CN101230436A - 一种普通低碳低硅热轧钢带及其制造方法 - Google Patents

一种普通低碳低硅热轧钢带及其制造方法 Download PDF

Info

Publication number
CN101230436A
CN101230436A CNA2008100141837A CN200810014183A CN101230436A CN 101230436 A CN101230436 A CN 101230436A CN A2008100141837 A CNA2008100141837 A CN A2008100141837A CN 200810014183 A CN200810014183 A CN 200810014183A CN 101230436 A CN101230436 A CN 101230436A
Authority
CN
China
Prior art keywords
rolling
low
hot
steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008100141837A
Other languages
English (en)
Inventor
陈培敦
王俊海
陈坤
王振国
谷国华
王宏霞
陈茂敬
谷国刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Taishan Steel Group
Original Assignee
Shandong Taishan Steel Group
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Taishan Steel Group filed Critical Shandong Taishan Steel Group
Priority to CNA2008100141837A priority Critical patent/CN101230436A/zh
Publication of CN101230436A publication Critical patent/CN101230436A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

本发明属于一种热轧钢带及其制造方法,特别是一种普通低碳低硅热轧钢带及其制造方法,尤其涉及一种屈服强度低于270MPa普通低碳低硅热轧钢带及其制造方法。其钢带的成份重量配比为C:0.05%-0.07%,Si:0.01%-0.03%,Mn: 0.20%-0.40%,P:0.008%-0.015%,S:0.005%-0.012%,其特征在于在成分重量配比中加入了0.025%-0.070%的Als,余量为Fe。粗轧和精轧时,粗轧开轧温度为1160-1230℃,终轧温度为840-860℃;卷取时,卷取温度为710-730℃。该方法制造成本和原材料成本低,方法简单易行,热轧钢带屈服强度小于270MPa。

Description

一种普通低碳低硅热轧钢带及其制造方法
                    技术领域
本发明属于一种热轧钢带及其制造方法,特别是一种普通低碳低硅热轧钢带及其制造方法,尤其涉及一种屈服强度低于270MPa普通低碳低硅热轧钢带及其制造方法。
                    背景技术
薄板坯连铸连轧是生产热轧板卷的新一代工艺流程,与传统工艺流程相比,在节约投资、缩短生产周期、提高成材率、降低生产成本等方面有明显优势。随着薄板坯连铸连轧工艺在我国钢铁工业中的飞速发展,许多冷轧厂以薄板坯连铸连轧工艺生产的热轧卷板为原料来生产冷轧深冲钢板及镀层钢板。但国内、外的生产实践证明,各种薄板坯连铸连轧生产线所生产的低碳热轧薄钢带的屈服强度和抗拉强度都偏高,而伸长率良好。薄板坯连铸连轧生产线生产的热轧板卷的屈服强度一般比常规热连轧工艺生产的板卷高100MPa以上,这给用作冷轧原料带来生产上的困难。由于薄板坯连铸连轧的热轧钢卷的屈强比高,导致退火处理后钢带硬度高,不太适宜于做深冲产品。
为了解决薄板坯连铸连轧热轧钢卷屈强比高的问题,美国纽柯(Nucor)的冷轧厂使用薄板坯连铸连轧钢卷作原料,通过在钢中添加硼调整冶金成分,配合轧制和冷却工艺,降低其屈强比,改善产品的最终深冲性能,可以生产DQ级的产品。冷轧用钢加硼的技术关键是硼的合理添加和控制。因为硼在钢中不仅可溶于Fe形成固溶体,同时还与Fe、C、N、O等元素形成Fe-C-B型化合物和Fe-O-B型化合物,这两种化合物均称为B相,其中Fe-C-B型化合物为脆性相复合化合物。由于B相偏聚在奥氏体晶界上,所以B相也主要沉淀在晶界上,B相数量随硼含量的提高而增加且粗化,成网状分布,从而引发硼脆。硼的合理加入量,一般要根据钢中N的含量,使硼的加入量满足[B]=[B]-[N]×11/14=0的要求,这是目前解决B相网状沉淀的最有效的措施,但是当钢中N含量高时,就不能依据上式计算硼的加入量,因为硼的加入量有一个最适宜的上限,当硼的加入量超过这个上限时,极易引发硼脆问题,根据国内多家钢厂的实际生产经验,加硼后强度降低幅度不大,但是引发的硼脆问题却非常严重。
国内一些钢厂进行了铁素体轧制的试验研究。铁素体轧制即相变控制轧制,亦称低温热机械控制,此技术与传统的奥氏体轧制工艺相比,在粗轧区内完成由奥氏体向铁素体的转变,然后进行精轧,采用较高的卷取温度,以得到粗晶粒的铁素体组织,从而降低热轧钢带的强度,提高塑性。
实现铁素体轧制的途径在于粗轧和精轧机架之间要有强力的冷却***,中间坯在进入精轧机组前温度降到Ar3以下,完成γ→α的相变,使精轧过程完全在铁素体范围内进行。同时铁素体轧制对化学成分有严格的要求,主要适用于碳低于0.03%的低碳和超低碳钢,即使是低碳和超低碳钢在铁素体相变温度下轧制,轧制力也较大(与高碳钢奥氏体区轧制相似),国内中小企业采用的国产装备很难达到铁素体轧制所具备的条件,而不得不采用传统的奥氏体轧制工艺。
                    发明内容
本发明的目的在于克服以上现有技术的不足,优化设计普通低碳低硅钢的化学成份,采用传统的奥氏体轧制工艺,研究相变时碳化物的析出分布规律,通过调整终轧温度和卷取温度及层流冷却工艺来改变碳化物的分布状态,达到钢带屈服强度低于270MPa的目的,降低生产成本,满足冷轧用钢。
为达到以上目的,本发明所采用的技术方案是:一种普通低碳低硅热轧钢带,其钢带的成份重量配比为C:0.05%-0.07%,Si:0.01%-0.03%,Mn:0.20%-0.40%,P:0.008%-0.015%,S:0.005%-0.012%,其特征在于在成分重量配比中加入了0.025%-0.070%的Als,余量为Fe。
一种普通低碳低硅热轧钢带的制造方法,由以下步骤完成:铁水预处理、转炉冶炼、钢水净化和连铸控制、粗轧和精轧、卷取,其特征是:
(1)在粗轧和精轧步骤中,粗轧开轧温度为1160-1230℃,终轧温度为840-860℃;
(2)在卷取步骤中,卷取温度为710-730℃。
本发明还通过以下技术手段实施:
轧钢加热炉炉堂温度上限值设置为1320℃,R1轧机前后的运输辊道上安装上长度为70m的保温罩;钢带厚度为2.30-2.50mm时,精轧轧制速度为8.5m/s;钢带厚度为2.50-2.90mm时,精轧轧制速度为8.0m/s;钢带厚度≥3.00mm时,精轧轧制速度为7.6m/s。
精轧机架F7的压下率调整范围为8-15%。
为了保证钢材具有良好的冲压性能,本发明的设计依据为:
1、钢坯成分控制
(1)C含量控制到0.06%±0.01%。靠转炉工序脱碳,通常只能把成品碳含量控制到0.06%-0.08%,终点碳含量过低会导致钢水氧化性过强,影响钢材成本、质量;
(2)Si对冷轧时轧制力和冷轧后的镀锌均有较大影响,因此必须控制到0.03%以下;
(3)尽量降低有害元素,控制P≤0.015%、S≤0.012%;
(4)严格控制钢中的[0]≤40×10-6、[N]≤50×10-6,防止钢中氧含量过高引起夹杂物增多及游离N过高引起强度提高现象,否则会恶化钢带的成形性能。
2、控制晶界状态
金属的强度是由晶内强度(晶粒内原子的引力)和晶界强度(晶界的结合力)两部分组成,常温下晶界强度大于晶内强度。
晶界对强度的影响,晶界对形变具有阻碍作用。多晶体的屈服强度σS与晶粒平均直径d的关系可用的霍尔-佩奇(Hall-Petch)公式表示:σS=σ0+Kd-1/2
σ0——单晶体的屈服强度,K——晶界强化系数,d——晶粒平均直径;
低碳低硅钢热轧板的材料中,除了晶粒基体就是晶界。本发明主要解决:一是晶粒基体的问题,二是解决晶界的问题。低碳低硅钢热轧板晶粒基体对材料屈服强度的贡献接近50%,但是,σH(理想铁—碳合金单晶体的屈服分量)是不变化的,σG(单晶体的固溶强化分量)随成分变化而变化,但变化幅度不大。因此,降低低碳低硅钢热轧板屈服强度的目标不能只针对材料的晶粒基体。
改变晶粒尺寸对强度的影响很大,粗化晶粒是降低强度最有效的方法。但是在实际生产过程中发现,晶粒度只能增大到8-10级左右,通过提高卷取温度可以改变晶界状态,晶界上析出物的减少,降低晶界在变形时对位错的阻碍作用,可在一定程度上降低强度。
选择合理的终轧温度和卷取温度,通过控制层流冷却制度来控制相变组织及晶界状态。通过提高卷取温度来改变晶界状态,卷取温度高,渗碳体聚集,渗碳体片层间距增大,索氏体、屈氏体尺寸较大,沿晶界分布的数量减少。晶界上析出物的减少,降低晶界在变形时对位错的阻碍作用,从而达到降低强度的目的。
本发明的有益效果在于:与目前薄板坯生产热轧低碳低硅钢带降低强度方法相比,不需要加合金,采用传统的奥氏体区轧制,制造成本和原材料成本低,方法简单易行,所生产的热轧钢带强度小于270MPa,满足冷轧用户的要求。
                具体实施方式
根据本发明的技术方案,采用本公司60吨氧气顶吹转炉+直弧形板坯连铸机生产的连铸坯,板坯规格宽850mm×厚150mm×长9800mm。在950mm热轧机上,采用控制轧制控制冷却工艺进行生产,分别轧制厚度规格为2.35mm、2.75mm和3.25mm的钢带,每种规格为一个实施例,试样编号分别为1、2、3,化学成份见表1,轧制工艺中的温度、速度控制见表2,机械性能见表3。
铁水在脱硫处理并除渣后,装入60吨氧气顶吹转炉,硫含量不大于0.010%,磷含量小于0.080%,铁水温度控制在1260-1300℃,铁水含渣量小于0.08%。终点碳控制在0.03-0.05%,吹炼终点钢中含氧量控制在600×10-6以下,出钢温度控制在1650℃-1670℃。出钢过程中以铝锰铁和低碳锰铁为复合脱氧剂,钢包温度控制在1595℃-1610℃。出钢口不散流,出钢时间大于1.5min,采用挡渣帽和挡渣球挡渣操作,钢包内渣层厚度小于15mm。出完钢后向钢包内加入顶渣剂0.5-1.5千克/吨钢,顶渣碱度在2.15-2.75。
喂铝线前控制氩气流量0.3-0.45m3/min,喂线后吹氩采用弱搅拌(以钢水不裸露为原则),氩气流量控制在0.08-0.13m3/min,喂线速度200m/min,根据[O]含量,喂铝线后一次定氧小于5×10-6,喂线毕3min立即测温取样,吊送至直弧形板坯连铸机,中包第一炉加钙铁粉(不大于20kg),浇注过程不加钙铁粉,浇注温度控制在1540℃-1565℃,拉速控制在1.2-1.4m/min。
                 表1实施例钢坯的化学成份,wt%
  试样编号 C Si Mn P S Als
  1   0.063   0.018   0.35   0.013   0.009   0.043
  2   0.058   0.023   0.27   0.012   0.011   0.035
  3   0.065   0.025   0.36   0.008   0.010   0.039
板坯生产出来后热装送入蓄热式步进梁轧钢加热炉,板坯表面温度700℃以上,凉板坯要保证板坯在炉时间≥120分钟,保证相变后的奥氏体晶粒充分长大。炉膛最高温度限制为1320℃,加热段和均热段炉膛温度控制在1250-1320℃,保证铸坯较高的出炉温度。
在950mm热轧机上,粗轧开轧温度1160-1230℃,粗轧除鳞箱和E1除磷点除去板坯炉生氧化铁皮和次生氧化铁皮,经R1轧制五道次成中间坯,由设置在粗轧和精轧之间的热卷箱卷成中间卷。为保证进入精轧的温度,中间坯根据精轧机的能力采用较大的厚度减少温降,根据钢带厚度一般设置24-28mm,同时在R1轧机前后的运输辊道上安装上长度为70m的保温罩。
热卷箱将中间坯卷取成卷,精轧采用匀速轧制保证钢带精轧终轧温度的均匀性。终轧温度840-860℃。为控制精轧终轧温度,采用高于轧制普碳钢的轧制速度,钢带厚度在2.30-2.50mm范围内时,精轧轧制速度为8.5m/s;钢带厚度在2.50-2.90mm范围内时,精轧轧制速度为8.0m/s,钢带厚度≥3.00mm规格时,精轧轧制速度为7.6m/s。手动控制精轧机架间冷却水,精确控制钢带终轧温度。
增加精轧前段机架的负荷,降低未再结晶区的累积变形量,粗化晶粒。精轧机架F7的压下率调整范围为8-15%。
卷取温度为710-730℃,由层流冷却,采用后段冷却方式;为精确控制卷取温度,手动微调精调区卷取温度。
             表2实施例轧制工艺中的温度、速度控制
  试样编号   厚度规格mm   加热温度℃   终轧温度℃   精轧速度m/s   卷取温度℃   冷却速度℃/S
  1   2.35   1302   856   8.5m/s   713   32
  2   2.75   1296   857   8.0m/s   717   35
  3   3.25   1287   851   7.6m/s   722   33
                表3实施例机械性能
试样编号   厚度规格mm   屈服强度MPa   抗拉强度MPa 伸长率%
  1   2.35   264   317   45
  2   2.75   258   309   43
  3   3.25   262   313   46

Claims (4)

1.一种普通低碳低硅热轧钢带,其钢带的成份重量配比为C:0.05%-0.07%,Si:0.01%-0.03%,Mn:0.20%-0.40%,P:0.008%-0.015%,S:0.005%-0.012%,其特征在于在成分重量配比中加入了0.025%-0.070%的Als,余量为Fe。
2.一种制造权利要求1所述的普通低碳低硅热轧钢带的方法,由以下步骤完成:铁水预处理、转炉冶炼、钢水净化和连铸控制、粗轧和精轧、卷取,其特征是:
(1)在粗轧和精轧步骤中,粗轧开轧温度为1160-1230℃,终轧温度为840-860℃;
(2)在卷取步骤中,卷取温度为710-730℃。
3.根据权利要求2所述的普通低碳低硅热轧钢带的制造方法,其特征是:钢带厚度为2.30-2.50mm时,精轧轧制速度为8.5m/s;钢带厚度为2.50-2.90mm时,精轧轧制速度为8.0m/s;钢带厚度≥3.00mm时,精轧轧制速度为7.6m/s。
4.根据权利要求2或3所述的普通低碳低硅热轧钢带的制造方法,其特征是:精轧机架F7的压下率调整范围为8-15%。
CNA2008100141837A 2008-02-26 2008-02-26 一种普通低碳低硅热轧钢带及其制造方法 Pending CN101230436A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2008100141837A CN101230436A (zh) 2008-02-26 2008-02-26 一种普通低碳低硅热轧钢带及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2008100141837A CN101230436A (zh) 2008-02-26 2008-02-26 一种普通低碳低硅热轧钢带及其制造方法

Publications (1)

Publication Number Publication Date
CN101230436A true CN101230436A (zh) 2008-07-30

Family

ID=39897242

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008100141837A Pending CN101230436A (zh) 2008-02-26 2008-02-26 一种普通低碳低硅热轧钢带及其制造方法

Country Status (1)

Country Link
CN (1) CN101230436A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102836872A (zh) * 2012-09-21 2012-12-26 莱芜市泰山冷轧板有限公司 一种室外家具用冷轧钢带生产方法
CN103521518A (zh) * 2013-10-14 2014-01-22 云南昆钢新型复合材料开发有限公司 不锈钢复合板带卷的热连轧生产方法
CN103952636A (zh) * 2014-05-20 2014-07-30 唐山瑞丰钢铁(集团)有限公司 冷轧热镀锌用热轧带钢生产工艺
CN104975225A (zh) * 2015-07-14 2015-10-14 山东众冠钢板有限公司 一种高强度强耐蚀的sphc钢板及其制备方法
CN105088064A (zh) * 2015-08-31 2015-11-25 武汉钢铁(集团)公司 一种340MPa级汽车大梁用镀层钢及生产方法
CN105648321A (zh) * 2016-01-22 2016-06-08 唐山国丰钢铁有限公司 一种制桶用热镀锌钢带生产工艺
CN106271449A (zh) * 2016-08-31 2017-01-04 云南德胜钢铁有限公司 一种采用钢坯生产细晶粒盘螺钢筋的工艺
CN106591708A (zh) * 2016-12-21 2017-04-26 山东钢铁股份有限公司 一种短流程生产低碳低硅含铝钢的生产方法
CN109881102A (zh) * 2019-03-19 2019-06-14 首钢集团有限公司 一种低碳钢及其制造方法
CN112207138A (zh) * 2020-09-25 2021-01-12 攀钢集团西昌钢钒有限公司 一种高级别管线钢终轧温度稳定控制方法
CN114226453A (zh) * 2021-10-29 2022-03-25 马鞍山钢铁股份有限公司 一种低碳钢及提高csp流程铁素体轧制低碳钢性能均匀性的制造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102836872A (zh) * 2012-09-21 2012-12-26 莱芜市泰山冷轧板有限公司 一种室外家具用冷轧钢带生产方法
CN103521518A (zh) * 2013-10-14 2014-01-22 云南昆钢新型复合材料开发有限公司 不锈钢复合板带卷的热连轧生产方法
CN103521518B (zh) * 2013-10-14 2015-08-05 云南昆钢新型复合材料开发有限公司 不锈钢复合板带卷的热连轧生产方法
CN103952636A (zh) * 2014-05-20 2014-07-30 唐山瑞丰钢铁(集团)有限公司 冷轧热镀锌用热轧带钢生产工艺
CN103952636B (zh) * 2014-05-20 2016-08-24 唐山瑞丰钢铁(集团)有限公司 冷轧热镀锌用热轧带钢生产工艺
CN104975225A (zh) * 2015-07-14 2015-10-14 山东众冠钢板有限公司 一种高强度强耐蚀的sphc钢板及其制备方法
CN105088064B (zh) * 2015-08-31 2017-12-08 武汉钢铁有限公司 一种340MPa级汽车大梁用镀层钢及生产方法
CN105088064A (zh) * 2015-08-31 2015-11-25 武汉钢铁(集团)公司 一种340MPa级汽车大梁用镀层钢及生产方法
CN105648321A (zh) * 2016-01-22 2016-06-08 唐山国丰钢铁有限公司 一种制桶用热镀锌钢带生产工艺
CN106271449A (zh) * 2016-08-31 2017-01-04 云南德胜钢铁有限公司 一种采用钢坯生产细晶粒盘螺钢筋的工艺
CN106591708A (zh) * 2016-12-21 2017-04-26 山东钢铁股份有限公司 一种短流程生产低碳低硅含铝钢的生产方法
CN109881102A (zh) * 2019-03-19 2019-06-14 首钢集团有限公司 一种低碳钢及其制造方法
CN112207138A (zh) * 2020-09-25 2021-01-12 攀钢集团西昌钢钒有限公司 一种高级别管线钢终轧温度稳定控制方法
CN114226453A (zh) * 2021-10-29 2022-03-25 马鞍山钢铁股份有限公司 一种低碳钢及提高csp流程铁素体轧制低碳钢性能均匀性的制造方法
CN114226453B (zh) * 2021-10-29 2023-04-28 马鞍山钢铁股份有限公司 低碳钢及提高铁素体轧制低碳钢性能均匀性的制造方法

Similar Documents

Publication Publication Date Title
CN101230436A (zh) 一种普通低碳低硅热轧钢带及其制造方法
CN102199720B (zh) 屈服强度400MPa以上级别低碳钢薄板及其制造方法
CN102899556B (zh) 一种低合金中厚钢板的生产方法
CN102002628B (zh) 一种低碳钢薄板的制造方法
CN101845599B (zh) 一种耐候钢及其制造方法
CN101805873B (zh) 一种低成本高强汽车大梁用钢及其制造方法
CN104233064B (zh) 一种170MPa级冷轧加磷IF高强钢及其生产方法
CN103509996B (zh) 抗拉强度400MPa级高强度碳锰结构钢的制造方法
CN104928595A (zh) 一种具有良好冷成型性汽车结构用带钢及其生产工艺
CN108842024A (zh) 一种390MPa级冷轧含磷IF高强钢带及其LF-RH双联生产工艺
CN101654760B (zh) 一种非合金结构钢s355j2钢板及其生产方法
CN102719743A (zh) 一种石油套管用热轧卷板及其制造方法
CN107419078A (zh) 屈服强度345MPa级低成本热轧钢板及其制造方法
CN101906570A (zh) 深冲食品罐用镀锡基板及其生产方法
CN112011737B (zh) 一种桥梁结构用390MPa级耐-20℃热轧角钢及其生产方法
CN107475627B (zh) 基于CSP流程的600MPa级热轧TRIP钢及制造方法
CN102912224B (zh) 一种低合金中厚钢板的生产方法
CN102925799B (zh) 一种超高强钢板的生产方法
CN104561826B (zh) 低合金高强度结构钢q460c带钢及其生产工艺
CN104342598A (zh) 一种600MPa级别汽车大梁用热轧钢带的生产方法
CN102978511B (zh) 低成本生产汽车大梁钢用热轧钢板的方法
CN100560773C (zh) 一种高强度耐疲劳钢材及其制造方法
CN110144524A (zh) 一种440MPa级冷轧无间隙原子高强钢及其CSP+BAF生产方法
CN102912223B (zh) 一种低合金中厚钢板的生产方法
CN102899563B (zh) 一种超高强钢板的生产方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080730