CN101034080B - 适合便携式微芯片毛细管电泳设备的简易进样方法 - Google Patents

适合便携式微芯片毛细管电泳设备的简易进样方法 Download PDF

Info

Publication number
CN101034080B
CN101034080B CN200710021383A CN200710021383A CN101034080B CN 101034080 B CN101034080 B CN 101034080B CN 200710021383 A CN200710021383 A CN 200710021383A CN 200710021383 A CN200710021383 A CN 200710021383A CN 101034080 B CN101034080 B CN 101034080B
Authority
CN
China
Prior art keywords
sample
microchip
pool
solution
infuse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200710021383A
Other languages
English (en)
Other versions
CN101034080A (zh
Inventor
王伟
周方
朱俊杰
张剑荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Yangcheng Institute of Technology
Original Assignee
Nanjing University
Yangcheng Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University, Yangcheng Institute of Technology filed Critical Nanjing University
Priority to CN200710021383A priority Critical patent/CN101034080B/zh
Publication of CN101034080A publication Critical patent/CN101034080A/zh
Application granted granted Critical
Publication of CN101034080B publication Critical patent/CN101034080B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种适合便携式微芯片毛细管电泳设备的简易进样方法,它是将微芯片平放,将样品溶液注入样品池中,将磷酸盐(PBS)缓冲溶液注入样品废液池和缓冲液池中,缓冲液废液池中也注入缓冲溶液,并且与缓冲液池的液面高度基本一致,然后将微芯片倾斜进样,倾斜的角度为10°-25°,倾斜的方向是使样品池高,样品废液池低,进样40秒钟,将进样后的微芯片放平,同时施加分离电压进行电泳分离。本发明的进样方法简单易行,进样效果好,基本上不需要进样设备。

Description

适合便携式微芯片毛细管电泳设备的简易进样方法
技术领域
本发明涉及适合便携式芯片毛细管电泳设备的简易进样方法。具体地说,通过倾斜微芯片,样品池中的液面高度高于样品废液池的液面高度,于是产生液压差,实现了液压驱动进样。
背景技术
自从Manz等设计使用了平面玻璃芯片[参见:(a)D.J.Harrison,A.Manz,Z.Fan,H.Luedi and H.M.Widmer,Anal.Chem.,1992,64,1926-1932.(b)A.Manz,D.J.Harrison,E.M.J.Verpoorte,J.C.Fettinger,A.Paulus,H.Ludi and H.M.Widmer,J.Chromatogr.A,1992,593,253-258.],微芯片毛细管电泳就被广泛地研究应用[参见:(a)D.Mijatovic,J.C.T.Eijkel and A.van den Berg,Lab Chip,2005,5,492-500.(b)T.Vilkner,D.Janasek andA.Manz,Anal.Chem.,2004,76,3373-3386.(c)P.S.Dittrich,K.Tachikawa,and A.Manz,Anal.Chem.,2006,78,3887-3907.]。成功地进行分析的先决条件是精确地实现微量样品进样。科研工作投入了大量的精力和时间研究和改进进样方法,在所有已报道的进样方式中,基于电渗流驱动的电动进样最为主要法,但这种进样方式有两个缺点,进样状况受管道表面性质的影响非常大和对于不同淌度的组分进样存在偏差(bias)[参见:(a)J.P.Alarie,S.C.Jacobson and J.M.Ramsey,Electrophoresis,2001,22,312-317.(b)B.E.Slentz,N.A.Penner and F.Regnier,Anal.Chem.,2002,74,4835-4840.]。为了避免这种偏差进样,压力驱动进样得以应用,这种进样方式不受管壁表面和样品的性质的影响。Bai等提出了使用多通进样阀和三个注射泵组成的压力夹流进样方式,进样量可以达到纳升级[参见:X.Bai,H.J.Lee,J.S.Rossier,F.Reymond,H.Schafer,M.Wossner and H.H.Girault,Lab Chip,2002,2,45-49.]。Solignac和Gijs建立了一种利用机械驱动器,在储液池的隔膜上施加一个压力脉冲,实现了样品流体动力进样[参见:D.Solignac and M.A.M.Gijs,Anal.Chem.,2003,75,1652-1657.]。Zhang等建立了一种方法用于微芯片毛细管电泳的定量准确、没有偏差的皮升级的样品进样,样品的驱动是利用注射泵产生的负压、电渗流以及芯片储液池中不同液面高度差产生的液压共同作用[参见:L.Zhang,X.Yinand Z.Fang,Lab Chip,2006,6,258-264.]。Lin课题组报道了在微流控芯片上,通过液压与电动力相结合的进样方式[参见:H.Gai,L.Yu,Z.Dai,Y.Ma and B.C.Lin,Electrophoresis,2004,25,1888-1894.],这种进样方式主要的缺点在于存在峰形拖尾,拖尾的影响有时甚至对分离是致命的,使得样品不能被分离或定量。
还没有文献报道使用一种不需要外加设备且进样效果理想的简单进样方法。
发明内容
本发明的目的是提供一种适合便携式微芯片毛细管电泳设备的简易进样方法。
本发明的技术方案如下:
一种适合便携式微芯片毛细管电泳设备的简易进样方法,它由下列步骤组成:
步骤1.将微芯片平放,将样品溶液注入样品池中,将磷酸盐(PBS)缓冲溶液注入样品废液池和缓冲液池中,缓冲液废液池中也注入缓冲溶液,并且与缓冲液池的液面高度基本一致,
步骤2.然后将步骤1的微芯片倾斜进样,倾斜的角度为10°-25°,倾斜的方向是使样品池高,样品废液池低,进样40秒钟,
步骤3.将步骤2进样后的微芯片放平,同时施加分离电压进行电泳分离。
上述的进样方法,所述的步骤2,可以用一个固定角度的楔将微芯片倾斜。
本发明的进样方法简单易行,进样效果好,基本上不需要额外的进样设备。
附图说明
图1为本发明中测量电渗流时所应用的微芯片示意图,其中:A为缓冲液池,B为分离管道出口,C为样品池,D为样品废液池,E为进样管道和分离管道交叉口,F为缓冲液废液池,WE为电化学工作电极。
图2为本发明的实施例中500μM多巴胺和500μM儿茶酚的混合溶液实施液压进样后芯片电泳的分离电泳图,图中5纳安标尺说明峰高的强度,A为多巴胺,B为儿茶酚。
具体实施方式
实施例1.利用本发明的进样方式,以多巴胺和儿茶酚混合样品实施微芯片毛细管电泳分离测定。
利用500μM多巴胺和500μM儿茶酚的标准溶液来检验本发明的进样方法的效果。
将微芯片平放,将13.5μL的500μM多巴胺和500μM儿茶酚混合样品溶液放入样品池(C)中(液面高度大约为0.27cm),15μL20mM的磷酸盐(PBS)缓冲溶液放入样品废液池(D)和缓冲液池(A)中(液面高度大约为0.30cm),缓冲液废液池(F)中也放入20mM的PBS缓冲溶液,并且与缓冲液池(A)的液面高度基本一致。然后将微芯片倾斜进样,用一个固定角度17°的楔使微芯片倾斜17°。进样40秒后,将微芯片放平,同时施加分离电压800V进行电泳分离,在检测电位+1.4V(vs.Ag/AgCl电极)进行检测。得到电泳图,见图2。根据峰形和分离效果来看,进样效果完全满足芯片毛细管电泳的要求。
实施例2.
除了将楔的角度改成10°,使微芯片倾斜10°以外,其他都同实施例1,其分离效果与实施例1的分离效果相同。
实施例3.
除了将楔的角度改成25°,使微芯片倾斜25°以外,其他都同实施例1,其分离效果与实施例1的分离效果相同。

Claims (1)

1.一种适合便携式微芯片毛细管电泳设备的简易进样方法,其特征是它由下列步骤组成:
将微芯片平放,将13.5μL的500μM多巴胺和500μM儿茶酚混合样品溶液放入样品池(C)中,液面高度为0.27cm,15μL 20mM的磷酸盐缓冲溶液放入样品废液池(D)和缓冲液池(A)中,液面高度为0.30cm,缓冲液废液池(F)中也放入20mM的磷酸盐缓冲溶液,并且与缓冲液池(A)的液面高度基本一致,然后将微芯片倾斜进样,用一个固定角度17°的楔使微芯片倾斜17°,进样40秒后,将微芯片放平,同时施加分离电压800V进行电泳分离,以Ag/AgCl电极为参比电极,在检测电位+1.4V进行检测。
CN200710021383A 2007-04-10 2007-04-10 适合便携式微芯片毛细管电泳设备的简易进样方法 Expired - Fee Related CN101034080B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200710021383A CN101034080B (zh) 2007-04-10 2007-04-10 适合便携式微芯片毛细管电泳设备的简易进样方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200710021383A CN101034080B (zh) 2007-04-10 2007-04-10 适合便携式微芯片毛细管电泳设备的简易进样方法

Publications (2)

Publication Number Publication Date
CN101034080A CN101034080A (zh) 2007-09-12
CN101034080B true CN101034080B (zh) 2010-05-19

Family

ID=38730730

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710021383A Expired - Fee Related CN101034080B (zh) 2007-04-10 2007-04-10 适合便携式微芯片毛细管电泳设备的简易进样方法

Country Status (1)

Country Link
CN (1) CN101034080B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101590389B (zh) * 2009-06-24 2011-07-20 中国科学院大连化学物理研究所 基于三层夹心圆盘式芯片的液滴形成和捕获方法及其应用
CN106959332B (zh) * 2017-02-28 2019-03-29 中国科学院合肥物质科学研究院 电泳检测仪的自动微量进样装置及其控制方法
CN110252438A (zh) * 2019-07-19 2019-09-20 南京信息工程大学 一种溶液自动引入型电泳微芯片及其工作方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2169849Y (zh) * 1993-05-01 1994-06-22 浙江大学 毛细管电泳仪的重力进样器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2169849Y (zh) * 1993-05-01 1994-06-22 浙江大学 毛细管电泳仪的重力进样器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
凌云扬等.在线衍生微流控芯片电泳和激光诱导荧光法测定单细胞中谷胱甘肽.高等学校化学学报25.2004,25167-168. *

Also Published As

Publication number Publication date
CN101034080A (zh) 2007-09-12

Similar Documents

Publication Publication Date Title
Giordano et al. On-line sample pre-concentration in microfluidic devices: A review
US10403488B2 (en) Solid phase extraction with capillary electrophoresis
US9255905B1 (en) Pressure driven microfluidic injection for chemical separations
Fu et al. Combination of flow injection with capillary electrophoresis: Part 7. Microchip capillary electrophoresis system with flow injection sample introduction and amperometric detection
US10393698B2 (en) Pressure driven microfluidic injection for chemical separations
CN101034080B (zh) 适合便携式微芯片毛细管电泳设备的简易进样方法
EP2418480A3 (en) Electrophoresis apparatus and control method thereof
EP2652490B1 (en) Laser doppler electrophoresis
Kitagawa et al. On-line sample preconcentration by large-volume sample stacking with an electroosmotic flow pump (LVSEP) in microscale electrophoresis
Kitagawa et al. Recent progress of on-line sample preconcentration techniques in microchip electrophoresis
Zhang et al. Stepwise mobilization of focused proteins in capillary isoelectric focusing mass spectrometry
JP2015524927A (ja) 分析物の電気泳動分離
Gai et al. Injection by hydrostatic pressure in conjunction with electrokinetic force on a microfluidic chip
Bergström et al. Development of a poly (dimethylsiloxane) interface for on-line capillary column liquid chromatography− capillary electrophoresis coupled to sheathless electrospray ionization time-of-flight mass spectrometry
Wuethrich et al. Zero net-flow in capillary electrophoresis using acrylamide based hydrogel
Yamamoto et al. In situ fabrication of ionic polyacrylamide-based preconcentrator on a simple poly (methyl methacrylate) microfluidic chip for capillary electrophoresis of anionic compounds
Vrouwe et al. Microchip analysis of lithium in blood using moving boundary electrophoresis and zone electrophoresis
Mersal et al. Development of monolithic enzymatic reactors in glass microchips for the quantitative determination of enzyme substrates using the example of glucose determination via immobilized glucose oxidase
Jeong et al. Transient isotachophoresis of highly saline samples using a microchip
Maddukuri et al. Vacuum-assisted electrokinetic supercharging in flow-gated capillary electrophoresis for rapid analysis of high-salt cerebrospinal fluid samples
US10564121B2 (en) Device and method for separation and analysis of trace and ultra-trace ionogenic compounds by isotachophoresis and zone electrophoresis on chip
CN100429511C (zh) 一种集成于芯片毛细管电泳的电化学检测方法
US11913904B2 (en) Reusable cartridge for capillary electrophoresis
Sikorsky et al. Gradient elution moving boundary electrophoresis with field-amplified continuous sample injection
Feng et al. On‐chip potential gradient detection with a portable capillary electrophoresis system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100519

Termination date: 20110410