CN101169488B - 选择性沉积碳纳米管到光纤上的方法 - Google Patents

选择性沉积碳纳米管到光纤上的方法 Download PDF

Info

Publication number
CN101169488B
CN101169488B CN2007101678017A CN200710167801A CN101169488B CN 101169488 B CN101169488 B CN 101169488B CN 2007101678017 A CN2007101678017 A CN 2007101678017A CN 200710167801 A CN200710167801 A CN 200710167801A CN 101169488 B CN101169488 B CN 101169488B
Authority
CN
China
Prior art keywords
optical fiber
cnt
light
face
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007101678017A
Other languages
English (en)
Other versions
CN101169488A (zh
Inventor
杰弗瑞·尼科尔森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric North America Inc
Original Assignee
Furukawa Electric North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric North America Inc filed Critical Furukawa Electric North America Inc
Publication of CN101169488A publication Critical patent/CN101169488A/zh
Application granted granted Critical
Publication of CN101169488B publication Critical patent/CN101169488B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/106Single coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/106Single coatings
    • C03C25/1061Inorganic coatings
    • C03C25/1062Carbon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor
    • C03C25/16Dipping
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/42Coatings containing inorganic materials
    • C03C25/44Carbon, e.g. graphite
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/241Light guide terminations
    • G02B6/243Light guide terminations as light absorbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06791Fibre ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1112Passive mode locking
    • H01S3/1115Passive mode locking using intracavity saturable absorbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1112Passive mode locking
    • H01S3/1115Passive mode locking using intracavity saturable absorbers
    • H01S3/1118Semiconductor saturable absorbers, e.g. semiconductor saturable absorber mirrors [SESAMs]; Solid-state saturable absorbers, e.g. carbon nanotube [CNT] based
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02052Optical fibres with cladding with or without a coating comprising optical elements other than gratings, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094007Cladding pumping, i.e. pump light propagating in a clad surrounding the active core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S427/00Coating processes
    • Y10S427/101Liquid Source Chemical Depostion, i.e. LSCVD or Aerosol Chemical Vapor Deposition, i.e. ACVD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/844Growth by vaporization or dissociation of carbon source using a high-energy heat source, e.g. electric arc, laser, plasma, e-beam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • Y10S977/892Liquid phase deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

选择性沉积碳纳米管到光纤上本说明书描述一种用于选择性沉积碳纳米管到光纤端面上的方法。在光传播通过光纤的同时,光纤的端面被暴露在碳纳米管的分散液中。碳纳米管选择性沉积到光纤的发光纤芯上。

Description

选择性沉积碳纳米管到光纤上的方法
技术领域
本发明涉及光纤装置,本发明具体涉及,例如,可用于锁模激光器的可饱和吸收器。 
背景技术
人们广泛研究的无源可饱和吸收器可用在激光***中,用于提高比特率和无差错传输周期性放大的光传输***。在每个放大级上,光信号被再生。可饱和吸收器装置是用于无源光再生的简单和成本有效的装置。这种装置的噪声抑制能力可以相对于高功率信号成分,衰减累积的放大自发发射噪声,从而提高信噪比。 
在实际商业应用中使用的一个普通类型可饱和吸收器是半导体装置。半导体可饱和吸收器装置涉及相对复杂和成本高的制造方法。这就增加***的复杂性和成本。此外,它们工作在反射模式下。在传输模式下工作的可饱和吸收器装置在许多应用中是更理想的,特别是用于光纤***中的串列式元件(in-line element)。在传输模式下工作的光可饱和吸收器是在这个领域中最近发展的重点。 
新的研究已经表明,碳纳米管,典型的是单壁碳纳米管(SWNT),在放置它到激光束的光程上时,可以展示有效的无源饱和吸收能力。例如,见S.Y.Set et al的“Laser Mode-Locking and Q-Switching Usinga New Saturable Absorber Material Based on Carbon Nanotubes”,和Yamashita et al的“Saturable absorber incorporating carbonnanotubes directly synthesized onto substrates and fibers and theirapplication to mode-locked fiber lasers”。把这两篇文章合并在此供参考。 
至今用于制备光纤基SWNT可饱和吸收器装置的技术主要是SWNT生长方法,其中利用金属催化剂催化由碳纳米管涂敷的光纤表  面,而碳纳米管生长在被催化的表面上。这种方法基本上是一种催化的化学汽相沉积(CVD)方法。虽然CVD和类似的生长方法证明是有效的,但是,人们需要用于简单和成本有效地制造光纤基SWNT可饱和吸收器装置的新技术。 
发明内容
我们发现,利用伪光分解效应,可以实现碳纳米管的选择性沉积。碳纳米管可以选择性沉积到被照明的表面上。这种现象可直接应用于光纤可饱和吸收器装置,其中在实现涂敷过程的同时,借助于发射光通过光纤,光纤的纤芯可以被选择性涂敷碳纳米管。这种就地选择性涂敷方法是简单和通用的。 
附图说明
图1-3表示利用碳纳米管涂敷光纤末端的现有技术方法; 
图4和5表示利用本发明的方法选择性沉积碳纳米管到光纤末端; 
图6和7说明利用本发明的方法选择性涂敷的光纤应用于环形激光器;和 
图8和9表示连接光纤的另一个实施例。 
具体实施方式
在光纤端面上沉积碳纳米管产生饱和吸收器元件,例如,该元件可用于锁模激光器。图1-3表示实现这个目的的一种方法。附图中的这些图不是按比例画出的。在图1中,首先通过浸渍该光纤到含金属盐溶液13的容器14中,利用金属催化剂涂敷光纤11。图2表示设置在电炉15中的涂敷光纤,其中金属盐被氧化成金属氧化物。随后,电炉被抽成真空,并在被催化的表面上利用CVD生长碳纳米管。图3表示该方法的结果,其中画出涂敷光纤端面的碳纳米管22。图1-3还画出光纤11中的芯层12。众所周知,在使用光纤时,光纤包括发射光信号的芯层。这个特征的重要性在以下将变得更明显。 
另一种涂敷过程是沉积技术,其中首先形成碳纳米管,然后被分散在液体溶液中。用于分散的液体载体可以是各种液体中的任何一种,  例如,水,乙醇,***,甲酮,等等。为了易于干燥,优选的液体是挥发性液体。需要涂敷的表面被浸渍到分散液中,或分散液加到需要涂敷的表面,并干燥分散液中的载体液体,从而在该表面上留下一个薄的碳纳米管涂层。利用分散液体的多次浸渍或多次涂敷可以形成较厚的碳纳米管层。在一些情况下,单个涂敷步骤仅能形成少量沉积的碳纳米管。因此,为了得到有用的碳纳米管层,需要多次涂敷。 
利用激光烧蚀方法,可以制备在沉积方法中使用的碳纳米管,其中来自Nd:YAG激光器的高能激光脉冲用于烧蚀在充满500 Torr氩气的石英管中放置的金属催化的碳靶。在电炉中加热石英管。借助于催化剂,可以生长直径约1nm的SWNT。可以有各种不同的用于制备SWNT的技术。制备SWNT的方法不是本发明的构成部分。 
图4和5表示本发明的选择性沉积方法。在图4中,光纤31的末端浸没在容器34中。该容器充满碳纳米管分散液35。光纤31包括光纤芯32,光纤芯32能够引导光纤中的光。光纤的端面37可以是劈裂面或抛光面。在这个图中所示的光纤没有光纤覆层,即,已去除常用的塑料覆层。按照描述的方式,该方法也可以在涂敷的光纤上实现。在后者的情况下,选取的分散液体对于涂层材料应当是无害的。 
按照本发明,在沉积步骤期间,光是由光纤芯32传送的。在图4中,光是从激光器36进入光纤芯,并在37处射出光纤芯。我们发现,照明光纤端面的纤芯部分可以吸引碳纳米管,因此,碳纳米管选择性地沉积到纤芯表面上。图5中的情况是碳纳米管42被选择性沉积到光纤31的光纤芯32上。比较测试证明,如果没有照明,则非常有限的碳纳米管沉积到光纤的端面上。 
可以利用各种过程实现浸渍方法。图4说明在光传播通过光纤的同时,光纤浸没在碳纳米管分散液中。通过浸渍光纤到碳纳米管分散液中,并取回该光纤,也可以实现涂敷方法。这在光纤端面上形成一串分散液体珠。然后,可以引光通过光纤,从而导致选择性沉积碳纳米管到光纤的纤芯部分。因此,“浸渍”方法包括浸渍,去除以及浸没过程。 
为了说明本发明的方法,在12cc的乙醇中分散0.001克的碳纳米管,并利用超声分散这个混合物。作为一种控制实验,光纤的劈裂端面被浸渍在分散液中,并取回该光纤。一串分散液体珠保留在光纤的端面。然后,干燥该液体。在检查光纤的端面时,可以发现在端面上粘附的少量纳米管。确实粘附在端面上的少量纳米管是随机分布的。 
重复以上描述的过程,除了在浸渍之后,一串分散液珠粘附到光纤的端面上,980nm光辐射传输通过光纤的纤芯。图5表示这个结果,其中大量的碳纳米管选择性沉积到光纤端面的纤芯部分。端面的包层部分基本保持未被涂敷。 
在环形激光器装置中加进具有选择性沉积碳纳米管的光纤,可以展示它作为可饱和吸收器的有效性。图6表示环形激光器装置,其中增益部分被980nm的泵63泵激成掺铒光纤部分61。该增益部分是在接头62处拼接到隔离器65和70/30分束器68。其输出是从环形激光器装置的尾线(pigtail)67中射出。可饱和吸收器元件是用数字65表示,该元件包括了在FC/APC连接器之间的上述光纤。 
图7表示图6中环形激光器的输出光谱。该光谱是在约1558nm处有峰值信号的锁模光谱。 
激光器与以上描述的可饱和吸收器的组合构成一种有用的光学子装置,其中可饱和吸收器包括具有利用碳纳米管选择性涂敷的纤芯的光纤。在这个光学子装置中,可饱和吸收器可以直接连接到激光器,或可以通过中间元件连接到激光器。 
在另一个实施例中,光纤的终端是连接器的一部分,例如,FC连接器的插头部分。在这种情况下,利用碳纳米管涂敷在连接器中封装的光纤芯的端面。这是一种用于形成串列式可饱和吸收器的合适方法。图8和9表示这个实施例。图8表示包含玻璃光纤72和光纤涂层71并终止在光连接器74的光纤70。连接器的细节与本发明无关。连接器可以是任何合适类型的连接器,例如,FC,FC/APC。连接器的末端浸渍在碳纳米管分散液75中。来自激光器76的光传播通过该光纤,从而导致选择性沉积碳纳米管到端面78上。图9表示连接器的端  面。连接器74包围光纤71的端面。光纤的纤芯是用数字79表示,利用碳纳米管选择性涂敷纤芯79。 
专业人员显然知道,图8所示方法的浸渍步骤可以是以上描述的浸渍步骤,或任何合适的其他浸渍步骤。唯一重要的是要涂敷的物体的端面被暴露在分散液中。 
用于说明本发明的光纤是石英基光纤。这些光纤通常包含大于90%的石英,并利用合适的掺杂以形成光波导。 
在本发明的选择性涂敷方法中,涂层材料的空间位置是由传播通过光纤的光确定。虽然在以上描述方法中沉积的材料包括碳纳米管,但是按照类似的方式,可以选择性加其他材料到被照明的光纤区域。 
同样地,利用具体的光机构,可以选择性涂敷其他的元件。按照以上描述的方式,可以利用碳纳米管涂敷激光器的发光面。也可以选择性涂敷发光二极管。在每种情况下,利用碳纳米管仅仅涂敷该元件的发光面部分,即,被照明的部分。为了限定本发明,术语“发光元件”可以包括激光器,发光二极管,和光传播通过的光纤。 
专业人员可以对本发明作各种改动。所有与这个说明书具体内容的偏离,而这些偏离基本上基于本发明原理及其相当内容,都应当被认为是在以上描述和申请的本发明范围内。 

Claims (9)

1.一种利用碳纳米管选择性涂敷光纤端面的仅仅一部分的方法,该方法包括:
将光纤的端面暴露在包含碳纳米管的液体中;
使光传播通过光纤的一个区域;以及
用碳纳米管选择性地仅仅涂敷光纤端面的被照明区域。
2.按照权利要求1的方法,其中光纤包括芯层区域和包层区域,并且碳纳米管选择性地涂敷芯层区域。
3.按照权利要求1的方法,其中该液体是碳纳米管在液体中的分散液。
4.按照权利要求1的方法,其中该液体选自由水、乙醇、***和甲酮构成的组。
5.按照权利要求1的方法,其中光是激光。
6.按照权利要求5的方法,其中激光的波长约为980nm。
7.按照权利要求3的方法,其中光纤的终端是光纤连接器,而光纤连接器被暴露在液体中。
8.一种利用碳纳米管选择性地仅仅涂敷发光元件端面的被照明部分的方法,包括:
将发光元件的端面暴露在包含碳纳米管的液体中;以及
激活发光元件,从而用碳纳米管仅仅涂敷该发光元件的端面的被照明部分。
9.按照权利要求8的方法,其中发光元件选自由激光器、发光二极管和传播光的光纤构成的组。
CN2007101678017A 2006-10-27 2007-10-26 选择性沉积碳纳米管到光纤上的方法 Expired - Fee Related CN101169488B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/589,012 US8236375B2 (en) 2006-10-27 2006-10-27 Selective deposition of carbon nanotubes on optical fibers
US11/589,012 2006-10-27

Publications (2)

Publication Number Publication Date
CN101169488A CN101169488A (zh) 2008-04-30
CN101169488B true CN101169488B (zh) 2012-08-01

Family

ID=38859052

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101678017A Expired - Fee Related CN101169488B (zh) 2006-10-27 2007-10-26 选择性沉积碳纳米管到光纤上的方法

Country Status (4)

Country Link
US (1) US8236375B2 (zh)
EP (1) EP1918262B1 (zh)
JP (1) JP4874929B2 (zh)
CN (1) CN101169488B (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4885744B2 (ja) * 2007-01-19 2012-02-29 株式会社アルネアラボラトリ 光導波路構造体、その製造方法、モード同期光ファイバレーザ装置、微粒子堆積方法および微粒子抽出方法。
CN101663371B (zh) * 2007-04-20 2013-02-06 皇家飞利浦电子股份有限公司 具有改进的颜色稳定性的白色发光光源和发光材料
US20090090614A1 (en) * 2007-10-09 2009-04-09 Digiovanni David J Thermophoretic fractionalization of small particles
WO2010120246A1 (en) * 2009-04-13 2010-10-21 National University Of Singapore Graphene-based saturable absorber devices and methods
KR101090430B1 (ko) * 2009-10-09 2011-12-06 성균관대학교산학협력단 탄소나노구조체 층을 포함하는 광섬유, 광섬유 화학 센서, 및 광섬유 코어에 탄소나노구조체 층을 형성하는 방법
CN101963583B (zh) * 2010-09-10 2012-03-14 清华大学 光纤探头及具该光纤探头的传感***
CN102244351B (zh) * 2011-05-27 2013-03-27 深圳大学 基于单壁碳纳米管的被动锁模器件的制备方法
CN102323212A (zh) * 2011-08-11 2012-01-18 电子科技大学 一种微纳光纤锁模激光传感器及其制造方法
CN102306894A (zh) * 2011-08-18 2012-01-04 厦门大学 基于石墨烯的多波长调q稀土掺杂光纤激光器
JP2012053470A (ja) * 2011-09-28 2012-03-15 Alnair Labs:Kk 光導波路構造体、その製造方法、モード同期光ファイバレーザ装置、微粒子堆積方法および微粒子抽出方法。
RU2485562C1 (ru) * 2011-12-29 2013-06-20 Общество С Ограниченной Ответственностью "Оптосистемы" Модуль насыщающегося поглотителя на основе полимерного композита с одностенными углеродными нанотрубками (варианты)
EP2892859A2 (en) 2012-09-04 2015-07-15 OCV Intellectual Capital, LLC Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media
RU2543694C2 (ru) * 2013-04-23 2015-03-10 Открытое акционерное общество "Государственный оптический институт им. С.И. Вавилова" (ОАО "ГОИ им. С.И. Вавилова") Защитное покрытие для гигроскопичных оптических материалов на основе лазерно-осаждаемых углеродных нанотрубок для целей оптоэлектроники и медицинской техники
US11504038B2 (en) 2016-02-12 2022-11-22 Newton Howard Early detection of neurodegenerative disease
US11957897B2 (en) 2016-04-22 2024-04-16 Newton Howard Biological co-processor (BCP)
CN107179578B (zh) * 2017-05-19 2019-07-12 东北大学 一种硅纳米粒子微结构涂层光纤及其制作方法
CN107132611B (zh) * 2017-05-19 2019-07-12 东北大学 一种介质硅纳米粒子自沉积涂层光纤及其制作方法
EP3872543A4 (en) * 2018-10-26 2022-07-06 Hamamatsu Photonics K.K. FIBER STRUCTURE, PULSE LASER DEVICE, SUPERCONTINUUM LIGHT SOURCE AND METHOD FOR PRODUCING FIBER STRUCTURE
CN116526277A (zh) * 2023-06-29 2023-08-01 深圳市柏金科技有限公司 饱和吸收体的制备方法、饱和吸收体及短腔可调谐激光器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326531A (en) * 1992-12-11 1994-07-05 Puritan-Bennett Corporation CO2 sensor using a hydrophilic polyurethane matrix and process for manufacturing

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073402A (en) * 1989-03-16 1991-12-17 Medical Laser Technologies Limited Of Research Park Method of making an optical device
EP0424969A3 (en) * 1989-10-27 1992-08-19 Brother Kogyo Kabushiki Kaisha Method for forming lens at end portion of optical apparatus, optical signal transmission apparatus, and optical information processing apparatus
US7035518B2 (en) * 2001-04-13 2006-04-25 Hitachi Cable, Ltd. Polymer waveguides and process for producing the same
JP4480307B2 (ja) * 2001-09-21 2010-06-16 イビデン株式会社 光導波路および光導波路の形成方法
WO2003084869A2 (en) * 2002-03-04 2003-10-16 William Marsh Rice University Method for separating single-wall carbon nanotubes and compositions thereof
US6774333B2 (en) * 2002-03-26 2004-08-10 Intel Corporation Method and system for optically sorting and/or manipulating carbon nanotubes
JP4251853B2 (ja) * 2002-04-26 2009-04-08 イビデン株式会社 光伝送構造体、および、光導波路の形成方法
JP4514130B2 (ja) * 2002-12-20 2010-07-28 株式会社アルネアラボラトリ 光パルスレーザ
JP2004260077A (ja) * 2003-02-27 2004-09-16 Aisin Seiki Co Ltd モードロックファイバーレーザー
JP2005322864A (ja) * 2004-05-11 2005-11-17 Shinji Yamashita 短パルス光源
JP4556013B2 (ja) * 2005-10-25 2010-10-06 学校法人東海大学 光路変換機能を備えた光デバイス及び光分岐機能を備えた光デバイスの製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326531A (en) * 1992-12-11 1994-07-05 Puritan-Bennett Corporation CO2 sensor using a hydrophilic polyurethane matrix and process for manufacturing

Also Published As

Publication number Publication date
EP1918262A1 (en) 2008-05-07
CN101169488A (zh) 2008-04-30
JP2008112163A (ja) 2008-05-15
JP4874929B2 (ja) 2012-02-15
EP1918262B1 (en) 2017-05-10
US8236375B2 (en) 2012-08-07
US20100098113A1 (en) 2010-04-22

Similar Documents

Publication Publication Date Title
CN101169488B (zh) 选择性沉积碳纳米管到光纤上的方法
CA2056925C (en) Optical fiber amplifier and coupler
CN102439802B (zh) 基于石墨烯的可饱和吸收体器件和方法
JP2766420B2 (ja) エルビウム添加石英の製造方法
JP3386460B2 (ja) レーザ特性を有する導波体構造
CN102116902A (zh) 光纤功率合束器及其制备方法
CN108199252A (zh) 可饱和吸收体及其制备方法和超快被动锁模激光器
CN102565927A (zh) 光纤、光纤激光器和光学放大器
CN101359803A (zh) 光纤激光器用光纤及其制造方法、光纤激光器
CN109768459A (zh) 一种激光刻蚀的泵浦光剥除器及其制作方法
JP5442502B2 (ja) 光ファイバ増幅器およびその作成方法
EP2086071A1 (fr) Guide optique dopé par des ions terres rares et dispositif optique le comprenant
EP0611731A2 (en) Process for fabricating a optical fiber preform
CN104865638A (zh) 一种泄漏双包层光纤中包层光的方法
Kashiwagi et al. Optically manipulated deposition of carbon nanotubes onto optical fiber end
JP2014017457A (ja) 希土類元素添加ファイバ、及びそれを用いたファイバレーザ並びにファイバ型増幅器
CN103926650A (zh) 一种双包层光纤的包层光功率剥离方法
JP2008176135A (ja) 光導波路構造体、その製造方法、モード同期光ファイバレーザ装置、微粒子堆積方法および微粒子抽出方法。
JPH1081536A (ja) エルビウム添加光繊維の製造方法及び製造装置
CN112563873B (zh) 一种可饱和吸收体的制备方法及多模光纤激光器
ATE486823T1 (de) Verfahren zur herstellung einer optischen faser für hohe übertragungsraten
Dianov et al. Demonstration of 1.3-μm Raman fiber amplifier gain of 25 dB at a pumping power of 300 mW
Fan et al. Mesoporous silica enriched PbS quantum dots for optical fiber amplifiers
CN106848815B (zh) 一种基于载氢光纤的大功率随机光纤激光器
EP2626960A2 (en) Active laser medium including nanoparticles, laser apparatus including the active laser medium, and method of manufacturing nanoparticles

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120801

Termination date: 20191026