CN101116275B - 在无线网络中转发数据分组的方法、传送节点和通信节点 - Google Patents

在无线网络中转发数据分组的方法、传送节点和通信节点 Download PDF

Info

Publication number
CN101116275B
CN101116275B CN2005800479937A CN200580047993A CN101116275B CN 101116275 B CN101116275 B CN 101116275B CN 2005800479937 A CN2005800479937 A CN 2005800479937A CN 200580047993 A CN200580047993 A CN 200580047993A CN 101116275 B CN101116275 B CN 101116275B
Authority
CN
China
Prior art keywords
node
packet
transmission
data
quality information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2005800479937A
Other languages
English (en)
Other versions
CN101116275A (zh
Inventor
N·约翰森
P·拉森
M·迈耶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Publication of CN101116275A publication Critical patent/CN101116275A/zh
Application granted granted Critical
Publication of CN101116275B publication Critical patent/CN101116275B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1664Details of the supervisory signal the supervisory signal being transmitted together with payload signals; piggybacking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0059Convolutional codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及无线网络(1)中的数据的基于质量的调度。在这个调度中,在接收通信节点(200)中估算表示先前传送但未正确接收并且未成功解码的数据分组(10)的可解码性的程度的质量信息(30)。又向传送该分组(10)的节点(100)报告这个质量信息(30)。质量信息(30)将由传送节点(100)在调度后续数据传输时使用。在这个调度过程中,根据质量信息(30)来执行以下选择的至少一个:I)第二数据分组(20)将被转发到的接收节点(200);ii)第二分组(20)中的数据的类型;和/或iii)第二分组(20)所属的数据流。

Description

在无线网络中转发数据分组的方法、传送节点和通信节点
技术领域
一般来说,本发明涉及在通信网络中转发数据分组,具体来说,涉及这类网络中的数据分组的基于质量的调度。
背景技术
用于在多个用户之间有效地共享无线媒体的协议一般称为多路访问协议、信道访问方案或媒体访问方案。多路访问协议可分为两个主要类别:无冲突协议和基于争用的协议。
无冲突协议确保传输在每次进行时都是成功的,即,没有受到其它传输干扰。无冲突传输可通过静态或动态地把信道分配给用户来实现。这往往分别称为固定和动态调度。台之间的准确协调的好处在于,被认为提供高效率,但是,这是以复杂度以及有时大量的控制业务的交换为代价而达到的。
基于争用的协议与无冲突协议原则上的差异在于,传输具有较少成功的倾向。因此,协议应当规定在出现冲突或者不成功传送数据时解决这些问题、使得所有消息最终成功传送的过程。
这种冲突解决过程的典型实例是采取自动重复请求(ARQ)的形式的请求重传。在ARQ***中,接收节点检测所接收数据块或分组是否包含差错、即、是否可被成功解码。当检测到差错时,以否定确认(NACK)标识符的形式的重传请求被转发给传送节点。另一方面,对成功的、即无差错的分组接收和解码进行响应,返回确认(ACK)标识符。因此,可实现无差错条件,但以因重传、有时为许多重传而引起的长传输延迟时间为代价。
(简单)ARQ方案的改进是采取混合ARQ(HARQ)的形式的重复数据分组传输。HARQ方案可采用来自先前错误或不成功传输的信息,以便改进对后续数据传输(重传)进行解码的机率。
本领域已知,如果接收侧不能对原始数据分组正确解码,则NACK通常被返回给传送侧。如果可能,原始数据分组的软值可存储在接收侧上的存储器中。对NACK进行响应,传送侧将重传数据分组(在Chase合并(CC)HARQ方案中)或者传送递增冗余数据(在递增冗余(IR)HARQ方案中)。接收侧则可利用原始数据块的软值,并将它们与当前所接收数据分组的软值合并,以便增加成功解码的机率。
在称为基于可靠性的HARQ(RB-HARQ)[1,2]的HARQ的扩展中,通过标识原始数据分组中最弱(最不成功解码)的位的信息来交换简单NACK。因此,重传数据分组仅需要包含这些最弱位,从而产生较小的重传大小。在专利申请[3]中,采用自适应HARQ方案,在其中,响应失败解码的通知而传送的冗余度的大小根据不成功接收数据块的质量估算值来确定。
但是,虽然RB-HARQ方案[1,2]和自适应HARQ方案[3]减少重传数据的数量,但是它们无法通过提供利用使信号传输能比在其它时间和条件时更成功的机会的数据分组的调度来增加无线通信网络的吞吐量。这些机会通常因网络中随时间的变化或波动而出现。机会路由[4-6]通过利用这些波动提供的机会窗口部分减轻网络中迅速变化的链路质量。虽然现有的机会路由方案[4-6]在大多数情况中正常工作,但是它们不是特别适合基于HARQ的数据通信。因此,一般需要提供适合基于HARQ的通信的有效的机会数据分组路由和调度方案。
发明内容
本发明克服了先有技术方案的这些及其它缺陷。
本发明的一般目的是提供用于在无线网络中转发数据分组的有效机制。
本发明的另一个目的是提供无线网络中的数据分组的基于质量的调度。
本发明的又一个目的是提供在后续传输的调度中利用先前分组传输的信息的分组调度。
本发明的一个具体目的是提供适合于多跳网络的基于质量的调度。
本发明的另一个具体目的是提供多跳网络中的联合HARQ和(机会)调度。
如所附专利权利要求所定义的本发明满足这些及其它目的。
简言之,本发明包括提供与不成功解码数据分组关联的并且表示数据分组的可解码性的程度的质量信息。这种质量信息由传送节点在执行数据分组转发的调度时使用。
因此,在本发明的主要方面,至少一个通信节点已经接收到来自一个或多个传送节点的一个或多个传输中的至少一个数据分组。通信节点处理数据分组,以便尝试对分组解码。如果不成功,则该节点通知传送节点解码失败。根据本发明,这种解码失败通知包含称为数据质量指示符(DQI)的质量信息,它表示通信节点上至少一个不成功解码数据分组的可解码性的程度。传送节点则根据这个(这些)DQI执行后续数据分组的调度。通过在调度中利用这个DQI(先前传输的信息),在吞吐量、等待时间、容量和能量/功率消耗方面的网络的性能可得到改进。
基于DQI的调度可按照本发明的多个可能的实施例之一来实现。在第一优选实施例中,传送节点根据DQI从多个候选接收节点的集合中选择一个或多个、即至少两个适当的接收节点。在这个实施例的一个优选实现中,传送节点在已经返回DQI的那些候选接收节点之中选择接收节点。在这个实施例中,未完全解码的信息的质量可用于最佳接收节点的选择。因此,传送节点可选择具有第一分组的较高程度的可解码性、即仅有几个弱或不可编码信息位的一个或多个通信节点作为接收节点。在这样一种情况中,与选择具有较低程度的可解码性的通信节点相比,只有较少量的信息必须在第二传输中转发。
在一个备选实施例中,传送节点根据DQI选择待发送到通信节点的数据分组中的数据的类型,在其中该数据与产生DQI所基于的不成功解码数据分组的至少一个中所包含的数据相关。在一个典型实现中,传送节点可根据DQI选择当前数据分组是否:i)是前一个分组的副本(数据重传);ii)包含与前一个分组相同的某些信息位以及可选地包含某些递增位;iii)(仅)包含递增冗余数据。这类不同的备选方案在具体DQI值所确定的不同情况中可能是有利的。通常,备选方案i)是低DQI值(低程度的可解码性)的最适当选择,而备选方案iii)可能是高DQI值(表示前一个分组的较高程度的可解码性)的好选择。
在又一个实施例中,传送节点可根据DQI在传送节点中表示的多个流之中选择流。数据分组则根据所选流来提供,并转发给至少一个通信节点。根据这个实施例,传送节点不必首先转发在其传送队列的行首的数据分组。例如,传送节点可首先调度和传送较短的数据分组。传送节点则可采用DQI量度来估算相应的所需重传的所需长度,以及选择最适当的数据流和分组。
这些实施例的任一个可结合形成联合基于DQI的选择。另外,在转发数据分组时使用的传送和/或链路参数可至少部分根据DQI来确定。传送节点则根据所选传送和/或链路参数把所选数据(类型)转发给所选接收节点。
根据本发明的基于质量的调度也可基于除DQI之外还有其它质量信息。这类附加信息包括链路质量数据(例如平均和/或瞬时信道质量)、与传送节点和/或接收节点关联的(平均)路由成本、与传送队列中表示的不同数据流关联的服务质量(QoS)数据、队列状态、剩余电池电力等。
希望选择在某种意义上是最佳的接收节点、流和/或数据类型以及可选传送/链路参数。为了能够以明确定义的方式来讨论最优性,优选地对于接收节点、流和/或数据类型引入和优化基于DQI数据和可选的成本进度、链路质量和QoS数据的目标函数。
在本发明的一个优选实施例中,DQI数据不仅由被寻址通信节点产生,而且优选地还由监听数据传输的通信节点产生。在这种情况中,传送节点将从被寻址(目标)节点和监听(非目标)节点获得DQI数据,从而一般提供在多跳网络中特别符合需要的较大选择资料。
另外,监听另一个通信节点与传送节点之间的DQI报告的通信节点优选地存储这个DQI数据供以后使用。因此,通信节点随后可能获得转发数据的职责。如果它然后监听并存储在其它节点上根据那个数据的可解码性所产生的DQI,则它可通过例如选择最适当的接收节点和/或最适当的数据类型或格式,在执行数据调度时采用这个(这些)DQI。
根据本发明,不同的质量量度可用作DQI以表示通信节点上的不成功解码数据分组的可解码性的程度。一般来说,这些DQI量度应当看作对(先前)已经由通信节点成功接收和处理的数据分组的信息量的先验知识,因而可表示为了成功传递信息和在通信节点上解码,传送节点所需的剩余冗余度或努力。
本发明提供以下优点:
-提高的网络性能和容量;
-增加的吞吐量和/或减小的延迟和等待时间;
-对于与其它方案相同的性能指标的降低的传送功耗;
-可用于改进多跳转发中的效率;以及
-可用作对现有分集转发方案的补充。
通过阅读以下对本发明的实施例的描述,将会理解本发明提供的其它优点。
附图说明
通过参照以下结合附图进行的描述,可以透彻地理解本发明以及其它目的和优点,附图包括:
图1是流程图,说明根据本发明转发数据分组的方法;
图2是流程图,说明图1的分组转发方法的DQI接收步骤的一个实施例;
图3是流程图,说明图1的调度步骤的实施例;
图4A-4D说明根据本发明在通信网络中数据通信的一个实施例;
图5A-5D说明根据本发明在通信网络中数据通信的另一实施例;
图6A-6F说明根据本发明在通信网络中数据通信的又一实施例;
图7是流程图,说明图1的调度步骤的一个实施例;
图8是简图,说明适用于多用户分集转发的根据本发明的数据通信;
图9是简图,说明适用于选择分集转发的根据本发明的数据通信;
图10是示意框图,说明根据本发明的传送节点的一个实施例;
图11是示意框图,说明图10的传送节点的传送队列;
图12是示意框图,说明根据本发明的传送节点的另一个实施例;
图13是示意框图,说明根据本发明的通信节点的一个实施例;以及
图14是示意框图,说明根据本发明的通信节点的另一个实施例。
具体实施方式
在所有附图中,相同的参考标号将用于相应或相似的元件。
本发明涉及无线通信网络和***中的数据分组的基于质量的调度和/或路由。本发明的基本概念是在后续传输的调度中利用先前数据传输的信息。本发明特别适合于在这类网络中提供联合HARQ和(机会)调度。
在本发明的主要方面,至少一个通信节点已经接收到来自一个或多个传送节点的一个或多个传输中的至少一个数据分组。通信节点尝试对数据分组解码。如果不成功,则该节点通知传送节点解码失败。在先有技术中,这个通知通常采取简单NACK的形式。但是,根据本发明,通信节点产生与至少一个未成功解码数据分组关联的质量信息。本文中称为数据质量指示符(DQI)的这种质量信息表示通信节点上至少一个不成功解码数据分组的可解码性的程度。传送节点则根据这个(这些)DQI执行后续数据分组的调度。
DQI量度可看作对(先前)已经由通信节点的解码器成功接收和处理的数据分组的信息量的先验知识。因此,DQI表示为了成功传递信息和在通信节点上解码,传送节点所需的剩余冗余度或努力。
在这方面,传统的NACK可看作已经分为细分级标准,在其中,DQI可看作是传统ACK与NACK之间的质量确认。因此,DQI可由0与1之间的值示意表示,在其中,值1表示ACK以及数据分组的成功接收和解码,以及0则表示在接收节点上(以所需最小概率)没有数据分组的信息位可被成功处理、即解码。
在这个上下文中,所接收数据分组的信息位的可解码性一般要求位的概率估算值超过最小所需概率门限。例如,在对信息位解码时,关联的解码相关的概率值被估算并与门限进行比较。如果超过门限,则该位被认为成功处理(解码),以及相应地,如果估算值低于门限,则被认为不成功解码。这个论述可直接扩展到包含多个信息位的整个数据分组。因此,如果全部或者其包含信息位的至少最小部分被成功解码,则数据分组被认为成功解码。
根据本发明,不同的DQI量度可根据例如相关通信网络和所采用的编码方案来使用。根据本发明,可用作DQI的可解码性的量度的一个实例是估算对整个分组进行解码所需的信息的剩余量、即解码之后可用信息与解码器所处理的数据分组中包含的信息量之差。此外,对于平坦AWGN(加性白高斯噪声)信道,信噪比(SNR)是数据分组的接收质量的有效指示。如果采用格栅编码,则累计路径度量表示接收质量,并且可用作根据本发明的DQI量度。相应地,在特播编码中,后验概率(APP)值(或先验、本征和非本征信息)可用作对位进行解码的良好程度的指示。先验信息是位的概率知识(可馈入解码器以得到改进的解码性能)。本征信息是发送到解码器中的软位信息,以及非本征信息是解码器产生的新信息。已经表明[7],非本征信息的概率分布函数(PDF)由高斯形曲线适当表示,它对于各迭代通常改进平均值(实质上移动整个高斯钟形)。但是,总信息不仅由非本征信息、而且还由位值的本征(从解调器输入的软位)和先验信息组成。总信息的PDF的均值(以及在某种程度上还有方差)是解码位的可靠性的指示。因此,DQI量度例如可能是平均总信息(以及可选地为方差)。另一个备选方案是,接收机表明剩余努力、即剩余所需信息,而不是所接收信息的数量。剩余所需信息则是所接收总信息与允许具有某种概率的完全可解码性的信息的所需数量之间的差异。或者,接收机可把剩余所需信息知识映射到适当的HARQ传输格式,它然后将被用作DQI量度。
以上所列参数应当看作是可根据本发明使用的适当DQI量度的典型而非限制性实例。其它可能的量度可包括分组中的可解码信息位的百分比,即,主要指0(0.0)与100%(1.0)之间的值。相应地,未成功解码的弱位的指示(例如通过具有小于最小门限的关联概率估算值)被看作是根据本发明的DQI量度。
一般来说,表示通信节点上的不成功解码数据分组的可解码性的程度的任何质量量度均可用作DQI量度。
图1是流程图,说明采用基于质量的调度的根据本发明的转发数据分组的方法。
该方法在步骤S1开始,在其中,传送节点接收DQI(表示不成功解码数据分组的可解码性的程度的质量信息)。传送节点可接收来自一个或多个通信节点的一个或多个DQI。这些DQI可与相同的数据分组或者不同的数据分组关联。这个(这些)数据分组可能先前已经由传送节点传送。或者,DQI的至少一部分反而可能与已经由其它节点传送的数据分组关联,下面更详细地进行论述。
在下一个步骤S2,传送节点根据DQI执行数据分组转发或传输的调度。DQI可能是在步骤S1接收的DQI、其中的一部分和/或先前接收并存储在传送节点中的DQI。在任一种情况中,基于DQI的调度优选地利用***变化和波动提供的机会。通过在调度中经由使用DQI进一步利用先前传输的信息,在吞吐量、等待时间、容量和能量/功率消耗方面的***的性能可得到改进。
基于DQI的调度可按照以下更详细论述的本发明的多个可能的实施例之一来实现。简言之,传送节点可根据DQI选择一个或多个、即至少两个适当的接收节点。在本发明的一个优选实施例中,优选地根据DQI在已经返回DQI的通信节点之中选择接收节点。但是,作为补充或替代,未返回DQI值的至少一个通信节点可被选作接收节点,只要选择过程至少部分基于至少一个DQI值。或者,传送节点根据DQI选择待发送到通信节点的数据分组中的数据的类型,在其中,该数据与产生DQI所基于的不成功解码数据分组的至少一个中所包含的数据相关。此外,传送节点可根据DQI在传送节点中表示的多个流之中选择流。数据分组则根据所选流来提供,并转发给至少一个通信节点。
这些实施例的任一个可结合形成联合的基于DQI的选择。另外,在转发数据分组时使用的传送和/或链路参数可至少部分根据DQI来确定。
在下一个步骤S3,传送节点按照所执行的基于DQI的调度来转发数据分组。注意,转发数据分组优选地携带与不成功解码数据分组的至少一个中包含的数据的至少一部分相关的数据,已经根据它确定DQI。因此,转发数据分组可能是先前传送的不成功解码分组的(相同)副本。或者,数据分组可携带相对于先前传输的部分相同的位以及部分递增的位。在又一个实例中,数据分组仅携带与先前分组关联的递增冗余位。
然后,该方法结束。
图1的转发方法可用作传统自动重传请求技术、如HARQ方案的扩充,其中创造性地添加了使用所接收DQI数据来判定下列至少一项:i)向谁发送后续数据分组,ii)后续数据分组的类型,以及iii)首先转发哪一个流和数据分组。
图2是流程图,说明图1的接收步骤S1的一个实施例。在第一步骤S10,传送节点转发送往至少一个通信节点的第一数据分组。这个第一数据分组可能已经在传送节点中从高层(应用)中产生,或者从***中的另一个节点接收。数据分组可能是:单播,即被寻址和转发到单个节点;多播,即被寻址和转发到多个节点;或者广播,通常转发到一个或多个非寻址节点。在后两种情况中,这例如可通过没有检测信道而直接转发或者通过采用CSMA(载波检测多路访问)或CSMA/CA(具有避免冲突的CSMA)来进行。
节点处理第一数据分组,以便尝试对其解码。如果例如通过经由CRC(循环冗余校验)校验的测试确定解码成功,则通信节点优选地产生并返回ACK。如果例如通过CRC校验确定不成功,则节点优选地在下一步骤S11产生并返回反映那个节点上的第一分组的可解码性的DQI。
与第一分组的转发对应,通信节点可通过单播、多播或广播来返回DQI。具体来说,在后两种情况中,DQI将会或者可能由传送节点之外的其它节点接收。它在这些其它节点存储这个DQI信息的情况下可能是有利的,因为它们随后在(以后)负责进一步转发第一数据分组时则可使用该DQI。
DQI可在其估算或确定之后直接在步骤S11返回。或者,DQI在预定时间段之后返回。在又一个实施例中,在接收到来自传送节点的报告请求之前,DQI没有返回给传送节点。作为替代或补充,特别是对于多播或广播实现,DQI可连续或定期从通信节点传送。
DQI量度可由相关通信节点来估算或确定。或者,通信节点提供(质量)信息并传送给传送节点。这个传送节点则可从所接收质量信息中计算或者至少估算DQI。要采用的具体解决方案取决于要增加处理复杂度的位置以及DQI将具有的一般性。
还要注意,在本发明的一个优选实施例中,不仅被寻址通信节点产生和传送DQI。如果通信节点监听到第一数据分组传输,则可产生DQI(如果监听分组的解码不成功),并返回给传送节点。
这意味着,给定传送节点可有权访问例如传送队列或其它存储区中存储的与它本身发送(以及存在于传送队列中)的数据分组关联的DQI以及与其它节点发送的数据分组关联的DQI。如果传送节点随后将接收并负责数据的进一步转发,则可使用这些其它的DQI。然后,可在调度中使用这些先前接收的DQI。
然后,该方法继续进行到图1的步骤S2。
图3是流程图,说明图1中的步骤S2的基于DQI的调度的不同实施例。
在步骤S20表示的第一实施例中,传送节点已经从多个候选接收节点的集合中的至少一个通信节点获得DQI。它然后根据DQI从这一组候选节点中选择适当的接收节点,以便对其转发(第二)数据分组。因此,在这个选择步骤S20,传送节点可根据所报告DQI从已经返回DQI值或者没有返回DQI的集合中选择接收节点。后一种情况例如可能是由于接收节点在前一个(第一)数据分组的传输之后被添加到候选集合(例如由于路径损耗已经改变)而引起的。还能够在步骤S20中并根据DQI选择已经返回或者没有返回DQI值的多个接收节点。在又一个扩展中,在步骤S20,传送节点根据DQI选择已经返回DQI的至少一个接收节点以及没有返回DQI的至少一个接收节点。
但是,在这个第一实施例的一个优选实现中,所选接收节点已经向传送节点报告DQI数据。在又一个优选实现中,传送节点接收到来自候选集合的多个通信节点的DQI数据。在步骤S20,则根据DQI从已经报告DQI的集合的那些通信节点中选择一个或多个接收节点,以及可选地还可选择DQI未报告节点。
例如,假定传送节点设置在多跳通信网络中,并且将通过多跳传输向目标节点转发数据分组。这个数据分组已经被发送到设置在最终目标节点的方向上的第一通信节点。设置在第一节点附近的第二通信节点监听分组传输。假定第一和第二两个节点在对数据分组完全解码时不成功,因而向传送节点返回DQI值。在这个说明性实例中,来自被寻址第一节点的DQI为0.4(其中,值1表示成功解码分组,以及0表示完全不成功解码,即完全没有可解码的信息位)。来自监听的第二节点的相应DQI值为0.8。传送节点则可选择这两个节点其中之一来重传数据分组或者向其中传送相关冗余数据。由于第二节点与第一节点相比具有成功处理数据分组的更大部分的能力,因此,如果后续数据分组被转发给第二节点而不是第一节点,则通常需要传送更少数据以及花费更少能量。
这应当与先有技术相比,在其中,后续数据分组只是被传送到第一节点,而不管第二节点中的较高程度的可解码性。
因此,本发明极适合用于多跳网络中的调度和路由。一般来说,多跳方法提供若干优点,例如比直接单跳方法更低的功耗以及更高的信息吞吐量。在多跳网络中,相互不可达的节点可获益于中间设置的节点,它们可采用至少部分根据DQI量度所确定的路由把消息和分组从源转发到目的地。
在步骤S21所示的第二实施例中,传送节点根据关联包含与当前分组中的数据相关的至少部分数据的前一个分组的DQI来确定要在当前数据分组中发送的数据的类型。在一个典型实现中,传送节点可根据DQI选择当前数据分组是否:i)是前一个分组的副本(数据重传);ii)包含与前一个分组相同的某些信息位以及可选地包含某些递增位;iii)(仅)包含递增冗余数据;iv)其它某种备选方案。这类不同的备选方案在具体DQI值所确定的不同情况中可能是有利的。
例如,假定通信节点接收到来自传送节点的第一数据分组。数据转发期间的无线电条件极差,因而通信节点可能仅成功处理(以充分的概率)第一分组的一小部分,由DQI值0.1表示。假设一种相应情况但具有更好的无线电条件,因此,分组的大部分是通信节点可解码的,从而产生例如0.85的DQI值。比较这两个实例,可能最有效的是,在具有几乎完全可解码分组(DQI=0.85)的情况中,仅在第二数据分组中传送冗余数据;而在具有差的可解码性(DQI=0.1)的情况中,第二数据分组将为第一分组的副本。此外,诸如平均信道质量(例如以信号噪声干扰比(SINR)的形式)或平均信道增益等的方面可与DQI值一起考虑,以便进行最佳选择。除了平均信道质量或增益之外,它们的瞬时值也可被考虑或者结合相应的平均值来考虑,下面更详细地论述。
本论述可经过扩展,使得传送节点配置用于提供第二数据分组,当0≤DQI<α1时作为第一分组的副本,当α1≤DQI<α2时包含第一分组的信息位的一部分以及可选的部分递增位,以及当α2≤DQI<1时仅携带递增冗余,其中,0<α1<α2<1,0≤DQI<1,以及高DQI值表示高程度的可解码性。
在步骤S22所示的第三实施例中,传送节点保存该节点中当前表示的目的地/流的列表。基于DQI的调度提供在这些不同目的地/流之中的选择。实际上,这实现在若干一般转发方向上的接收通信节点的选择。
例如,假定传送队列中的第一数据(即队列的行首分组)与从相对于传送节点设置在第一方向上的第一通信节点所接收的DQI=0.2关联。这个第一数据要发往第一方向上的第一目标节点。传送队列还包括与从第二通信节点所接收的DQI=0.9关联的并且属于第二流的第二数据。这个第二节点可在第二一般方向上设置在传送节点与第二数据要送往的第二目标节点之间。
应用先有技术,传送节点首先传送与第一数据相关的数据分组,因为这个数据在队列中是第一个。但是,首先调度短数据分组是减小平均排队等待时间的有用调度策略。根据本发明,可能最有利的是首先传送与第二流关联的数据分组,因为这种分组由于较高的关联DQI值而通常可能更小。也可应用与选择短分组不同的调度策略,例如优化表示对目的地的进度和传递的有效信息量的其它度量。
因此,根据本发明的基于DQI的调度可按照以上第一实施例(步骤S20)、第二实施例(步骤S21)或第三实施例(步骤S22)来执行。在一个附加的优选实施例中,执行联合的基于DQI的选择,结合步骤S20至S22中的至少两个的过程。换言之,传送节点可根据DQI选择向哪一个节点转发分组以及分组将包含什么数据类型(步骤S20和S21)。或者,传送节点根据DQI选择数据流和流方向上的接收节点(步骤S20和S22)。另外,步骤S21和S22可被结合,使得传送节点根据DQI选择数据流和分组以及这个分组应当包含的数据类型。调度步骤的又一个实施例包括数据流的选择、流的方向上的接收节点的选择以及转发到所选接收节点的数据类型的选择(步骤S20、S21和S22),在其中,所有这些选择至少部分根据DQI来执行。基于DQI的选择中的其它(优选)输入是平均或瞬时信道质量(或纯路径增益)。另外,在调度过程中还可考虑QoS参数,本文对其进行进一步论述。
上述实施例的任一个(单个或联合的基于DQI的选择)可与根据DQI选择用于步骤S23中的数据分组转发的传送和/或链路参数相结合。传送参数包括例如数据转发中使用的发射功率和天线权重。其它参数、诸如编码和速率或链路参数、包括链路模式参数、例如数据信号星座和前向纠错编码或者频率信道参数可根据所得到的DQI值进行调节和选择。
例如,假定两个通信节点响应来自传送节点的第一数据分组的不成功接收而分别返回DQI值0.2和0.9。传送节点则可根据所接收DQI值来调节传送参数,以便增加传送节点与所述节点的至少一个之间的成功通信(重传)的机率。因此,与向另外的节点转发分组相比,向具有DQI值0.9的通信节点转发第二数据分组(例如重传第一分组)时通常可采用更低的发射功率。
传送参数还可根据DQI来调节、例如通过降低不必要的高发射功率等级以减小能量消耗和其它不需要的副作用,使整体效率最大。传送参数可经过设置,使得存在传输到达最接近的通信节点的高概率以及还存在传输到达传播方向上更远的一个或多个节点的机率。如果可到达另外的节点其中之一,则在通过网络的数据的多跳行程中可能存在更少跳,这将节省整体能量消耗。
然后,该方法继续进行到图1的步骤S3,在其中,包括(所选)类型的数据的(所选)数据分组采用(所选)传送和/或链路参数被传送到(所选)接收节点。
现在通过实例进一步说明本发明,其中主要描述采取接收节点选择的形式的基于DQI的调度。但是,如上所述,可采用其它实施例或者调度的实施例的组合。
图4A-4D说明根据本发明在多跳通信网络1中的数据通信。在图4A中,传送节点100将通过使用中间通信节点传送要发往目标节点的数据分组(DP)。传送节点100通常首先选择设置在朝目标节点的传播方向上的适当的候选中继或接收节点200-1至200-3的集合,即,这些所选节点200-1至200-3组成候选节点的集合。数据分组则采用例如广播或多播技术被转发给这些候选节点200-1至200-3。采用多个候选节点200-1至200-3的集合的优点在于,与使用单个候选节点相比,候选节点200-1至200-3的至少一个成功接收数据分组的概率一般增加。
中继候选节点200-1至200-3例如通过经由CRC校验测试数据,来尝试对数据分组解码。但是,在这个实例中,没有候选节点200-1至200-3成功地对数据分组解码。优选地,节点200-1至200-3的每个产生DQI或者至少产生从其中可估算DQI的信息,在其中,DQI表示那个特定节点200-1至200-3上的数据分组的可解码性的程度。在图4B中,向传送节点100报告DQI,在这里由被寻址传输表示。
在图4C中,传送节点100根据得到的DQI执行调度。这种调度可通过选择返回最大DQI、即具有数据分组的最高程度的可解码性的候选节点来实现。但是,在其它实施例中,其它参数、包括(瞬时和/或平均)链路质量、路由成本、服务质量(QoS)数据、队列状态、剩余电池电力等可用于调度,从而可能引起选择非最大DQI关联节点之一是更为有效的,下面更详细地进行论述。传送节点可能根据DQI来提供第二数据分组(DP’)。这个第二数据分组优选地包括与第一分组(DP)中的数据相关(相同或者提供额外冗余度)的数据。这个第二分组可能采用根据DQI选取的传送参数被发送给根据DQI选取的中继节点200-2。
中继节点200-2则可在解码过程中采用第一数据分组(DP)(第一数据分组(DP)中的信息位的已存储软值)以及第二分组(DP’),极大地增加成功解码的机率。在这个实例中,解码可正确地执行,以及中继节点200-2返回ACK。传送节点100优选地响应ACK的接收而从其传送队列中删除相关数据、即第一和第二分组。如果其它候选节点200-1、200-3监听这个ACK传输或者ACK被多播/广播,则这些节点200-1、200-3也可从其存储装置中删除数据分组。在一个备选实施例中,数据分组在经过预定时间段或者在接收到丢弃命令时被删除。
图5A至5D说明多跳网络1中的基于DQI的调度和数据转发的另一个实例。在图5A中,传送节点100向中继节点200-1传送数据分组(DP)。第二中继节点200-2监听这个初始分组传输。两个中继节点200-1、200-2尝试对数据分组解码,但不成功。它们产生反映它们的所得分组的可解码性的相应程度的DQI,并在图5B中将其返回给传送节点100。
传送节点根据两个所接收DQI值在两个候选节点200-1、200-2之中选择中继节点,它将接收可能是第一分组的副本或者包含冗余数据的第二数据分组(DP’)。在这个具体实例中,监听节点200-2是所选中继节点,因而传送节点100在图5C向其转发第二分组。与图5A相对应,在这个第二数据传输中,中继节点200-1、200-3监听传输。
所有这些中继节点尝试对数据解码,中继节点200-1、200-2通过采用第一(DP)和第二(DP’)分组以及中继节点200-3仅采用第二分组(DP’)来进行。中继节点200-1成功地解码,并产生和返回ACK,而另外两个节点200-2、200-3可能仅处理数据的一部分,因而在图5D中产生和返回DQI。
图6A-6F说明采用本发明的多跳网络1的又一个实例。传送节点100在其传送队列中具有它将以多跳方式转发给目标节点的数据。节点100提供可用作多跳传输的中间中继节点的适当候选节点200-1、200-3的集合。包括相关数据的数据分组被编译并且在图6A中向候选节点200-1、200-3传送、优选地进行多播。没有包含在候选集合中的另一个中继节点200-2监听这个分组传输。
在图6B中,候选节点之一200-1成功地对数据解码,以及向传送节点100返回ACK。但是,其余候选节点200-3和监听节点200-2可能没有完全对分组解码,以及提供和返回反映其可解码性的相应程度的DQI。在这个实例中,所传送DQI由中继节点200-1监听,或者DQI可广播或多播。在任一种情况中,这个中继节点200-1把这个DQI信息存储在存储器、例如在其传送队列中。
在接收到ACK和DQI时,传送节点100确定第一中继节点200-1(由于成功地接收到数据)将负责数据到目标节点的后续转发。因此,传送节点100在图6C中向中继节点200-1发送转发指令(FO)。响应这个转发指令,中继节点在图6D中向传送节点返回转发ACK。传送节点100则可从其传送队列中删除该数据,并释放数据的所有职责。
在图6E中,前一个中继节点(图6A至图6D中的200-1)被看作第二传送节点100-2,因为它具有向最终目的地转发数据的职责。与图6A的情况相反,这个第二传送节点100-2具有关于数据的一部分先前已经被中继节点200-2、200-3接收的先验知识(DQI)。因此,当在这些节点200-2、200-3之中选择候选节点时,可使用DQI信息。另外,DQI信息可用于确定将传送给候选节点的数据的类型。例如,如果从中继节点200-2和200-3(参见图6B)监听的DQI分别具有值0.9和0.4(0≤DQI<1),则传送节点100-2可根据DQI选择仅转发与在图6A由节点200-2、200-3先前接收的分组相关的原始数据分组的一部分或冗余数据。因此,与其中传送节点100-2没有关于成功解码所需的剩余冗余度的大小的先验知识的先有技术情况相比,需要发送更少的信息。传送节点提供包括数据的这个部分或冗余度的数据分组(DP’),并传送给候选节点200-2。另一个中继节点200-3监听这个传输。
两个节点200-2、200-3优选地采用当前接收的数据(DP’)和先前接收的数据(DP)尝试对数据解码。在这个实例中,候选节点200-2可对数据正确解码,而另一个节点200-3仍然不成功。因此,ACK和DQI在图6F中返回给传送节点100-2。
在以上实例中,传送节点已经根据DQI值选择(单个)接收或候选节点。但是,本发明预计,多个适当的接收或候选节点或者可根据DQI值来选取。
图7是流程图,更详细地说明图1的调度步骤S2的一个实施例。在这个实施例中,除了DQI之外的其它数据和参数也用于调度过程。该方法从图1中的步骤S1继续进行。
在下一个步骤S30,传送节点向多个可能的接收节点传送信道探测或询问消息。可能的中继或候选节点的信息可从早先得出的拓扑信息中得出,但是也可能受到传送队列内容、DQI和QoS因素影响。这个拓扑和连通性数据可能比较缓慢地收集和保存。例如,这种数据收集可能是连续过程。然后,当转发过程被激活时,拓扑和连通性数据可用来帮助传送节点确定哪一些节点是适当的候选节点。拓扑和连通性数据的收集速率在理想情况下为:i)高到足以为各节点提供关于哪一些节点对于在特定方向上传播或者传播到最终目的地的数据分组是适当候选节点的一般指示,而在同时,ii)低到足以避免浪费能量和其它资源保存开销信息。拓扑和连通性数据的收集可经由传统的路由信息协议、如不同的贝尔曼-福特算法来提供。
这个询问消息采用探测器来检测传送节点与中继节点之间的信道或链路的当前质量。各接收节点估算其信道或链路质量,并产生信道质量指示符(CQI)。这个CQI可能是估算SNR或SINR。SINR在大多数应用中是优选的。在机会调度中,CQI往往被认为是瞬时信道质量,但是也可能是某个预定义时间段的平均信道质量的量度。可用时,通常优选的是采用包括瞬时以及平均信道质量的CQI数据。在步骤S31,中继节点发送包含CQI的响应消息。在一个备选实施例中,各候选节点确定哪一种速率可用于接收,然后在步骤S31,作为替代或补充,采用该速率进行响应。该速率可能是调制(QPSK、8PSK、16QAM、…)以及前向纠错码(卷积编码、特播编码、…)和编码速率的某种组合的确切值或隐含代码。
在步骤S32,传送节点在采用某种形式的成本进度时可通过独立路由确定协议、例如任何众所周知的最短路径协议(例如贝尔曼-福特或Dijkstra),例如采用能量、延迟或跳度量或定制路由确定协议来提供路由成本信息。在这个步骤S32,传送节点可提供与它本身和/或候选中继节点的一个或多个关联的路由成本。
如本领域一般已知的,不同的流可能具有不同的QoS要求。通过实例,具有严格延迟要求的流的优先顺序通常确定为高于具有更宽松延迟要求的流。因此,在步骤S33,传送节点可提供与其传送队列中表示的数据流或分组关联的QoS参数。
在调度步骤S34,除了DQI之外,传送节点还可采用上述参数CQI、路由成本、QoS中的任一个。在大多数情况中,使用更多判定数据和不同类型的判定数据一般产生更有效的调度和路由。因此,本发明的基于DQI的调度有利地实现为基于DQI数据以及CQI、路由成本和QoS的至少一个的调度。
然后,该方法继续进行到图1的步骤S3。
组合分集调度
本发明提出的基于质量的调度可与其它机会或多用户分集调度或者蜂窝通信***中使用的通信方案共同使用,例如诸如WCDMA-HSDPA(WCDMA高速下行链路分组接入)等的宽带码分多址(WCDMA)***或者诸如CDMA-HDR(CDMA高数据速率)[8,9]或多跳网络[4-6]等的CDMA***。
参照图8,本发明的基于DQI的机会调度可与多用户分集转发(MDF)方案[5]结合。
传送节点TX1在其传送队列中具有它将采用网络中的中间中继节点以多跳方式转发给目标节点的数据。因此,传送节点编译包含相关数据的数据分组10,并且例如通过广播或多播数据分组10将其发送给可能的候选中继节点RX1至RX3。但是,在这个实例中,另一个传送节点TX2还发送干扰分组转发的数据。因此,没有候选节点RX1至RX3可成功地对所接收分组10进行解码。各中继节点RX1至RX3优选地估算反映那个节点RX1至RX3上的分组10的可解码性的程度的DQI 30-1至30-3。这些DQI 30-1至30-3如图所示可在估算之后立即返回给传送节点TX1,或者在经过预定时间段之后或在来自传送节点TX1的请求时返回给传送节点TX1。
在面向MDF的基于DQI的调度中,传送节点除了DQI数据之外还采用CQI量度来执行调度。为了获得这些CQI量度,传送节点TX1产生询问消息或探测40,并将它传送给可能的中继节点RX1至RX3。这优选地也在前一个数据传输10之前完成,但在图8中被省略,以便简化附图。各中继节点RX1至RX3例如通过估算SNR/SINR来产生CQI量度50-1至50-3,并向相应的传送节点TX1报告所估算CQI50-1至50-3。
为了确保在询问阶段以及后续数据阶段中基本上相同的干扰条件,传送节点TX1、TX2应当优选地以时间同步方式传送它们的帧,并且在两个阶段中应当使用基本上相同的发射功率等级和/或天线权重。如图8所示,传送节点TX1、TX2以时隙是时间对齐的这种方式传送它们的帧。这提供询问阶段与数据阶段之间的相关的基础。另外,一个或多个传送参数、如发射功率等级和/或天线权重最初被确定,并且优选地至少部分基于先前接收的DQI数据30-1至30-3。优选地在询问阶段以及后续的数据阶段中使用这些传送参数,使得在询问响应阶段中报告的CQI 50-1至50-3在整个数据阶段保持相同(或者得到改进)。
传送节点TX1执行调度,因为例如根据DQI 30-1至30-3和CQI50-1至50-3数据在候选节点RX1至RX3之中选取接收节点。作为替代或补充,传送节点TX1可根据DQI 30-1至30-3和CQI 50-1至50-3数据来选择要在后续数据阶段发送的数据的类型和/或首先要从哪一个数据流发送分组。在图8的说明性实例中,传送节点TX1选择节点RX2作为接收节点,并且优选地至少根据来自那个节点RX2的DQI 30-2和可选的CQI 50-2数据编译要发送给接收节点RX2的第二数据分组20。
在这种情况中,接收节点RX2可通过采用先前接收的第一分组10和当前接收的第二分组20对数据正确解码。节点RX2返回ACK60,通知传送节点TX1成功接收,从而允许节点TX1从其传送队列中删除相应的数据。监听节点RX1捕捉第二分组20,但是对信息正确地解码不成功,以及优选地返回相关DQI值30。
图9说明一个数据信令实例,在其中,本发明的基于DQI的机会调度与选择分集转发(SDF)[4]结合。在这种方法中,传送节点TX1把数据分组10的传输导向附近的一组接收机或中继节点RX1至RX3。与图8相对应,另一个传送节点TX1的数据传输干扰分组转发,从而导致中继节点RX1至RX3中的不完善解码。根据本发明,这些节点RX1至RX3通过估算和返回DQI数据30-1至30-3来报告不完全解码。传送节点TX1根据所报告DQI 30-1至30-3来选择这些中继节点RX1至RX3的至少一个作为接收节点RX2。第二数据分组20被传递给所选节点RX2。但是,第二传送节点TX2又干扰分组转发,以及尽管访问了第一10和第二20两个数据分组,但所选节点RX2仍然无法对数据解码。其它中继节点之一RX1监听这个第二分组转发,并成功地对数据正确解码。因此,所选节点RX2报告DQI量度30,而监听节点RX1则返回ACK 60。
在接收到DQI 30和ACK 60时,传送节点TX1传送转发指令命令70,指示中继节点RX1承担进一步转发数据的职责。中继节点RX1通过返回转发指令确认65进行响应。这个过程对于所有后续负责节点重复进行,直到信息到达最终目的地。但是要注意,如果例如节点RX1至RX3的一个或多个在接收到第一分组10之后可对数据成功地进行处理(解码),则传送节点TX1通常选择成功解码节点之一,并向那个节点发送转发指令。
通过按照这种方法,分支分集以及捕捉效果可用于数据转发过程。具体来说,分支分集降低对于使用交织数据连同编码来防止衰落信道的需要,这又意味着更小的延迟以及因而更高的吞吐量。捕捉效果指的是一种现象:处于或接近相同频率的两个信号中较强的一个才被解调,而较弱的信号则作为噪声被抑制和丢弃。结合多个接收或中继节点,捕捉效果在数据传输冲突时提供高度的健壮性。
在本发明的调度中,希望根据DQI数据来选择在某种意义上是最佳的接收节点、数据类型和/或数据流以及可选的传送和/或链路参数。为了能够以众所周知的方式讨论最优性,通常引入目标函数f。这个目标函数f经过仔细选择并取决于下列各项:i)某个给定输入参数,以及ii)可仔细选择成优化目标函数f的某些变量。
在本发明中,输入参数包括表示先前不成功解码数据分组的可解码性的程度的质量信息、即DQI数据。也可使用其它输入参数,例如与节点关联的路由成本、CQI数据、QoS要求、排队状态或剩余电池电量。
优化变量包括接收节点、数据类型和/或数据流以及可选的传送/链路参数。另外,根据需要可包括速率作为变量。速率则通过调制、编码和扩频方案的任何适当组合来确定。
来自目标函数f的输出包括下列至少一项:i)所选接收节点,ii)所选数据类型,iii)所选数据流或目的地。目的地或流的选择影响哪一个信息要被发送。另外,目标函数的优化还可提供调制、编码和扩频的适当组合、即速率选择以及将被使用的副载波或频率信道的适当集合(即,在多载波***中,例如正交频分复用(OFDM)或正交频分多址(OFDMA)***)。由于速率选择,发射功率的降低是另一个附加输出。
在以下论述中,通过实例进一步描述本发明,在其中,最佳接收或中继节点和最佳流或最佳节点、最佳流和最适当的速率的联合选择和优化。但是,通过略微修改,本论述可适用于最佳中继节点、最佳数据类型、最佳流或者这些目标的至少两个的组合的单一优化,可能与优化传送/链路参数结合。
在形式化考虑中继节点和流的优化时,可使用以下符号:
V表示网络中的所有节点的集合或者网络的所考虑部分。
Ji是候选中继节点的集合。
Φi是节点vi中的流的集合,vi∈V。
在这个说明性论述中,目标函数f则对于代表节点vi的转发进行优化,采用来自以上集合Ji和Φi的输入参数联合确定中继节点和流
Figure GSB00000685054400232
的最佳组合:
J ~ , Φ ~ = arg J i , Φ i { opt J i , Φ i { f } } - - - ( 1 )
其中:
Figure GSB00000685054400234
定义所选中继节点:
J ~ = arg J i { opt J i , Φ i { f } } - - - ( 2 )
Figure GSB00000685054400242
定义所选流:
Φ ~ = arg Φ i { opt J i , Φ i { f } } - - - ( 3 )
在第一种情况中,唯一可用的输入参数是DQI和传送队列中什么数据分组残余。调度标准则可基于目标函数f按照下式:
Figure GSB00000685054400244
其中,vi是传送节点,vi∈V,vj是可能的接收(中继)节点,vj∈V且j∈Ji,以及
Figure GSB00000685054400245
是流,
Figure GSB00000685054400246
相对vj
Figure GSB00000685054400247
按照等式(1)至(3)进行优化,即联合查找最佳流
Figure GSB00000685054400248
和最佳中继节点
在一个具体实施例中,还获得关于从节点vi传递到节点vj的平均成本的信息。如前面所述,最短路径协议、如贝尔曼-福特或Dijkstra可用来确定平均路由成本。
Figure GSB000006850544002410
表示流
Figure GSB000006850544002411
从节点vi到目的地的成本,vi∈V,每个流与某个目的地关联。
等式(4)的目标函数f则可按照下式修改:
Figure GSB000006850544002413
由于希望数据朝最终目的地移动,即,假定从目的地单调增加成本。
虽然等式(5)按流来指定,也同样可按目的地来指定。例如,节点vi可能具有与目标节点vd的流
Figure GSB000006850544002415
对应的关联成本
Figure GSB000006850544002416
但是,如果节点vi中的所有流从成本观点将被看作相等的,则
Figure GSB000006850544002417
可由
Figure GSB000006850544002418
取代。这意味着,从节点vi送往相同目的地的流遇到相同的路由成本。式(5)则可改写为:
Figure GSB00000685054400251
一个备选方案是,由CQI量度表示的(瞬时)链路条件为已知。调度条件可表达为最大化:
Figure GSB00000685054400252
或者更一般地考虑(瞬时)链路条件以及平均成本:
等式(8)的一个特例是质量成本进度的修改形式(ZQCP)。在本发明中,流
Figure GSB00000685054400254
的节点vi与节点vj之间的质量成本进度(QCP)被定义为:
Figure GSB00000685054400255
其中:
Figure GSB00000685054400256
是节点vi和流
Figure GSB00000685054400257
的加权参数。
加权参数可能是至少固定优先化权重、自适应优先化权重、QoS相关参数(例如到期时间、等待时间等)、公平标准等的任何组合。略微更自然和直接的是当把流看作优化变量时把QoS参数结合到优化中,因为各流通常与给定QoS要求关联。
这允许我们根据QCP把目标函数的优化(在这里假定为最大化)写作:
Figure GSB00000685054400258
它产生中继节点和流的组合。注意,如果
Figure GSB00000685054400259
为负,则不执行转发。
另一个特殊示范目标函数基于信息成本进度(ZICP)。可使用下列附加符号:
Rij是在给定SINR值CQIij的情况下的节点vi与节点vj之间可实现速率的集合。速率通过调制、编码和扩频方案的组合来构成。
在本发明中,采用速率rij的流
Figure GSB000006850544002510
的节点vi与节点vj之间的信息成本进度(ICP)被定义为:
基于ICP的目标函数的优化(在这里假定为最大化)可表达为:
Figure GSB00000685054400262
这产生中继节点、流和所选速率的组合。注意,如果
Figure GSB00000685054400263
为负,则不执行转发。
在MDF方案与本发明的组合中,传送节点vi尝试查找哪一个节点确定为传输的目标。如果考虑单个流的行首分组,则按比例公平调度可如下工作。
首先假定节点vi与节点vj之间的CQIij提供瞬时链路速率rij,以及(多跳)成本度量基于各链路的平均速率的倒数:
C ij ∝ 1 r ‾ ij - - - ( 13 )
如本文所公开的,
Figure GSB00000685054400265
(它是各节点vj和各分组特定的,其中另一个假设是行首分组由其流
Figure GSB00000685054400266
表示)可采取许多不同的格式。在这个实例中,建议DQI参数采取能够对(先前不正确接收的)分组正确解码所需的附加预计量的冗余度的形式。如果原始(先前)数据分组的长度为
Figure GSB00000685054400267
以及具有冗余位的所需重传为
Figure GSB00000685054400268
则有效瞬时速率rij对于不同的可能的接收节点vj将不同。
调度条件则可为属于流
Figure GSB00000685054400269
的行首分组选择节点:
Figure GSB000006850544002610
对于各流
Figure GSB000006850544002611
选择中继节点和速率:
Figure GSB000006850544002612
Figure GSB000006850544002613
这个度量使预计传输延迟为最小,这或者可解释为使网络的容量为最大,因为最少可能的时间资源用来传送分组。例如,如果低平均延迟是重要的,则QoS方面可例如通过确定由短分组或短冗余分组所表征的流的优先顺序来包含在等式(14)中。
假定选择各流的试验性中继节点
Figure GSB00000685054400271
和速率任务则是选择最佳流。这可通过按照下式选择相对于相应平均速率提供最大相对速率增加的流、即按比例公平调度来实现:
Figure GSB00000685054400273
在另一个备选实施例中,瞬时信道质量与平均信道质量之间的比率取代等式(16)用作标准。与相对SNR为非线性的速率相反,这在SNR范围上提供公平性(例如考虑香农容量关系对SNR的对数关系)。
总结等式(14)至(16),所选中继节点、速率和流为:
Figure GSB00000685054400274
Figure GSB00000685054400275
Figure GSB00000685054400276
在前一个优化实例中,DQI参数采取能够对分组正确解码所需的附加预计量的冗余度
Figure GSB00000685054400277
的形式。一般来说,发射功率可能影响这个预计量的冗余度。例如,假定
Figure GSB00000685054400278
冗余位预计对于以功率等级
Figure GSB00000685054400279
传送(重传)的分组成功解码。相应地,可能需要
Figure GSB000006850544002710
冗余位来对以功率等级
Figure GSB000006850544002711
传送(重传)的相应信息成功解码。如果则一般来说,
Figure GSB000006850544002713
换言之,较低发射功率可通过传送更多冗余数据来补偿。在大多数实际实现中,存在要使用的功率等级与应当传送的冗余位的数量之间的折衷。因此,目标函数的优化也可关注这个功率-位大小问题。
实现方面
图10是根据本发明的传送节点100的示意框图。这个节点100包括用于与无线网络中的其它节点进行通信的部件,在图中由发射机/接收机或收发信机110表示。这个收发信机110特别适合于对外部节点分别传送和接收数据分组及其它消息、例如转发指令和询问消息。另外,收发信机110从外部节点接收采取DQI形式以及可选地质量数据的其它形式、如CQI和路由成本的质量数据。
数据处理单元120包含在传送节点100中,用于处理所传送和所接收数据。这个处理单元120通常包括编码器/解码器和调制器/解调器功能性。另外,这个单元120可提供不同的控制消息,例如本文所述的询问消息和转发指令。
传送节点100还包括至少一个传送队列或缓冲器,其中包含将被传送或转发给网络中的接收或中继节点的数据。这个传送队列140优选地还包括传送节点已经从其它节点接收的DQI估算值。如果DQI值与传送节点先前已经传送、因而存在于队列140中的数据分组关联、即根据该数据分组进行估算,则DQI值优选地与该分组关联地存储。术语“关联地存储”在本说明中表示存储DQI值,其方式是,能够在以后根据对关联数据分组的知识来检索DQI值。关联存储的一个典型实例是当DQI值和数据分组作为一个数据条目一起存储在队列140中时。此外,DQI值和数据分组可存储在队列140中的不同位置或者存储在两个不同的存储器中,只要不同的存储位置之间存在连接、如指针。
传送节点100优选地还存储它例如因监听而接收到的、并且根据节点100本身没有传送的数据分组估算的DQI值。如果节点100随后将负责进一步转发所述的分组,则它可使用这个DQI数据。
如以上简要说明,DQI数据或者可存储在另一个存储位置、如专用质量参数存储器中,专用质量参数存储器除了DQI数据之外还可存储CQI值、QoS数据和路由成本度量。
图11是示意框图,说明传送队列140的一种可能实现。两个数据流
Figure GSB00000685054400292
在这个示例队列140中表示。第一流包括送往目标节点vd1的数据。在这个流中,两个数据分组DP1、DP2已经被传送到对这个流
Figure GSB00000685054400294
的第一分组DP1解码不成功的多个中继节点vh、vh+1。因此,这些节点vh、vh+1已经报告与第一分组DP1关联并且表示它们的那个分组DP1的相应可解码性的质量信息DQI1,h、DQI1,h+1。质量信息DQI1,h、DQI1,h+1优选地与图11所示的队列中的关联数据DP1一起列于表中。当例如通过选择候选接收节点vh+1和/或组成这个流
Figure GSB00000685054400295
的第二分组DP2(选择分组DP2中包含的数据的类型)来调度这个流
Figure GSB00000685054400296
Figure GSB00000685054400297
的重传时,传送节点通常已经使用这个所接收质量信息DQI1,h、DQI1,h+1
与这个第二分组DP2关联的DQI数据DQI2,h+1已经从一个节点vh+1中接收并存在于队列140中。第三分组DP3最近已经对于这个数据构成,但是仍未传送给中继节点,或者仍未接收到它的DQI。
相应地,第二流
Figure GSB00000685054400298
包括要送往目标节点vd2的数据。这个流
Figure GSB00000685054400299
Figure GSB000006850544002910
的第一分组DP1已经被发送给目标节点vd2,以及DQI1,d2已经从那个节点vd2接收并输入传送队列140。这个DQI数据则可由传送节点当例如通过在相同位与冗余位之间选择来提供这个流的第二分组时使用。
在图11中可以看到以及从以上论述中得出,传送队列140中的数据的一部分将具有与其关联的DQI,而某个数据则完全没有任何DQI(由于它们未被发送或者DQI没有被报告)。除了DQI之外,记录可对相应数据已经发送多少次以及已经使用哪一种HARQ格式(例如CC、部分IR(PIR)或全IR(FIR))进行跟踪。
回到图10,传送节点100还包括判定处理器(或称为选择部件130),它执行根据本发明的基于质量(基于DQI)的数据调度和/或路由。在第一实施例中,这个判定处理器130配置用于根据DQI在多个候选节点之中选择至少一个接收节点。判定处理器130所使用的相关DQI可能已经在一个或多个不同的报告场合接收。在其它实施例中,判定处理器130根据DQI选择数据分组将包含的数据的类型和/或传送队列140中表示的哪一个数据流和数据分组应当首先被选取和转发。这些实施例的组合以及可能与传送和/或链路参数的基于DQI的选择一起也落入本发明的范围之内。
除了调度和选择过程中的DQI之外,判定处理器130还可使用其它质量数据,例如CQI量度、路由成本度量和/或QoS数据。
在本发明的一个优选实施例中,判定处理器130配置用于通过优化包含DQI和可选的CQI、路由成本、QoS数据作为输入参数的目标函数来执行基于DQI的调度。
传送节点100的单元110、120和判定处理器130可作为软件、硬件或者它们的组合来提供。传送节点100又可设置在包括蜂窝***以及多跳***的无线通信网络或***中。
图12是根据本发明的传送节点100的另一个实施例的示意框图。图12的传送节点100主要包括连接到天线或天线***的传统接收机链110A、传统的传送链110B(具有关联的天线/天线***)、解调和解码器单元120A、编码器和调制单元120B、用于执行基于DQI的判定过程以选择数据类型、中继节点、数据流和可选链路模式及传送参数的判定处理器130、传送缓冲器、封装单元150、传送参数控制器160、询问/探测单元170、用于提供多跳成本信息的多跳成本信息单元180以及接收缓冲器190。
在第一轮(1),数据分组从传送队列140中取出,并提供给封装单元150用于封装和(显式和/或隐式)寻址。从寻址观点来看,传送节点100可采用单播、多播或广播来传送数据分组。所封装数据分组被传递给编码器和调制单元120B进行编码124B和调制122B,并且还被传递到传送链110B以便向中继候选节点传送。用于传输的发射功率等级和/或天线权重由传送参数控制器160提供。
在第二轮(2),传送节点100经由接收机链110A和用于解调122A和解码124A的单元120A接收来自多个中继候选节点的响应消息。作为ACK和/或DQI的响应消息则通常被传递给判定处理器130和/或传递给传送队列140。在接收到ACK/DQI时,判定处理器130将根据本发明执行基于DQI的调度。
但是,如果在调度和选择过程中将使用其它质量参数,则DQI可首先存储在传送队列140中,直到其它这些参数已经提供给判定处理器130。
在当前实例中,除了DQI之外,判定处理器130还将使用成本度量和CQI数据。因此,询问消息应当被提供并传送给候选节点。
因此,在第三轮(3),询问探测从单元170传递给封装单元150用于封装和(显式和/或隐式)寻址。传送节点100通常采用广播或多播向网络中的所选中继候选节点传送询问消息。中继候选节点例如可由通用控制器(未示出)根据从基础路由确定协议中得到的多跳成本信息、可能连同其它信息、例如DQI来选择。封装询问探测被传递给编码器和调制单元120B,并且还被传递到传送链110B以便向中继候选节点传送。用于传输的发射功率等级和/或天线权重由传送参数控制器160提供。在这种情况中,判定处理器130可能已经通知控制器160关于已经根据所接收DQI数据产生的适当传送参数。
在第四轮(4),传送节点100经由接收机链110A和用于解调122A和解码124A的单元120A接收来自多个中继候选节点的响应消息。响应消息则被传递给判定处理器130。另外,相关DQI数据从传送队列140或者从另外某个(暂时)存储装置中取出,并输入到判定处理器130。优选地,关于节点100中表示的目的地/流的信息以及来自基础路由确定协议、如贝尔曼-福特或类似协议的多跳成本信息也输入到判定处理器130。在传送节点100中,这种成本信息优选地在连接到判定处理器130的多跳成本信息单元180中收集和/或产生。关于可选目的地和/或流的信息例如可通过检查传送队列140或者通过保存节点100中当前存在的目的地/流的独立列表来检索。
判定处理器130则选择数据类型、中继节点、数据流(和数据分组)以及可选的链路模式及传送参数中的至少一个用于判定过程中的传输。优选地,判定处理器130执行上述对象的至少两个的联合选择。这种(联合)选择可通过根据DQI数据和可选的成本进度及链路性能信息(CQI)优化目标函数来执行,如前面详细描述。
在第五轮(5),所选数据(类型)则从传送队列140传递给封装单元150,封装单元150封装数据并把地址设置到所选中继节点。所封装分组信息则被传递给编码器和调制单元120B,编码器和调制单元120B在分组信息采用所选传送参数被传送给所选中继节点之前根据所选链路模式执行编码和调制。
传送节点100的单元110-120、150-180和判定处理器130可作为软件、硬件或者它
们的组合来提供。
图13是根据本发明的通信(中继)节点200的示意框图。这个节点200包括用于与无线网络中的其它节点进行通信的部件,在图中由发射机/接收机或收发信机210表示。这个收发信机210特别适合于向外部节点传送和从其接收数据分组及其它消息。另外,收发信机210向外部节点传送采取DQI形式以及可选地质量数据的其它形式、例如CQI和路由成本的质量数据。
数据处理单元220包含在通信节点200中,用于处理所传送和所接收数据。这个处理单元220通常包括编码器和解码器224A以及调制器/解调器功能性。另外,这个单元220可提供不同的控制消息,例如本文所述的ACK和转发ACK消息。
通信节点200还包括优选地连接到数据处理器220的解码器单元224A或者至少与其进行通信的DQI生成器230。这个生成器230估算由解码器224A不成功解码的数据分组的可解码性的程度。这个可解码性程度可通过0与1之间的数字表示,表示可被处理(解码)的数据分组或块的百分比的估算值。或者,可解码性的程度可能是对不成功解码数据分组成功解码所需的剩余冗余度的估算值或者其它某个前面所述的可能的DQI量度。不是提供DQI量度,这个生成器230可能配置用于产生质量信息,从其中可得出DQI量度。在任一种情况中,DQI量度或质量信息被提供给收发信机210,用于向传送节点报告(单播、多播或广播)。
DQI生成器230优选地配置用于还估算收发信机210监听的数据分组、即最初针对其它通信节点的数据分组的DQI值。
通信节点200的单元210至230可作为软件、硬件或者它们的组合来提供。通信节点200又可设置在包括蜂窝***和多跳***的无线通信网络或***中。
图14是根据本发明的一个示范实施例的接收机侧(接收通信节点200)上的相关部分的示意框图。图14的中继节点200主要包括连接到天线或天线***的传统接收机链210A、传统的发射机链210B(具有关联的天线/天线***)、用于解调222A和解码224A的单元220A、用于调制222B和编码224B的单元220B、DQI生成器230、传送队列240、封装单元250、链路性能估算器260、传送节点标识符单元260以及接收缓冲器290。
中继候选节点200在第(1)轮通过接收机链210A接收来自无线网络中的一个或多个传送节点的数据分组。数据分组被提供给解调器222A和解码器224A,它们尝试对分组进行解调和解码。如果成功,则DQI/ACK生成器230或分离的确认单元通过封装250和编码/调制220B单元以及发射机链210B构成ACK消息并返回给相关传送节点。
但是,如果解码器224A无法对分组成功解码,则表示可解码性的程度的信息或者不成功解码分组本身被提供给DQI生成器230,用于产生DQI估算值。另外,不成功的分组或者与其相关的数据、例如APP值或其它软信息存储在接收缓冲器290中。
来自DQI生成器230的DQI估算值被提供给封装单元250进行封装和寻址(相关地址可从传送节点标识符270中获得)。封装DQI信息则通过使用用于编码224B和调制222B的单元220B以及传送链210B传送(单播、多播或广播)给相关传送节点。
在这个说明性实施例中,传送节点通过传送由接收机链210A捕捉的询问消息进行应答。在第(2A)轮,链路性能估算器260估算链路性能量度CQI、如SNR/SINR(或者把SNR/SINR值变换为所支持速率),用于在响应消息中回送给询问节点。估算值被传递给封装单元250进行封装和寻址。所封装响应信息则通过使用用于编码224B和调制222B的单元220B以及传送链210B传送给询问传送节点。
如果发射机地址包含在询问消息中,则消息还在第(2B)轮中经由用于解调222A和解码224A的单元220A传递给接收缓冲器290。传送节点标识符单元270检查所接收询问消息,并提取发射机地址以便传递给封装单元250。发射机地址则可由封装单元250使用,使得响应消息到达询问传送节点。
如果中继候选节点200由询问传送节点根据所报告DQI以及优选地根据所报告CQI来选取,则中继节点200通常通过接收机链210A接收来自传送节点的第二数据分组。这个第二分组以在第(1)轮对于第一分组相似的方式被处理。但是,在这种情况中,解码器224A可使用这个所接收数据以及接收缓冲器290中存在的相应的先前所接收数据,以便增加成功解码的机率。如果仍然无法对数据解码,则这时基于第一和第二分组的组合数据的可解码性的程度的第二DQI由DQI生成器230产生,并返回给传送节点。相应地,正确解码数据触发ACK的提供和报告。
接收缓冲器290中的数据分组随后可传递给传送队列240,供以后进一步传送给多跳网络中的中继候选节点。或者,完全解码分组被提供给节点(200)中的应用(未示出)。
通信节点200的单元210-230和250-270可作为软件、硬件或者它们的组合来提供。
本领域的技术人员会理解,可以对本发明进行各种修改和变更,而没有背离所附权利要求定义的本发明的范围。
参考文献
[1]A.Roongta和J.M.Shea,“采用卷积码的基于可靠性的混合ARQ”,Proc.2003 IEEE Intl.Conf.on Commun.,Vol.4,第2889-2893页,2003年5月
[2]A.Roongta、J.-Q.Moon和J.M.Schea,“部分时间干扰信道的基于可靠性的混合ARQ”,IEEE MILCOM 2004,Accepted forpresentation,第1-7页
[3]国际申请WO 00/21236
[4]国际申请WO 02/35779
[5]国际申请WO 2004/091155
[6]国际申请WO 2004/091154
[7]D.Divsalar、S.Dolinar和F.Pollara,“基于密度演化的迭代特播解码器分析”,IEEE Journal on Selected Areas in Communications,Vol.19,No.5,第891-907页,2001年5月
[8]美国专利No.6449490
[9]P.Bender、P.Black、M.Grob、R.Padovani、N.Sindhushayana和A.Viterbi,“CDMA/HDR:流动用户的带宽有效高速无线数据服务”,IEEE Communications Magazine,Vol.38,No.7,第70-77页,2000年7月

Claims (28)

1.一种在无线网络中转发数据分组的方法,所述方法包括以下步骤,在传送节点中:
-从多个候选接收节点的集合中的至少一个通信节点接收与至少一个不成功解码数据分组关联的质量信息,所述质量信息表示所述至少一个通信节点上的所述至少一个不成功解码数据分组的可解码性的程度;
-根据所述质量信息从多个候选接收节点的所述集合中选择至少一个接收节点;以及
-把数据分组转发给所述接收节点。
2.如权利要求1所述的方法,其特征在于,从所述至少一个接收节点接收所述质量信息。
3.如权利要求1或2所述的方法,其特征在于,所述接收步骤包括从多个候选接收节点的所述集合的多个通信节点接收与所述至少一个不成功解码数据分组关联的质量信息的步骤,所述质量信息表示所述多个通信节点上的所述至少一个不成功解码数据分组的可解码性的程度。
4.如权利要求1或2所述的方法,其特征在于,所述转发的数据分组包括与所述至少一个不成功解码数据分组中的至少一个分组中包含的数据相关的数据。
5.如权利要求1或2所述的方法,其特征在于,所述选择步骤包括根据所述质量信息联合选择i)所述至少一个接收节点以及ii)下列中的至少一项:
-所述传送节点的传送队列中表示的多个数据分组之中的所述数据分组;
-所述数据分组中的数据的类型;以及
-至少一个传送或链路参数,以及
把所述数据分组转发给所述接收节点的所述步骤根据所述所选至少一个传送或链路参数来执行。
6.一种在无线网络中转发数据分组的方法,所述方法包括以下步骤,在传送节点中:
-从至少一个通信节点接收与至少一个不成功解码数据分组关联的质量信息,所述质量信息表示所述至少一个通信节点上的所述至少一个不成功解码数据分组的可解码性的程度;
-根据所述质量信息选择数据分组中的数据的类型,所述数据与所述至少一个不成功解码数据分组中的至少一个数据分组中包含的数据相关;以及
-把所述数据分组转发给所述至少一个通信节点中的至少一个节点。
7.如权利要求6所述的方法,其特征在于,所述数据的类型被选择为下列中的至少一项:
-冗余数据;以及
-所述至少一个不成功解码数据分组的至少一个数据分组中包含的数据的至少一部分。
8.如权利要求6或7所述的方法,其特征在于,所述选择步骤包括根据所述质量信息联合选择:i)所述数据的类型,以及ii)至少一个传送或链路参数,以及把所述数据分组转发给所述至少一个通信节点中的所述至少一个节点的所述步骤根据所述所选至少一个传送或链路参数来执行。
9.一种在无线网络中转发数据分组的方法,所述方法包括以下步骤,在传送节点中:
-从至少一个通信节点接收与至少一个不成功解码数据分组关联的质量信息,所述质量信息表示所述至少一个通信节点上的所述至少一个不成功解码数据分组的可解码性的程度;
-根据所述质量信息在所述传送节点中表示的多个流之中选择流;
-根据所述所选流从所述传送节点的传送队列中提供数据分组,所述数据分组包括与所述至少一个不成功解码数据分组中的至少一个数据分组中包含的数据相关的数据;以及
-把所述数据分组转发给所述至少一个通信节点中的至少一个节点。
10.如权利要求9所述的方法,其特征在于,所述选择步骤包括根据所述质量信息联合选择i)所述流以及ii)下列至少一项:
-所述数据分组中的数据的类型;以及
-至少一个传送或链路参数,以及把所述数据分组转发给所述至少一个通信节点中的所述至少一个节点的所述步骤根据所述所选至少一个传送或链路参数来执行。
11.如权利要求9或10所述的方法,其特征在于,所述选择步骤根据i)所述质量信息以及ii)下列中的至少一项来执行:
-表示所述传送节点与所述至少一个通信节点中的至少一个节点之间的链路性能的信息;
-与所述传送节点和所述至少一个通信节点中的至少一个节点其中至少一个关联的路由成本;以及
-至少一个服务质量参数。
12.如权利要求9或10所述的方法,其特征在于,所述至少一个不成功解码数据分组先前已经由所述传送节点转发。
13.如权利要求9或10所述的方法,其特征在于,所述质量信息表示对所述至少一个不成功解码数据分组成功解码所需的剩余冗余度。
14.如权利要求9或10所述的方法,其特征在于,所述选择步骤根据包含所述质量信息的目标函数的优化来执行。
15.一种传送节点,包括:
-接收机,用于从多个候选接收节点的集合中的至少一个通信节点接收与至少一个不成功解码数据分组关联的质量信息,所述质量信息表示所述至少一个通信节点上的所述至少一个不成功解码数据分组的可解码性的程度;
-用于根据所述质量信息从多个候选接收节点的所述集合中选择至少一个接收节点的选择部件;以及
-发射机,用于把数据分组转发给所述接收节点。
16.如权利要求15所述的节点,其特征在于,从所述至少一个接收节点接收所述质量信息。
17.如权利要求15或16所述的节点,其特征在于,所述接收机配置用于从多个候选接收节点的所述集合中的多个通信节点接收与所述至少一个不成功解码数据分组关联的质量信息,所述质量信息表示所述多个通信节点上的所述至少一个不成功解码数据分组的可解码性的程度。
18.如权利要求15或16所述的节点,其特征在于,所述转发的数据分组包括与所述至少一个不成功解码数据分组的至少一个分组中包含的数据相关的数据。
19.如权利要求15或16所述的节点,其特征在于,所述选择部件配置用于根据所述质量信息联合选择i)所述至少一个接收节点以及ii)下列中的至少一项:
-传送队列中表示的多个数据分组之中的所述数据分组;
-所述数据分组中的数据的类型;以及
-至少一个传送或链路参数,以及所述发射机可用于根据所述所选至少一个传送或链路参数来转发所述数据分组。
20.一种传送节点,包括:
-接收机,用于从至少一个通信节点接收与至少一个不成功解码数据分组关联的质量信息,所述质量信息表示所述至少一个通信节点上的所述至少一个不成功解码数据分组的可解码性的程度;
-用于根据所述质量信息选择数据分组中的数据的类型的选择部件,所述数据与所述至少一个不成功解码数据分组中的至少一个中包含的数据相关;以及
-发射机,用于把所述数据分组转发给所述至少一个通信节点中的至少一个节点。
21.如权利要求20所述的节点,其特征在于,所述选择部件配置用于根据所述质量信息联合选择:i)所述数据的类型,以及ii)至少一个传送或链路参数,以及所述发射机可用于根据所述所选至少一个传送或链路参数来转发所述数据分组。
22.一种传送节点,包括:
-接收机,用于从至少一个通信节点接收与至少一个不成功解码数据分组关联的质量信息,所述质量信息表示所述至少一个通信节点上的所述至少一个不成功解码数据分组的可解码性的程度;
-用于根据所述质量信息在所述传送节点中表示的多个流之中选择流的选择部件;
-用于根据所述所选流从所述传送节点的传送队列中提供数据分组的部件,所述数据分组包括与所述至少一个不成功解码数据分组中的至少一个中包含的数据相关的数据;以及
-发射机,用于把所述数据分组转发给所述至少一个通信节点中的至少一个节点。
23.如权利要求22所述的节点,其特征在于,所述选择部件配置用于根据所述质量信息联合选择i)所述流以及ii)下列至少一项:
-至少一个服务质量参数;以及
-至少一个传送或链路参数,以及所述发射机可用于根据所述所选至少一个传送或链路参数来转发所述数据分组。
24.如权利要求22或23所述的节点,其特征在于,所述选择部件配置用于根据i)所述质量信息以及ii)下列中的至少一项来执行所述选择:
-表示所述传送节点与所述至少一个通信节点中的至少一个节点之间的链路性能的信息;
-与所述传送节点和所述至少一个通信节点中的至少一个节点其中至少一个关联的路由成本;以及
-至少一个服务质量参数。
25.如权利要求22或23所述的节点,其特征在于,所述选择部件配置用于优化包含所述质量信息的目标函数。
26.一种通信节点,包括:
-接收机,用于接收从传送节点传送并要送往接收节点的数据分组;
-用于对所述数据分组解码的解码部件;
-用于在所述解码部件不能对所述数据分组成功解码时产生表示所述数据分组的可解码性的程度的质量信息的部件;以及
-发射机,用于把所述质量信息转发给所述传送节点。
27.如权利要求26所述的通信节点,其特征在于,所述接收机配置用于监听要送往所述接收节点的所述数据分组。
28.如权利要求26或27所述的通信节点,其特征在于,所述发射机配置用于广播或多播所述质量信息。
CN2005800479937A 2005-02-10 2005-02-10 在无线网络中转发数据分组的方法、传送节点和通信节点 Active CN101116275B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SE2005/000182 WO2006085801A1 (en) 2005-02-10 2005-02-10 Quality-based data scheduling

Publications (2)

Publication Number Publication Date
CN101116275A CN101116275A (zh) 2008-01-30
CN101116275B true CN101116275B (zh) 2012-11-28

Family

ID=36793297

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800479937A Active CN101116275B (zh) 2005-02-10 2005-02-10 在无线网络中转发数据分组的方法、传送节点和通信节点

Country Status (5)

Country Link
US (1) US8351334B2 (zh)
EP (1) EP1851889B1 (zh)
CN (1) CN101116275B (zh)
AR (1) AR052667A1 (zh)
WO (1) WO2006085801A1 (zh)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525655A (ja) * 1991-07-15 1993-02-02 Komatsu Ltd アルミニウム系母材の表面硬化方法および表面硬化アルミニウム系部材
US7876706B2 (en) * 2006-02-28 2011-01-25 Motorola, Inc. Method and apparatus for root node selection in an ad hoc network
US8112075B2 (en) * 2006-03-24 2012-02-07 Nokia Corporation HARQ-aware CQI reporting
WO2008108708A1 (en) * 2007-03-06 2008-09-12 Telefonaktiebolaget Lm Ericsson (Publ) Improved retransmissions in a wireless communications system
US8837297B2 (en) * 2007-03-06 2014-09-16 Telefonaktiebolaget Lm Ericsson (Publ) Network coding based on soft feedback
CN101325540A (zh) * 2007-06-11 2008-12-17 华为技术有限公司 提高基于随机网络编码的多播传输效率的方法及装置
JP5108883B2 (ja) * 2007-06-25 2012-12-26 パナソニック株式会社 通信装置、集積回路、伝送レート制御方法及び伝送レート制御プログラム
US20100182946A1 (en) * 2007-06-29 2010-07-22 Wei Ni Methods and devices for transmitting data in the relay station and the base station
US8681688B2 (en) * 2007-09-12 2014-03-25 Sharp Kabushiki Kaisha Radio communication method, radio communication system, and radio transmission apparatus
FI20075727A0 (fi) * 2007-10-15 2007-10-15 Nokia Siemens Networks Oy Lähetysten hallinta toistinverkossa
US8194591B2 (en) * 2007-12-13 2012-06-05 Thomson Licensing Communication methods in a network
US8861423B2 (en) * 2008-01-18 2014-10-14 Intel Corporation Interference mitigation by overhearing
US8462743B2 (en) * 2008-01-25 2013-06-11 Nokia Siemens Networks Oy Method, apparatus and computer program for signaling channel quality information in a network that employs relay nodes
US8036168B2 (en) * 2008-01-29 2011-10-11 Motorola Solutions, Inc. Method and apparatus for link adaptation by stochastically selecting a transmit parameter
KR101449024B1 (ko) 2008-03-14 2014-10-10 엘지전자 주식회사 다이렉트 링크 설정 네트워크에서의 데이터 전송 방법과이를 지원하는 장치, 그 데이터 전송 방법을 위한 프레임포맷
US9338710B2 (en) * 2008-05-15 2016-05-10 Niklas Johansson Data forwarding during handover in a self-backhauled cell
JP5083411B2 (ja) * 2008-10-02 2012-11-28 日本電気株式会社 無線基地局、スケジューリングシステム、割り当て制御方法および記録媒体
US8867430B2 (en) * 2008-10-31 2014-10-21 Lg Electronics Inc. Method and apparatus for performing HARQ process in wireless communication system
WO2010096648A2 (en) * 2009-02-20 2010-08-26 Interdigital Patent Holdings, Inc. Network coding relay operations
KR20100099655A (ko) 2009-03-03 2010-09-13 엘지전자 주식회사 무선통신 시스템에서 중계국의 데이터 수신방법 및 장치
US8472868B2 (en) * 2009-05-06 2013-06-25 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for MIMO repeater chains in a wireless communication network
US8750195B2 (en) * 2009-06-10 2014-06-10 Futurewei Technologies, Inc. System and method for multiple relay node operation in a communications system
CN102804668A (zh) 2009-06-19 2012-11-28 捷讯研究有限公司 用于类型2中继的上行链路传输
CN102137464B (zh) * 2010-01-25 2014-09-10 中兴通讯股份有限公司 一种基站***及其Abis口数据的发送方法
EP2619949A1 (en) * 2010-09-24 2013-07-31 BAE Systems Plc. Admission control in a self aware network
CN103503501B (zh) * 2011-02-17 2017-07-07 黑莓有限公司 无线网络中的通信方法、中继节点和接入节点
US8576766B2 (en) 2011-08-29 2013-11-05 Telefonaktiebolaget L M Ericsson (Publ) Dynamic scheduling of in-band relay node resources
US10098095B2 (en) * 2012-05-25 2018-10-09 Qualcomm Incorporated Feedback to enhance rate prediction with bursty interference
US8798633B2 (en) * 2012-08-22 2014-08-05 Intel Corporation Positioning-assisted cell selection and handover for LTE
US9131428B2 (en) * 2012-10-31 2015-09-08 Broadcom Corporation Probe request for relay discovery within single user, multiple user, multiple access, and/or MIMO wireless communications
JP2014216796A (ja) * 2013-04-24 2014-11-17 株式会社東芝 無線通信装置および方法、ならびにプログラム
US9743370B2 (en) * 2015-04-28 2017-08-22 The Charles Stark Draper Laboratory, Inc. Wireless network for sensor array
US10230650B2 (en) * 2015-06-26 2019-03-12 Huawei Technologies Co., Ltd. Joint radio link control (RLC) signaling with network coding
ES2854941T3 (es) 2016-11-23 2021-09-23 Fraunhofer Ges Forschung Receptor, transmisor, red de comunicación, señal de datos y procedimiento para mejorar un procedimiento de retransmisión en una red de comunicación
CN108200556B (zh) * 2018-01-16 2019-05-21 深圳职业技术学院 一种高可靠的业务传输方法
EP3794874A1 (en) * 2018-06-20 2021-03-24 Convida Wireless, Llc Quality of service realization in multi-hop data forwarding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1347606A (zh) * 1999-02-19 2002-05-01 艾利森电话股份有限公司 无线通信***中使得能够进行灵活的链路自适应的控制信令的方法和***
CN1531238A (zh) * 2003-03-14 2004-09-22 ��Ѹ�Ƽ���˾ 在无线通信***中发送信道质量信息和功率分配的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010056560A1 (en) * 1998-10-08 2001-12-27 Farooq Khan Method and system for measurement based automatic retransmission request in a radiocommunication system
US6449490B1 (en) * 1999-05-24 2002-09-10 Qualcomm Incorporated Transmitter directed code division multiple access system using path diversity to equitably maximize throughput
US6788670B1 (en) * 2000-10-27 2004-09-07 Telefonaktiebolaget Lm Ericsson (Publ) Method for forwarding in multi-hop networks
US6934297B1 (en) * 2000-11-02 2005-08-23 Agency For Science, Technology And Research Method and apparatus for communicating in a distributed multiple access wireless communication system
WO2002103610A2 (en) * 2001-06-14 2002-12-27 Meshnetworks, Inc. Routing algorithms in a mobile ad-hoc network
JP3471785B1 (ja) * 2002-07-31 2003-12-02 松下電器産業株式会社 通信装置及びデータの再送制御方法
DE60216269T2 (de) * 2002-08-06 2007-05-10 Mitsubishi Electric Information Technology Centre Europe B.V. Übertragungsqualitätsberichtverfahren
US7464166B2 (en) 2003-04-11 2008-12-09 Telefonaktiebolaget Lm Ericsson (Publ) Contention-based forwarding with integrated multi-user detection capability
US7545765B2 (en) * 2003-04-11 2009-06-09 Telefonaktiebolaget Lm Ericsson (Publ) Multi-user diversity forwarding
JP4454320B2 (ja) * 2004-01-09 2010-04-21 富士通株式会社 伝送装置、伝送制御プログラム、及び伝送方法
ATE505879T1 (de) * 2004-12-17 2011-04-15 Ericsson Telefon Ab L M Neuübertragung in drahtlosen kommunikationssystemen
US8027284B2 (en) * 2006-11-27 2011-09-27 Ntt Docomo, Inc. Method and apparatus for reliable multicasting in wireless relay networks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1347606A (zh) * 1999-02-19 2002-05-01 艾利森电话股份有限公司 无线通信***中使得能够进行灵活的链路自适应的控制信令的方法和***
CN1531238A (zh) * 2003-03-14 2004-09-22 ��Ѹ�Ƽ���˾ 在无线通信***中发送信道质量信息和功率分配的方法

Also Published As

Publication number Publication date
EP1851889B1 (en) 2016-11-23
AR052667A1 (es) 2007-03-28
WO2006085801A1 (en) 2006-08-17
US20080144552A1 (en) 2008-06-19
EP1851889A1 (en) 2007-11-07
CN101116275A (zh) 2008-01-30
US8351334B2 (en) 2013-01-08

Similar Documents

Publication Publication Date Title
CN101116275B (zh) 在无线网络中转发数据分组的方法、传送节点和通信节点
CN1826761B (zh) 无线中继网络中的干扰消除
US7710908B2 (en) Method and arrangement for coding and scheduling in a retransmission communication system
Fang et al. Energy-efficient cooperative communication for data transmission in wireless sensor networks
US8902737B2 (en) Cooperative network with adaptive forwarding request policy
Ao et al. End-to-end HARQ in cognitive radio networks
CN101102174A (zh) 混合自动请求重传方法、及采用其的中继设备和通信***
US7957334B2 (en) Communication system, a repeater terminal in a communication system and a communication method
CN102684818A (zh) 数据重传方法、中继站、基站和通信***
CN103250370A (zh) 用于增强下行链路harq的方法和装置
Boujemaa Delay analysis of cooperative truncated HARQ with opportunistic relaying
CN103546245A (zh) 一种基于网络编码的数据包重传方法
CN101562506B (zh) 数据传输方法
Ramis et al. Cross-layer QoS-constrained optimization of adaptive multi-rate wireless systems using infrastructure-based cooperative ARQ
Vien et al. Network coding-based ARQ retransmission strategies for two-way wireless relay networks
RU2378770C2 (ru) Способ и устройство для кодирования и планирования в системах передачи пакетных данных
CN102111357B (zh) 一种克服信号畸变的中继解调转发***及方法
Zheng et al. Performance analysis of HARQ transmission in cooperative DF relaying systems
Stanojev et al. On the energy efficiency of hybrid-ARQ protocols in fading channels
Morillo et al. A cooperative-ARQ protocol with frame combining
Morillo-Pozo et al. A low coordination overhead C-ARQ protocol with frame combining
CN100534062C (zh) 多用户分集转发
Marchenko et al. Incremental cooperative relaying in time-correlated Rayleigh fading channels
Valle et al. Experimental evaluation of multiple retransmission schemes in IEEE 802.15. 4 wireless sensor networks
Uhlemann et al. Hard decision packet combining methods for industrial wireless relay networks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant