008-04-11 Precipitating-hydrothermal preparation with high visible light catalytic activity nano CdxZn1-xS photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2008100603785A CN101254467A (en) 2008-04-11 2008-04-11 Precipitating-hydrothermal preparation with high visible light catalytic activity nano CdxZn1-xS photocatalyst

Publications (1)

Publication Number Publication Date
CN101254467A true CN101254467A (en) 2008-09-03

Family

ID=39889773

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008100603785A Pending CN101254467A (en) 2008-04-11 2008-04-11 Precipitating-hydrothermal preparation with high visible light catalytic activity nano CdxZn1-xS photocatalyst

Country Status (1)

Country Link
CN (1) CN101254467A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101502793B (en) * 2009-02-18 2010-12-29 吉林大学 Method for preparing ZnO and CdO heterogeneous nanostructured oxide material
CN101982240A (en) * 2010-09-21 2011-03-02 淮北师范大学 Design and preparation of high-activity narrow-band gap photocatalyst capable of selectively oxidizing alcohols and reducing nitro-compounds
CN102068979A (en) * 2011-01-07 2011-05-25 大连海事大学 Method for degrading methyl orange dye wastewater with ZnIn2S4 visible light catalyst
CN102218333A (en) * 2011-01-07 2011-10-19 大连海事大学 Method for preparing ZnIn2S4 visible-light activated photocatalyst at low temperature
CN102285682A (en) * 2011-06-07 2011-12-21 哈尔滨工业大学 Synthesis method and use of nano cadmium zinc sulfide with visible light catalytic activity
CN103111310A (en) * 2013-03-12 2013-05-22 曲阜师范大学 Method for preparing cadmium-doped nano zinc sulfide
CN103433061A (en) * 2013-09-18 2013-12-11 哈尔滨工业大学 CdxZn1-xS:La solid solution photocatalyst and preparation method thereof
CN103464172A (en) * 2013-09-16 2013-12-25 天津理工大学 Compound photocatalyst for reducing carbon dioxide into organic ester and preparation method of compound photocatalyst
CN104941666A (en) * 2015-06-19 2015-09-30 哈尔滨工业大学 Method for preparing CdxZn1-xS solid solution photocatalyst provided with cubic sphalerite structure and corresponding to visible light
CN106975521A (en) * 2017-04-19 2017-07-25 淮北师范大学 A kind of preparation method of visible light-responded zinc cadmium sulphur solid solution catalysis material
CN107555470A (en) * 2017-09-22 2018-01-09 陕西科技大学 A kind of method of two-step method synthesis zinc cadmium sulphur solid-solution material
CN107697944A (en) * 2017-09-22 2018-02-16 陕西科技大学 A kind of preparation method of the spherical zinc cadmium sulphur solid-solution material of particles self assemble
CN107876094A (en) * 2017-11-07 2018-04-06 常州大学 Three dish alkene polymer NTP/ zinc-cadmium sulfides Cd of one kind0.5Zn0.5The preparation method of S composite photo-catalysts
CN108855186A (en) * 2018-06-21 2018-11-23 常州大学 A kind of tubular type carbonitride (C3N4)/zinc-cadmium sulfide Cd0.5Zn0.5The preparation method of S composite photo-catalyst
CN111905761A (en) * 2020-07-29 2020-11-10 广西科技师范学院 Mn (manganese)1Cd3S4Method for preparing photocatalyst
CN112158878A (en) * 2020-09-29 2021-01-01 陕西科技大学 Preparation method of hexagonal pyramid-like CdS and application of hexagonal pyramid-like CdS in field of photocatalytic hydrogen production
CN113318755A (en) * 2021-06-23 2021-08-31 淮北师范大学 Organic-inorganic hybrid MnxCd1-xPreparation method of S solid solution photocatalyst
CN113680356A (en) * 2021-09-26 2021-11-23 广东轻工职业技术学院 Zn for photocatalytic decomposition of pure water1-xCdxS/D-ZnS(en)0.5/Pi/NiaPreparation method of Pi type catalyst

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101502793B (en) * 2009-02-18 2010-12-29 吉林大学 Method for preparing ZnO and CdO heterogeneous nanostructured oxide material
CN101982240A (en) * 2010-09-21 2011-03-02 淮北师范大学 Design and preparation of high-activity narrow-band gap photocatalyst capable of selectively oxidizing alcohols and reducing nitro-compounds
CN102068979A (en) * 2011-01-07 2011-05-25 大连海事大学 Method for degrading methyl orange dye wastewater with ZnIn2S4 visible light catalyst
CN102218333A (en) * 2011-01-07 2011-10-19 大连海事大学 Method for preparing ZnIn2S4 visible-light activated photocatalyst at low temperature
CN102285682A (en) * 2011-06-07 2011-12-21 哈尔滨工业大学 Synthesis method and use of nano cadmium zinc sulfide with visible light catalytic activity
CN102285682B (en) * 2011-06-07 2012-12-19 哈尔滨工业大学 Synthesis method of nano cadmium zinc sulfide with visible light catalytic activity
CN103111310A (en) * 2013-03-12 2013-05-22 曲阜师范大学 Method for preparing cadmium-doped nano zinc sulfide
CN103111310B (en) * 2013-03-12 2014-10-08 曲阜师范大学 Method for preparing cadmium-doped nano zinc sulfide
CN103464172A (en) * 2013-09-16 2013-12-25 天津理工大学 Compound photocatalyst for reducing carbon dioxide into organic ester and preparation method of compound photocatalyst
CN103433061A (en) * 2013-09-18 2013-12-11 哈尔滨工业大学 CdxZn1-xS:La solid solution photocatalyst and preparation method thereof
CN103433061B (en) * 2013-09-18 2015-05-27 哈尔滨工业大学 CdxZn1-xS:La solid solution photocatalyst and preparation method thereof
CN104941666A (en) * 2015-06-19 2015-09-30 哈尔滨工业大学 Method for preparing CdxZn1-xS solid solution photocatalyst provided with cubic sphalerite structure and corresponding to visible light
CN104941666B (en) * 2015-06-19 2017-10-03 哈尔滨工业大学 A kind of Cd of visible light-responded cubic sphalerite structurexZn1‑xThe preparation method of S mischcrystal photocatalysts
CN106975521A (en) * 2017-04-19 2017-07-25 淮北师范大学 A kind of preparation method of visible light-responded zinc cadmium sulphur solid solution catalysis material
CN107555470A (en) * 2017-09-22 2018-01-09 陕西科技大学 A kind of method of two-step method synthesis zinc cadmium sulphur solid-solution material
CN107697944A (en) * 2017-09-22 2018-02-16 陕西科技大学 A kind of preparation method of the spherical zinc cadmium sulphur solid-solution material of particles self assemble
CN107555470B (en) * 2017-09-22 2019-03-22 陕西科技大学 A kind of method of two-step method synthesis zinc cadmium sulphur solid-solution material
CN107697944B (en) * 2017-09-22 2019-07-12 陕西科技大学 A kind of preparation method of the spherical zinc cadmium sulphur solid-solution material of particles self assemble
CN107876094A (en) * 2017-11-07 2018-04-06 常州大学 Three dish alkene polymer NTP/ zinc-cadmium sulfides Cd of one kind0.5Zn0.5The preparation method of S composite photo-catalysts
CN108855186A (en) * 2018-06-21 2018-11-23 常州大学 A kind of tubular type carbonitride (C3N4)/zinc-cadmium sulfide Cd0.5Zn0.5The preparation method of S composite photo-catalyst
CN111905761A (en) * 2020-07-29 2020-11-10 广西科技师范学院 Mn (manganese)1Cd3S4Method for preparing photocatalyst
CN112158878A (en) * 2020-09-29 2021-01-01 陕西科技大学 Preparation method of hexagonal pyramid-like CdS and application of hexagonal pyramid-like CdS in field of photocatalytic hydrogen production
CN112158878B (en) * 2020-09-29 2022-08-30 陕西科技大学 Preparation method of hexagonal pyramid-like CdS and application of hexagonal pyramid-like CdS in field of photocatalytic hydrogen production
CN113318755A (en) * 2021-06-23 2021-08-31 淮北师范大学 Organic-inorganic hybrid MnxCd1-xPreparation method of S solid solution photocatalyst
CN113680356A (en) * 2021-09-26 2021-11-23 广东轻工职业技术学院 Zn for photocatalytic decomposition of pure water1-xCdxS/D-ZnS(en)0.5/Pi/NiaPreparation method of Pi type catalyst
CN113680356B (en) * 2021-09-26 2023-05-02 广东轻工职业技术学院 Zn capable of being used for photocatalytic decomposition of pure water 1-x Cd x S/D-ZnS(en) 0.5 /Pi/Ni a Pi type catalyst preparation method

Similar Documents

Publication Publication Date Title
CN101254467A (en) Precipitating-hydrothermal preparation with high visible light catalytic activity nano CdxZn1-xS photocatalyst
Samadi et al. Recent progress on doped ZnO nanostructures for visible-light photocatalysis
Wang et al. Highly enhanced photocatalytic performance of TiO2 nanosheets through constructing TiO2/TiO2 quantum dots homojunction
Chen et al. Preparation, characterization and activity evaluation of p–n junction photocatalyst p-ZnO/n-TiO2
Zhou et al. Stable Ti3+ self-doped anatase-rutile mixed TiO2 with enhanced visible light utilization and durability
Liu et al. Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties
Qin et al. Ultrasonic-assisted fabrication of a direct Z-scheme BiOI/Bi2O4 heterojunction with superior visible light-responsive photocatalytic performance
Bhirud et al. Surfactant tunable hierarchical nanostructures of CdIn2S4 and their photohydrogen production under solar light
Zhang et al. On the electrical conductivity and photocatalytic activity of aluminum-doped zinc oxide
Rajbongshi et al. ZnO and Co-ZnO nanorods—Complementary role of oxygen vacancy in photocatalytic activity of under UV and visible radiation flux
Habibi et al. Synthesis and characterization of bi-component ZnSnO3/Zn2SnO4 (perovskite/spinel) nano-composites for photocatalytic degradation of Intracron Blue: Structural, opto-electronic and morphology study
Hao et al. Synthesis of NiWO4 powder crystals of polyhedron for photocatalytic degradation of Rhodamine
CN101053839A (en) Sulfur doped titanium dioxide photocatalyst with anatase structure water-heating preparation method
CN102500388A (en) Copper and bismuth co-doped nano titanium dioxide photocatalyst and preparation and application thereof
Liu et al. Enhancing hydrogen evolution of water splitting under solar spectra using Au/TiO2 heterojunction photocatalysts
CN105170173A (en) Perovskite material/organic polymer compound photocatalyst, preparation and application
Yan et al. Facile preparation of novel organic–inorganic PI/Zn0. 25Cd0. 75S composite for enhanced visible light photocatalytic performance
Rasoulifard et al. Photocatalytic activity of zinc stannate: Preparation and modeling
CN104923261A (en) Method for prolonging service life of CdS nano photocatalyst
Wang et al. Modulating the selectivity of photocatalytic CO2 reduction in barium titanate by introducing oxygen vacancies
Wang et al. Construction of 1D/2D core-shell structured K6Nb10. 8O30@ Zn2In2S5 as S-scheme photocatalysts for cocatalyst-free hydrogen production
Xie et al. Enhancing visible light photocatalytic activity by transformation of Co3+/Co2+ and formation of oxygen vacancies over rationally Co doped ZnO microspheres
Chen A promising strategy to fabricate the Cu/BiVO 4 photocatalysts and their enhanced visible-light-driven photocatalytic activities
Khan et al. One-pot synthesis of (anatase/bronze-type)-TiO2/carbon dot polymorphic structures and their photocatalytic activity for H2 generation
Lu et al. Microwave-assisted synthesis and characterization of BiOI/BiF 3 p–n heterojunctions and its enhanced photocatalytic properties

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20080903