CN101023550A - 燃料电池耐久性 - Google Patents

燃料电池耐久性 Download PDF

Info

Publication number
CN101023550A
CN101023550A CNA2005800317044A CN200580031704A CN101023550A CN 101023550 A CN101023550 A CN 101023550A CN A2005800317044 A CNA2005800317044 A CN A2005800317044A CN 200580031704 A CN200580031704 A CN 200580031704A CN 101023550 A CN101023550 A CN 101023550A
Authority
CN
China
Prior art keywords
polymer
cation
fuel cell
electrode assembly
membrane electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800317044A
Other languages
English (en)
Inventor
马修·H·弗雷
史蒂文·J·汉罗克
格雷戈里·M·豪根
帕·T·范
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of CN101023550A publication Critical patent/CN101023550A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Conductive Materials (AREA)

Abstract

本发明提供燃料电池膜电极组件和燃料电池聚合物电解质膜,其包括结合的阴离子官能团和多价阳离子,如Mn或Ru阳离子,所述膜具有改进的耐久性。本发明还提供其制造方法。

Description

燃料电池耐久性
技术领域
本发明涉及燃料电池膜电极组件和燃料电池聚合物电解质膜,其包括结合的阴离子官能团和多价阳离子如Mn或Ru阳离子并表现出改进的耐久性,本发明还提供其制造方法。
背景技术
据称,Ludvigson,J.Mater.Chem.,11(2001)1269-1276;Michas,J.Membrane Sci.,29(1986)239-257和Japanese Kokai 2001/118591(Morimoto)公开了通过以下方法制造的聚合物电解质膜:通常在金属盐的溶液中浸渍膜,然后进行氧化步骤使金属盐转化成终产物中的金属氧化物。金属盐包括Mn盐(Ludvigson)和Ru盐(Michas和Morimoto)。
四氟乙烯(TFE)和式FSO2-CF2-CF2-O-CF(CF3)-CF2-O-CF=CF2的共聚单体的共聚物是已知的,并以磺酸形式以商品名Nafion由DuPontChemical Company,Wilmington,Delaware出售,即其中FSO2-端基水解成HSO3 -。在制造燃料电池用的聚合物电解质膜中常常使用Nafion。
四氟乙烯(TFE)和式FSO2-CF2-CF2-O-CF=CF2的共聚单体的共聚物是已知的,并以磺酸形式用在制造燃料电池用的聚合物电解质膜中,即其中FSO2-端基水解成HSO3 -
2002年12月19日提交的美国专利申请10/325,278公开了厚度90微米或更小并包括聚合物的聚合物电解质膜,所述聚合物包括高度氟化骨架和下式的重复侧基:
YOSO2-CF2-CF2-CF2-CF2-O-[聚合物骨架]
其中Y是H+或一价阳离子如碱金属阳离子。通常,膜是浇铸膜。通常,聚合物其水合积大于22,000。通常,聚合物其当量重为800-1200。
发明概述
简言之,本发明提供一种燃料电池膜电极组件,包括聚合物电解质膜,所述聚合物电解质膜包括聚合物,所述聚合物包括结合的阴离子官能团,其中所述聚合物电解质膜还包括选自锰阳离子和钌阳离子的阳离子。通常,按聚合物电解质中存在的阴离子官能团的摩尔量计,所述阳离子的存在量为0.001~0.5电荷当量,更通常0.005~0.2,更通常0.01~0.1,和更通常0.02~0.05。通常,所述阳离子在所述聚合物电解质膜厚度上的分布是均匀的。通常,所述阳离子是多价阳离子。更通常,所述阳离子是锰阳离子。通常,所述阳离子是Mn2+阳离子或Ru3+阳离子,最通常Mn2+阳离子。所述阳离子还可以是Mn3+,Mn4+,或Ru4+。所述聚合物其当量重为1200或更小,更通常1000或更小,更通常900或更小,和更通常800或更小。所述聚合物可以是高度氟化的或全氟化的,并可以包括下式的侧基:-O-CF2-CF2-CF2-CF2-SO3H或式-O-CF2-CF(CF3)-O-CF2-CF2-SO3H。
在另一个方面中,本发明提供一种燃料电池膜电极组件,包括聚合物电解质膜,所述聚合物电解质膜包括聚合物,所述聚合物包括结合的阴离子官能团,其中至少一部分所述阴离子官能团是酸形式的,和至少一部分所述阴离子官能团被选自锰阳离子和钌阳离子的阳离子中和。通常,按聚合物电解质中存在的阴离子官能团的摩尔量计,所述阳离子的存在量为0.001~0.5电荷当量,更通常0.005~0.2,更通常0.01~0.1,和更通常0.02~0.05。通常,所述阳离子在所述聚合物电解质膜厚度上的分布是均匀的。通常,所述阳离子是多价阳离子。更通常,所述阳离子是锰阳离子。通常,所述阳离子是Mn2+阳离子或Ru3+阳离子,最通常Mn2+阳离子。所述阳离子还可以是Mn3+,Mn4+,或Ru4+。所述聚合物其当量重为1200或更小,更通常1000或更小,更通常900或更小,和更通常800或更小。所述聚合物可以是高度氟化的或全氟化的,并可以包括下式的侧基:-O-CF2-CF2-CF2-CF2-SO3H或式-O-CF2-CF(CF3)O-CF2-CF2-SO3H。
在另一个方面中,本发明提供一种聚合物电解质膜,所述聚合物电解质膜包括聚合物,所述聚合物包括结合的阴离子官能团,其中所述聚合物电解质膜还包括选自锰阳离子和钌阳离子的阳离子,和其中按聚合物电解质中存在的酸官能团的摩尔量计,选自锰阳离子和钌阳离子的阳离子的存在量为0.001~0.5电荷当量,更通常0.005~0.2,更通常0.01~0.1,和更通常0.02~0.05。通常,所述阳离子在所述聚合物电解质膜厚度上的分布是均匀的。通常,所述阳离子是多价阳离子。更通常,所述阳离子是锰阳离子。通常,所述阳离子是Mn2+阳离子或Ru3+阳离子,最通常Mn2+阳离子。所述阳离子还可以是Mn3+,Mn4+,或Ru4+。所述聚合物其当量重为1200或更小,更通常1000或更小,更通常900或更小,和更通常800或更小。所述聚合物可以是高度氟化的或全氟化的,并可以包括下式的侧基:-O-CF2-CF2-CF2-CF2-SO3H或式-O-CF2-CF(CF3)-O-CF2-CF2-SO3H。
在另一个方面中,本发明提供一种聚合物电解质膜,所述聚合物电解质膜包括聚合物,所述聚合物包括结合的阴离子官能团,其中至少一部分所述阴离子官能团是酸形式的,和至少一部分所述阴离子官能团被选自锰阳离子和钌阳离子的阳离子中和,和其中按聚合物电解质中存在的酸官能团的摩尔量计,选自锰阳离子和钌阳离子的阳离子的存在量为0.001~0.5电荷当量,更通常0.005~0.2,更通常0.01~0.1,和更通常0.02~0.05。通常,所述阳离子在所述聚合物电解质膜厚度上的分布是均匀的。通常,所述阳离子是多价阳离子。更通常,所述阳离子是锰阳离子。通常,所述阳离子是Mn2+阳离子或Ru3+阳离子,最通常Mn2+阳离子。所述阳离子还可以是Mn3+,Mn4+,或Ru4+。所述聚合物其当量重为1200或更小,更通常1000或更小,更通常900或更小,和更通常800或更小。所述聚合物可以是高度氟化的或全氟化的,并可以包括下式的侧基:-O-CF2-CF2-CF2-CF2-SO3H或式-O-CF2-CF(CF3)-O-CF2-CF2-SO3H。
在另一个方面中,本发明提供一种制造聚合物电解质膜的方法,包括如下步骤:a)提供包括结合的阴离子官能团的聚合物电解质;b)按酸官能团的摩尔量计,加入0.001~0.5电荷当量的一种或多种选自锰盐和钌盐的盐;和c)形成包括所述聚合物电解质的膜。更通常加入0.005~0.2电荷当量,更通常0.01~0.1,和更通常0.02~0.05。通常,所述阳离子是多价阳离子。更通常,所述阳离子是锰阳离子。通常,所述阳离子是Mn2+阳离子或Ru3+阳离子,最通常Mn2+阳离子。所述阳离子还可以是Mn3+,Mn4+,或Ru4+。所述聚合物其当量重可为1200或更小,更通常1000或更小,更通常900或更小,和更通常800或更小。所述聚合物可以是高度氟化的或全氟化的,并可以包括下式的侧基:-O-CF2-CF2-CF2-CF2-SO3H或式-O-CF2-CF(CF3)-O-CF2-CF2-SO3H。这样形成的聚合物电解质膜可以引入到膜电极组件中。
在另一个方面中,本发明提供一种燃料电池膜电极组件,包括至少一种聚合物,所述聚合物包括结合的阴离子官能团,其中所述电极还包括锰阳离子。通常,按聚合物电解质中存在的阴离子官能团的摩尔量计,所述阳离子的存在量为0.001~0.5电荷当量,更通常0.005~0.2,更通常0.01~0.1,和更通常0.02~0.05。通常,所述阳离子是多价阳离子。更通常,所述阳离子是锰阳离子。通常,所述阳离子是Mn2+阳离子。所述聚合物其当量重可为1200或更小,更通常1000或更小,更通常900或更小,和更通常800或更小。所述聚合物可以是高度氟化的或全氟化的,并可以包括下式的侧基:-O-CF2-CF2-CF2-CF2-SO3H或式-O-CF2-CF(CF3)-O-CF2-CF2-SO3H。
在另一个方面中,本发明提供一种燃料电池膜电极组件,包括至少一种聚合物,所述聚合物包括结合的阴离子官能团,其中至少一部分所述阴离子官能团是酸形式的,和至少一部分所述阴离子官能团被锰阳离子中和。通常,按聚合物电解质中存在的阴离子官能团的摩尔量计,所述阳离子的存在量为0.001~0.5电荷当量,更通常0.005~0.2,更通常0.01~0.1,和更通常0.02~0.05。通常,所述阳离子是多价阳离子。更通常,所述阳离子是锰阳离子。通常,所述阳离子是Mn2+阳离子。所述聚合物其当量重可为1200或更小,更通常1000或更小,更通常900或更小,和更通常800或更小。所述聚合物可以是高度氟化的或全氟化的,并可以包括下式的侧基:-O-CF2-CF2-CF2-CF2-SO3H或式-O-CF2-CF(CF3)-O-CF2-CF2-SO3H。
在本申请中:
添加剂在聚合物膜中″均匀的″分布指添加剂的存在量变化不超过+/-90%,更通常不超过+/-50%,和更通常不超过+/-20%;
聚合物的″当量重″(EW)指将中和一当量碱的聚合物重量;
″多价阳离子″指电荷为2+或更大的阳离子;
″高度氟化的″指含有40wt%或更大量的氟,通常50wt%或更大,和更通常60wt%或更大;和
″酸形式″对阴离子官能团而言是指其被质子中和。
本发明的优点是提供具有改进的耐久性的燃料电池膜电极组件和聚合物电解质膜及其制造方法。
详细说明
本发明提供一种聚合物电解质膜(PEM),其包括聚合物,所述聚合物包括结合的阴离子官能团和选自锰阳离子和钌阳离子的阳离子,或提供一种包括这种PEM的燃料电池膜电极组件(MEA)。通常,至少一部分所述阴离子官能团是酸形式的,和至少一部分所述阴离子官能团被Mn或Ru阳离子中和。通常,按聚合物电解质中存在的酸官能团的摩尔量计,阳离子的存在量为0.001~0.5电荷当量。通常,阳离子在PEM的厚度上的分布是均匀的。
本发明的膜电极组件(MEA)和聚合物电解质膜(PEM)可用在燃料电池中。MEA是质子交换膜燃料电池如氢燃料电池的中心元件。燃料电池是通过燃料如氢和氧化剂如氧的催化组合而产生可用电的电化学电池。通常MEA包括聚合物电解质膜(PEM)(也称作离子导电膜(ICM)),其起固体电解质的作用。PEM的一面与阳极电极层接触,相对面与阴极电极层接触。在常见应用中,通过氢的氧化在阳极形成质子,并穿过PEM传输到阴极与氧反应,从而使电流在与电极连接的外电路中流动。每个电极层包括电化学催化剂,通常包括铂金属。PEM在反应物气体之间形成耐久的、非多孔的、不导电机械阻挡层,但其仍使H+离子易于通过。气体扩散层(GDL)加速气体传输到阳极和阴极电极材料和从其输出,并传导电流。GDL是多孔的和导电的,通常由碳纤维构成。GDL也可以称作流体传输层(FTL)或扩散器/集电器(DCC)。在一些实施方案中,阳极和阴极电极层涂布到GDL上,得到的催化剂涂覆的GDL中间夹入PEM,形成5层MEA。5层MEA的5层按顺序是:阳极GDL,阳极电极层,PEM,阴极电极层,和阴极GDL。在其他实施方案中,阳极和阴极电极层涂布到PEM的任一侧,得到的催化剂涂覆的膜(CCM)夹在两个GDL之间,形成5层MEA。
本发明的PEM可以包括任何适合的聚合物电解质。用于本发明中的聚合物电解质通常带有与共用骨架结合的阴离子官能团,其通常是磺酸基团,但还可以包括羧酸基团,酰亚胺基团,酰胺基团,或其他酸性官能团。用于本发明中的聚合物电解质通常是高度氟化的,最通常是全氟化的,但也可以是部分氟化的或非氟化的。用于本发明中的聚合物电解质通常是四氟乙烯和一种或多种氟化的、酸官能共聚单体的共聚物。常见聚合物电解质包括Nafion(DuPont Chemicals,Wilmington DE)和FlemionTM(Asahi Glass Co.Ltd.,Tokyo,Japan)。聚合物电解质可以是记载于美国专利申请10/322,254,10/322,226和10/325,278中的四氟乙烯(TFE)和FSO2-CF2CF2CF2CF2-O-CF=CF2的共聚物。聚合物通常其当量重(EW)为1200或更小,更通常1100或更小,更通常1000或更小,更通常900或更小,和更通常800或更小。除了氟化膜之外,用于本发明中的膜包括烃聚合物,包括芳族聚合物。有用的烃聚合物的实例包括磺化的聚醚醚酮,磺化的聚砜,和磺化的聚苯乙烯。
聚合物可以通过任何适合的方法形成膜。聚合物通常从悬浮液浇铸。可以使用任何适合的浇铸方法,包括棒涂,喷涂,狭缝式涂布,刷涂等。可选择地,膜可以在熔融加工如挤出中由纯聚合物形成。在形成后,可将膜退火,通常在120℃或更高的温度下,更通常130℃或更高,最通常150℃或更高。PEM通常其厚度小于50微米,更通常小于40微米,更通常小于30微米,和最通常约25微米。
在本发明的一个实施方案中,在膜形成之前,将锰或钌、更通常锰的盐加到酸形式的聚合物电解质中。通常,盐与聚合物电解质充分混合或溶解入聚合物电解质内,以实现基本均匀的分布。盐可以包括任何适合的阴离子,包括氯离子、溴离子、硝酸根离子、碳酸根等。一旦在过渡金属盐和酸形式的聚合物之间发生阳离子交换,那么可能需要除去由释放的质子和原始的盐阴离子的结合而形成的酸。因此,优选地可使用产生挥发性或溶解性酸的阴离子,例如氯离子或硝酸根。锰阳离子可以是任何适合的氧化态,包括Mn2+,Mn3+和Mn4+,但最通常是Mn2+。钌阳离子可以是任何适合的氧化态,包括Ru3+和Ru4+,但最通常是Ru3+。尽管不希望限于理论,但是可以认为,锰或钌阳离子在聚合物电解质中持续存在,因为它们与聚合物电解质的阴离子基团的H+离子交换并与那些阴离子基团缔合。此外,可以认为,多价锰或钌阳离子可以在聚合物电解质的阴离子基团之间形成交联,从而进一步增大聚合物的稳定性。按聚合物电解质中存在的酸官能团的摩尔量计,加入的盐量通常为0.001~0.5电荷当量,更通常0.005~0.2,更通常0.01~0.1,和更通常0.02~0.05。
为制造MEA或CCM,可以通过任何适合的方式将催化剂涂布到PEM上,包括手动和机械方法,包括手刷,凹口棒涂,液压轴承模具涂布,绕线式杆涂,液压轴承涂布,狭缝进给刀涂,三辊涂布,或贴花转印。可以在一种应用或多种应用中实现涂布。
任何适合的催化剂都可以用在本发明中。通常,使用碳负载的催化剂粒子。常见碳负载的催化剂粒子是50-90重量%的碳和10-50重量%的催化剂金属,催化剂金属通常包括用于阴极的Pt和用于阳极的重量比2∶1的Pt和Ru。通常,催化剂以催化剂油墨的形式涂布到PEM或FTL上。可选择地,催化剂油墨可以涂布到转印基底上,干燥,然后涂布到PEM或FTL上作为贴花。催化剂油墨通常包括聚合物电解质材料,其可以与包括PEM的聚合物电解质材料相同或不相同。催化剂油墨通常包括催化剂粒子在聚合物电解质分散体中的分散体。油墨通常含有5-30%的固体(即聚合物和催化剂),更通常10-20%的固体。电解质分散体通常是水性分散体,还可以含有醇和多元醇如甘油和乙二醇。可以调节水,醇和多元醇的含量以改变油墨的流变性能。油墨通常含有0-50%的醇和0-20%的多元醇。此外,油墨可以含有0-2%的适合的分散剂。油墨通常通过在加热下搅拌,然后稀释到可涂布的稠度而制造。
在本发明的一个实施方案中,电极或催化剂油墨包括聚合物,所述聚合物包括结合的阴离子官能团和选自锰阳离子的阳离子,从而提供本发明的包括PEM的聚合物。通常,至少一部分所述阴离子官能团是酸形式的,和至少一部分所述阴离子官能团被Mn阳离子中和,从而提供本发明的包括PEM的聚合物。
为制造MEA,GDL可以通过任何适合的方式涂布到CCM的任一侧。任何适合的GDL都可以用在本发明中。通常,GDL由包括碳纤维的片状材料构成。通常,GDL是选自织造和非织造碳纤维结构的碳纤维结构。可用于本发明中的碳纤维结构可以包括:TorayTM复写纸,SpectraCarbTM复写纸,AFNTM非织造碳布,ZoltekTM碳布等。GDL可以用各种材料涂布或浸渍,包括碳粒子涂布,亲水处理,和疏水处理如用聚四氟乙烯(PTFE)涂布。
在使用时,本发明的MEA通常夹在两个刚性板之间,称作分布板,也称作双极板(BPP)或单极板。如同GDL,分布板必须是导电的。分布板通常由碳复合材料,金属,或板状金属材料构成。分布板通常通过在面对MEA的表面中雕刻、研磨、成形或冲压出的一个或多个流体传导通道将反应物或产物流体分布到MEA电极表面并从其分布出。这些通道有时被称作流场。分布板可以将流体分布到叠置的两个连续MEA中和从其分布出,其中一面将燃料导向第一MEA的阳极,而另一面将氧化剂导向下一个MEA的阴极(并除去产物水),因此称作″双极板″。可选择地,分布板可以仅在一侧具有通道,从而仅在那一侧将流体分布到MEA或从其分布出,这可以称作″单极板″。本领域中,术语双极板通常也包括单极板。常见的燃料电池堆包括用双极板交替叠置的多个MEA。
本发明用于制造和运行燃料电池。
下面的实施例进一步阐明了本发明的目的和优点,但是这些实施例中引述的特定材料和其用量以及其他条件和细节,不应被解释成不适当地限制本发明。
实施例
除非另有所指,试剂可以得自于Aldrich Chemical Co.,Milwaukee,WI,或可以通过已知方法合成。
离聚物
以下每一实施例中所用的离聚物是四氟乙烯(TFE)和FSO2-CF2CF2CF2CF2-O-CF=CF2(共聚单体A)的共聚物。共聚单体A根据美国专利申请10/322,254和10/322,226中的操作而制备。根据美国专利申请10/325,278中所述的水乳液聚合进行聚合。当量重(EW)是1000。
实施例1:0.025mmol Mn2+/g离聚物
将在70∶30正丙醇/水中含有16.7%固体(即,3.34g离聚物)的20克离聚物浇铸溶液分配到玻璃小瓶中。搅拌下将0.0288g 52wt%Mn(NO3)2(J.T.Baker 2544-01,Phillipsburg,New Jersey)(即,0.0837mmol Mn2+)加到浇铸分散液中,均质化2小时。由于聚合物的EW是1000,所以按聚合物中原始存在的酸官能团的摩尔量计,加入0.05电荷当量的Mn2+。使用4-英寸多间隙涂布器(Cat.No.PAR-5357,BYK-Gardner,Columbia,Maryland)的20mil间隙,通过″手动扩散″技术在窗玻璃上浇铸膜。薄膜在室温空气中干燥20分钟,置于80℃烘箱中10分钟,然后置于200℃烘箱中15分钟。然后将膜接触液体水,使其从玻璃翘起。得到的退火膜用眼睛观察是微红-棕色和均匀的(即,没有光散射)。
实施例2:0.050mmol Mn2+/g离聚物
使用相同的离聚物浇铸溶液重复实施例1的操作,不同之处在于52wt%Mn(NO3)2的加入量增加到0.0577g(即,0.168mmol Mn2+)。由于聚合物的EW是1000,所以加入0.10电荷当量的Mn2+。同样,用眼睛观察退火膜是微红-棕色和均匀的(即,没有光散射)。
实施例3:0.034mmol Ru3+/g离聚物
使用离聚物浇铸溶液重复实施例1的操作,不同之处在于用RuCl3溶液替代Mn(NO3)2。搅拌下将0.0276g RuCl3-xH2O(41.82%Ru)(AlfaAesar#1 1043,Ward Hill,Massachusetts)(即,0.114mmol Ru3+)加到0.90g乙醇(AAPER Alcohol and Chemical Co.,Shelbyville,Kentucky)中,形成钉掺杂的溶液。在室温下溶解后,搅拌下将掺杂的溶液加到浇铸分散液中,均质化2小时。由于聚合物的EW是1000,所以加入0.10电荷当量的Ru3+。退火膜用眼睛观察是微红-紫色和均匀的(即,没有光散射)。
实施例4:0.068mmol Ru3+/g离聚物
使用相同的离聚物浇铸溶液重复实施例3的操作,不同之处在于RuCl3-xH2O的加入量增加到0.0552g(即,0.228mmol Ru3+)。由于聚合物的EW是1000,所以加入0.20电荷当量的Ru3+。用眼睛观察退火膜是紫色-灰色和均匀的(即,没有光散射)。
实施例5C(对比):未加入Mn或Ru
使用相同的离聚物浇铸溶液重复实施例1的操作,不同之处在于未加入Mn或Ru盐。退火膜用眼睛观察是微红-棕色和均匀的(没有光散射)。
试验方法和对于实施例1-4和5C的结果
实施例1-4和5C中制造的全氟化离聚物膜的氧化稳定性试验如下。称重重量约.03-.06g的膜样品,然后浸渍在玻璃广口瓶中的50g过氧化氢溶液(1M起始浓度)中。密封广口瓶,在烘箱中90-95℃下放置5天。5天浸渍后,将样品从溶液中移出,用DI水冲洗,在室温下干燥至少3小时,称重。计算粗略的重量损失值。为控制浸渍之前和之后的重量差(可归因于第0天和第5天环境相对湿度的变化),在浸渍开始和浸渍完成之后,称重每一块膜样品(从未接触到过氧化物)。为得到校正的重量损失读数,浸渍后保留的粗略重量分数的计算值(对于浸渍的样品)首先除以未浸渍的膜″保留″的重量分数。后一处理假设因相对湿度变化对重量变化的影响对于浸渍样品的测定重量损失的偏离作用是倍增的(multiplicative)。
浸渍样品和称作″对照″的湿度对照样品的试验结果列于表1中。
表1
  实施例     添加剂 起始质量 最终质量 粗略的质量变化 校正的质量变化
1 0.025mmol Mn2+ 0.0430  0.0394 -8.4% -7.5%
1对照 0.025mmol Mn2+ 0.0515  0.0510 -1.0% 0.0%
2 0.050mmol Mn2+ 0.0502  0.0468 -6.8% -5.7%
2对照 0.050mmol Mn2+ 0.0464  0.0459 -1.1% 0.0%
3 0.034mmol Ru3+ 0.0413  0.0404 -2.2% -1.5%
3对照 0.034mmol Ru3+ 0.0449  0.0446 -0.7% 0.0%
4 0.067mmol Ru3+ 0.0431  0.0418 -3.0% -2.1%
4对照 0.067mmol Ru3+ 0.0462  0.0458 -0.9% 0.0%
5C 0.0484  0.0436 -9.9% -8.9%
5C对照 0.0437  0.0432 -1.1% 0.0%
未掺杂的和锰-交换的样品在接触过氧化物溶液之后是无色的。钉-交换的样品在试验之后保留一些粉红色。
这些结果表明,钌或锰离子的部分交换有效地降低了由于过氧化氢的作用造成的重量损失。尽管比较例损失8.9%,但是本发明的实施例损失小于:7.5%,5.7%,1.5%和2.1%。
对于实施例6&7C的MEA制造
具有50cm2活性面积的燃料电池MEA制备如下。根据WO2002/061,871中所述的方法制备催化剂分散体。为制备催化剂涂覆的膜,根据相同文献WO 2002/061,871中所述的贴花转印方法将阳极和阴极层涂布到膜上。通过用13.4kN的力在132℃下在Carver Press(FredCarver Co.,Wabash,IN)中按压10分钟,将PTFE-处理的复写纸气体扩散层和聚四氟乙烯/玻璃复合材料垫圈涂布到CCM上。
对于实施例6&7C的MEA寿命试验
在独立控制的气流,压力,相对湿度和电流或电压的测试台(FuelCell Technologies,Albuquerque,NM)中试验MEA。试验夹具包括带有四方形蜿蜒(quad-serpentine)流场的石墨集电板。在90℃亚饱和条件下,对阳极施加过压力,用H2/空气操作MEA。通过施加各种电流密度值,对MEA进行加速载荷循环寿命试验。在每次载荷循环之后,测量电池的开路电压(OCV)并记录。这种试验方法的一般现象是OCV单调衰减,但有明显的″膝部(knee)″或衰减速率显著增加。衰减速率增加的点作为MEA的寿命。
实施例6&7C
对于实施例6,将在70∶30正丙醇/水中含有23wt%固体(即,46g离聚物,EW 1000)的200g离聚物铸膜液置于250ml塑料瓶内。搅拌下将0.33g 52wt%Mn(NO3)2(J.T.Baker 2544-01,Phillipsburg,New Jersey)(即,0.96mmol Mn2+)加到浇铸溶液中,2小时后得到透明浇铸溶液。上述量生成含有0.02mmol Mn2+/克EW 1000聚合物的溶液,这样按聚合物中原始存在的酸官能团的摩尔量计,为0.04电荷当量的Mn2+。使用加入有Mn(NO3)2的离聚物涂布溶液,根据2001年4月18日提交的美国专利申请09/837,771所述的方法浇铸聚合物膜。
对于实施例7C,使用相同的离聚物浇铸溶液但没有加入Mn(NO3)2,按实施例6所示浇铸聚合物膜。
根据上文所述方法由实施例6和7C的膜制造MEA。根据上述寿命试验对MEA进行试验。结果记录在表2中。
表2
    实施例     寿命(小时)
    6     196
    7C     59
实施例6和7C证实本发明的膜在操作条件下耐久性增加超过3倍。
对于实施例8C,9和10的离聚物膜的滴定
进行滴定,以确定通过加入离子锰制备的离聚物膜的酸含量。对于每一次滴定,均仔细称量约0.1g离聚物膜样品,加到100ml 0.1M NaCl溶液中。使用滴定管将0.05M NaOH溶液缓慢加到样品溶液中,使用pH计测定终点。中和酸所需的NaOH量作为膜的酸含量。
实施例8C
重复实施例5C的操作,不同之处在于在烘箱处理之前浇铸层干燥15min而不是20min。此外,通过剥离从载体玻璃上去除膜,这与通过水润湿剥离不同。对膜的滴定表明酸含量是1.00meq/g,证实这种离聚物的EW为1000。
实施例9
将在70∶30正丙醇/水中含有22.3%固体(即,3.746g离聚物)的16.80克离聚物浇铸溶液置于玻璃小瓶中。搅拌下将0.0264g 52wt%Mn(NO3)2(J.T.Baker 2544-01,Phillipsburg,New Jersey)(即,0.0764mmol Mn2+)加到浇铸分散液中,均质化2小时。由于聚合物的EW是1000,所以加入约0.04电荷当量的Mn2+。使用4-英寸多间隙涂布器(Cat.No.PAR-5357,BYK-Gardner,Columbia,Maryland)的20mil间隙,通过″手动扩散″技术在窗玻璃上浇铸膜。薄膜在室温空气中干燥15分钟,置于80℃烘箱中10分钟,然后置于200℃烘箱中15分钟。然后通过剥离从载体玻璃上去除膜。得到的退火膜用眼睛观察是均匀的(即,没有光散射)。
对膜的滴定表明酸含量是0.95meq/g。
实施例10
将在70∶30正丙醇/水中含有22.3%固体(即,3.436g离聚物)的15.41克离聚物浇铸溶液置于玻璃小瓶中。搅拌下将0.0479g 52wt%Mn(NO3)2(J.T.Baker 2544-01,Phillipsburg,New Jersey)(即,0.139mmol Mn2+)加到浇铸分散液中,均质化2小时。由于聚合物的EW是1000,所以加入约0.08电荷当量的Mn2+。使用4-英寸多间隙涂布器(Cat.No.PAR-5357,BYK-Gardner,Columbia,Maryland)的20mil间隙,通过″手动扩散″技术在窗玻璃上浇铸膜。薄膜在室温空气中干燥15分钟,置于80℃烘箱中10分钟,然后置于200℃烘箱中15分钟。然后通过剥离从载体玻璃上去除膜。得到的退火膜用眼睛观察是均匀的(即,没有光散射)。
膜的滴定表明酸含量是0.91meq/g。
实施例8C,9和10表明,在膜浇铸之前加入增加量的锰盐中和了增加量的酸形式的阴离子官能团,并除去酸形式的之前锰盐。中和程度表明,由于Mn2+离子是二价的,所以可以在聚合物的阴离子官能团之间形成交联。
对于实施例11&12C的MEA制造
具有50cm2活性面积的燃料电池MEA制备如下。使用NafionSE-20092离聚物浇铸溶液(DuPont Chemical Company,Wilmington,Delaware),根据2001年4月18日提交的美国专利申请09/837,771所述的方法浇铸聚合物膜。对于每一实施例均通过手刷油墨将电催化剂层涂布到膜的一侧。最终Pt加载是0.4mg/cm2。油墨在小于1torr的压力下在100℃干燥20min。为组装MEA,用PTFE处理的复写纸气体扩散层和聚四氟乙烯/玻璃复合材料垫圈将两片CCM夹住。这种组件通过用13.4kN的力在132℃下在Carver Press(Fred Carver Co.,Wabash,IN)中按压10分钟。
对于实施例11&12C的MEA试验
在独立控制的气流,压力,相对湿度和电流或电压的试验台(FuelCell Technologies,Albuquerque,NM)中试验MEA。试验夹具包括带有四方形蜿蜒流场的石墨集电板。在70℃饱和条件和0.6A/cm2下,用恒定化学计量1.2/2.5的H2/空气操作MEA。在48小时内收集从电池流出的水。使用离子色谱***(Dionex ICS-2000,Sunyvale,California)测量流出的水中的氟化物含量。通过除以收集水的时间,计算氟化物释放速率,单位是微克/分钟,作为膜降解速率的指示。
实施例11和12C
对于实施例11,为制备电催化剂油墨,将48g 10wt%全氟磺酸离聚物的水溶液(NafionSE-10172,(DuPont Chemical Company,Wilmington,Delaware)与48g水,0.024g 50wt%Mn(NO3)2(J.T.Baker2544-01,Phillipsburg,New Jersey),和12g 50%Pt/50%C催化剂(SA50E,NECC,Japan)相结合。使用微射流机混合混合物。对于实施例12C,为制备电催化剂油墨,将24g 10wt%全氟磺酸离聚物的水溶液(NafionSE-10172,(DuPont Chemical Company,Wilmington,Delaware)与24g水,和6g50%Pt/50%C催化剂(SA50E,NECC,Japan)相结合。使用微射流机混合混合物。表3列出根据上述方法制备的MEA的氟化物释放速率。
表3
    实施例     氟化物释放速率(微克/分钟)
    11     0.013
    12C     0.91
本领域所属技术人员显然在本发明的范围和原理内可以对本发明作出各种修改和变化,应该理解,本发明不应被不适当地限制于上述说明性实施方案。

Claims (102)

1.一种燃料电池膜电极组件,其包括聚合物电解质膜,所述聚合物电解质膜包括聚合物,所述聚合物包括结合的阴离子官能团,其中所述聚合物电解质膜还包括选自锰阳离子和钌阳离子的阳离子。
2.如权利要求1所述的燃料电池膜电极组件,其中按聚合物中存在的阴离子官能团的摩尔量计,选自锰阳离子和钌阳离子的阳离子的存在量为0.001~0.5电荷当量。
3.如权利要求1所述的燃料电池膜电极组件,其中按聚合物中存在的阴离子官能团的摩尔量计,选自锰阳离子和钌阳离子的阳离子的存在量为0.01~0.1电荷当量。
4.如权利要求1所述的燃料电池膜电极组件,其中所述阳离子在所述聚合物电解质膜厚度上的分布是均匀的。
5.如权利要求1所述的燃料电池膜电极组件,其中所述阳离子是锰阳离子。
6.如权利要求1所述的燃料电池膜电极组件,其中所述阳离子是Mn2+阳离子。
7.如权利要求1所述的燃料电池膜电极组件,其中所述阳离子是Ru3+阳离子。
8.如权利要求1所述的燃料电池膜电极组件,其中所述聚合物其当量重为1000或更小。
9.如权利要求1所述的燃料电池膜电极组件,其中所述聚合物其当量重为900或更小。
10.如权利要求1所述的燃料电池膜电极组件,其中所述聚合物其当量重为800或更小。
11.如权利要求1所述的燃料电池膜电极组件,其中所述聚合物是高度氟化的。
12.如权利要求1所述的燃料电池膜电极组件,其中所述聚合物是全氟化的。
13.如权利要求1所述的燃料电池膜电极组件,其中所述聚合物包括下式的侧基:
-O-CF2-CF2-CF2-CF2-SO3H。
14.如权利要求1所述的燃料电池膜电极组件,其中所述聚合物包括下式的侧基:
-O-CF2-CF(CF3)-O-CF2-CF2-SO3H。
15.一种燃料电池膜电极组件,其包括聚合物电解质膜,所述聚合物电解质膜包括聚合物,所述聚合物包括结合的阴离子官能团,其中至少一部分所述阴离子官能团是酸形式的,和至少一部分所述阴离子官能团被选自锰阳离子和钌阳离子的阳离子中和。
16.如权利要求15所述的燃料电池膜电极组件,其中按聚合物中存在的阴离子官能团的摩尔量计,选自锰阳离子和钌阳离子的阳离子的存在量为0.001~0.5电荷当量。
17.如权利要求15所述的燃料电池膜电极组件,其中按聚合物中存在的阴离子官能团的摩尔量计,选自锰阳离子和钌阳离子的阳离子的存在量为0.01~0.1电荷当量。
18.如权利要求15所述的燃料电池膜电极组件,其中所述阳离子在所述聚合物电解质膜厚度上的分布是均匀的。
19.如权利要求15所述的燃料电池膜电极组件,其中所述阳离子是锰阳离子。
20.如权利要求15所述的燃料电池膜电极组件,其中所述阳离子是Mn2+阳离子。
21.如权利要求15所述的燃料电池膜电极组件,其中所述阳离子是Ru3+阳离子。
22.如权利要求15所述的燃料电池膜电极组件,其中所述聚合物其当量重为1000或更小。
23.如权利要求15所述的燃料电池膜电极组件,其中所述聚合物其当量重为900或更小。
24.如权利要求15所述的燃料电池膜电极组件,其中所述聚合物其当量重为800或更小。
25.如权利要求15所述的燃料电池膜电极组件,其中所述聚合物是高度氟化的。
26.如权利要求15所述的燃料电池膜电极组件,其中所述聚合物是全氟化的。
27.如权利要求15所述的燃料电池膜电极组件,其中所述聚合物包括下式的侧基:
-O-CF2-CF2-CF2-CF2-SO3H。
28.如权利要求15所述的燃料电池膜电极组件,其中所述聚合物包括下式的侧基:
-O-CF2-CF(CF3)-O-CF2-CF2-SO3H。
29.一种聚合物电解质膜,所述聚合物电解质膜包括聚合物,所述聚合物包括结合的阴离子官能团,其中所述聚合物电解质膜还包括选自锰阳离子和钌阳离子的阳离子,和其中按聚合物电解质中存在的酸官能团的摩尔量计,选自锰阳离子和钌阳离子的阳离子的存在量为0.001~0.5电荷当量。
30.如权利要求29所述的聚合物电解质膜,其中按聚合物中存在的阴离子官能团的摩尔量计,选自锰阳离子和钌阳离子的阳离子的存在量为0.001~0.5电荷当量。
31.如权利要求29所述的聚合物电解质膜,其中按聚合物中存在的阴离子官能团的摩尔量计,选自锰阳离子和钌阳离子的阳离子的存在量为0.01~0.1电荷当量。
32.如权利要求29所述的聚合物电解质膜,其中所述阳离子在所述聚合物电解质膜厚度上的分布是均匀的。
33.如权利要求29所述的聚合物电解质膜,其中所述阳离子是锰阳离子。
34.如权利要求29所述的聚合物电解质膜,其中所述阳离子是Mn2+阳离子。
35.如权利要求29所述的聚合物电解质膜,其中所述阳离子是Ru3+阳离子。
36.如权利要求29所述的聚合物电解质膜,其中所述聚合物其当量重为1000或更小。
37.如权利要求29所述的聚合物电解质膜,其中所述聚合物其当量重为900或更小。
38.如权利要求29所述的聚合物电解质膜,其中所述聚合物其当量重为800或更小。
39.如权利要求29所述的聚合物电解质膜,其中所述聚合物是高度氟化的。
40.如权利要求29所述的聚合物电解质膜,其中所述聚合物是全氟化的。
41.如权利要求29所述的聚合物电解质膜,其中所述聚合物包括下式的侧基:
-O-CF2-CF2-CF2-CF2-SO3H。
42.如权利要求29所述的聚合物电解质膜,其中所述聚合物包括下式的侧基:
-O-CF2-CF(CF3)-O-CF2-CF2-SO3H。
43.一种聚合物电解质膜,所述聚合物电解质膜包括聚合物,所述聚合物包括结合的阴离子官能团,其中至少一部分所述阴离子官能团是酸形式的,和至少一部分所述阴离子官能团被选自锰阳离子和钌阳离子的阳离子中和,和其中按聚合物电解质中存在的酸官能团的摩尔量计,选自锰阳离子和钌阳离子的阳离子的存在量为0.001~0.5电荷当量。
44.如权利要求43所述的聚合物电解质膜,其中按聚合物中存在的阴离子官能团的摩尔量计,选自锰阳离子和钌阳离子的阳离子的存在量为0.001~0.5电荷当量。
45.如权利要求43所述的聚合物电解质膜,其中按聚合物中存在的阴离子官能团的摩尔量计,选自锰阳离子和钌阳离子的阳离子的存在量为0.01~0.1电荷当量。
46.如权利要求43所述的聚合物电解质膜,其中所述阳离子在所述聚合物电解质膜厚度上的分布是均匀的。
47.如权利要求43所述的聚合物电解质膜,其中所述阳离子是锰阳离子。
48.如权利要求43所述的聚合物电解质膜,其中所述阳离子是Mn2+阳离子。
49.如权利要求43所述的聚合物电解质膜,其中所述阳离子是Ru3+阳离子。
50.如权利要求43所述的聚合物电解质膜,其中所述聚合物其当量重为1000或更小。
51.如权利要求43所述的聚合物电解质膜,其中所述聚合物其当量重为900或更小。
52.如权利要求43所述的聚合物电解质膜,其中所述聚合物其当量重为800或更小。
53.如权利要求43所述的聚合物电解质膜,其中所述聚合物是高度氟化的。
54.如权利要求43所述的聚合物电解质膜,其中所述聚合物是全氟化的。
55.如权利要求43所述的聚合物电解质膜,其中所述聚合物包括下式的侧基:
-O-CF2-CF2-CF2-CF2-SO3H。
56.如权利要求43所述的聚合物电解质膜,其中所述聚合物包括下式的侧基:
-O-CF2-CF(CF3)-O-CF2-CF2-SO3H。
57.一种制造聚合物电解质膜的方法,包括如下步骤:
a)提供包括结合的阴离子官能团的聚合物电解质;
b)按所述结合的阴离子官能团的摩尔量计,加入0.001~0.5电荷当量的一种或多种选自锰盐和钌盐的盐;
c)形成包括所述聚合物电解质的膜。
58.如权利要求57所述的方法,其中按聚合物中存在的阴离子官能团的摩尔量计,选自锰阳离子和钌阳离子的阳离子的存在量为0.01~0.1电荷当量。
59.如权利要求57所述的方法,其中所述阳离子是锰阳离子。
60.如权利要求57所述的方法,其中所述阳离子是Mn2+阳离子。
61.如权利要求57所述的方法,其中所述阳离子是Ru3+阳离子。
62.如权利要求57所述的方法,其中所述聚合物其当量重为1000或更小。
63.如权利要求57所述的方法,其中所述聚合物其当量重为900或更小。
64.如权利要求57所述的方法,其中所述聚合物其当量重为800或更小。
65.如权利要求57所述的方法,其中所述聚合物是高度氟化的。
66.如权利要求57所述的方法,其中所述聚合物是全氟化的。
67.如权利要求57所述的方法,其中所述聚合物包括下式的侧基:
-O-CF2-CF2-CF2-CF2-SO3H。
68.如权利要求57所述的方法,其中所述聚合物包括下式的侧基:
-O-CF2-CF(CF3)-O-CF2-CF2-SO3H。
69.一种制造膜电极组件的方法,其包括权利要求57所述的方法,且还包括如下步骤:
d)形成包括所述聚合物电解质膜的膜电极组件。
70.一种燃料电池膜电极组件,其包括至少一种聚合物,所述聚合物包括结合的阴离子官能团,其中所述膜电极组件还包括锰阳离子。
71.如权利要求70所述的燃料电池膜电极组件,其中按聚合物中存在的阴离子官能团的摩尔量计,选自锰阳离子的阳离子的存在量为0.001~0.5电荷当量。
72.如权利要求70所述的燃料电池膜电极组件,其中按聚合物中存在的阴离子官能团的摩尔量计,选自锰阳离子的阳离子的存在量为0.01~0.1电荷当量。
73.如权利要求70所述的燃料电池膜电极组件,其中所述阳离子是Mn2+阳离子。
74.如权利要求70所述的燃料电池膜电极组件,其中所述聚合物其当量重为1000或更小。
75.如权利要求70所述的燃料电池膜电极组件,其中所述聚合物其当量重为900或更小。
76.如权利要求70所述的燃料电池膜电极组件,其中所述聚合物其当量重为800或更小。
77.如权利要求70所述的燃料电池膜电极组件,其中所述聚合物是高度氟化的。
78.如权利要求70所述的燃料电池膜电极组件,其中所述聚合物是全氟化的。
79.如权利要求70所述的燃料电池膜电极组件,其中所述聚合物包括下式的侧基:
-O-CF2-CF2-CF2-CF2-SO3H。
80.如权利要求70所述的燃料电池膜电极组件,其中所述聚合物包括下式的侧基:
-O-CF2-CF(CF3)-O-CF2-CF2-SO3H。
81.一种燃料电池膜电极组件,其包括至少一种聚合物,所述聚合物包括结合的阴离子官能团,其中至少一部分所述阴离子官能团是酸形式的,和至少一部分所述阴离子官能团被锰阳离子中和。
82.如权利要求81所述的燃料电池膜电极组件,其中按聚合物中存在的阴离子官能团的摩尔量计,选自锰阳离子的阳离子的存在量为0.001~0.5电荷当量。
83.如权利要求81所述的燃料电池膜电极组件,其中按聚合物中存在的阴离子官能团的摩尔量计,选自锰阳离子的阳离子的存在量为0.01~0.1电荷当量。
84.如权利要求81所述的燃料电池膜电极组件,其中所述阳离子是Mn2+阳离子。
85.如权利要求81所述的燃料电池膜电极组件,其中所述聚合物其当量重为1000或更小。
86.如权利要求81所述的燃料电池膜电极组件,其中所述聚合物其当量重为900或更小。
87.如权利要求81所述的燃料电池膜电极组件,其中所述聚合物其当量重为800或更小。
88.如权利要求81所述的燃料电池膜电极组件,其中所述聚合物是高度氟化的。
89.如权利要求81所述的燃料电池膜电极组件,其中所述聚合物是全氟化的。
90.如权利要求81所述的燃料电池膜电极组件,其中所述聚合物包括下式的侧基:
-O-CF2-CF2-CF2-CF2-SO3H。
91.如权利要求81所述的燃料电池膜电极组件,其中所述聚合物包括下式的侧基:
-O-CF2-CF(CF3)-O-CF2-CF2-SO3H。
92.一种燃料电池膜电极组件,其包括聚合物电解质膜,所述聚合物电解质膜包括聚合物,所述聚合物包括结合的阴离子官能团,其中至少一部分所述阴离子官能团是酸形式的,和至少一部分所述阴离子官能团被选自多价阳离子的阳离子中和,其中按聚合物中存在的阴离子官能团的摩尔量计,所述多价阳离子的存在量为0.001~0.5电荷当量。
93.如权利要求92所述的燃料电池膜电极组件,其中按聚合物中存在的阴离子官能团的摩尔量计,所述多价阳离子的存在量为0.01~0.1电荷当量。
94.如权利要求92所述的燃料电池膜电极组件,其中所述阳离子在所述聚合物电解质膜厚度上的分布是均匀的。
95.如权利要求92所述的燃料电池膜电极组件,其中所述聚合物其当量重为1000或更小。
96.如权利要求92所述的燃料电池膜电极组件,其中所述聚合物其当量重为900或更小。
97.如权利要求92所述的燃料电池膜电极组件,其中所述聚合物其当量重为800或更小。
98.如权利要求92所述的燃料电池膜电极组件,其中所述聚合物是高度氟化的。
99.如权利要求92所述的燃料电池膜电极组件,其中所述聚合物是全氟化的。
100.如权利要求92所述的燃料电池膜电极组件,其中所述聚合物包括下式的侧基:
-O-CF2-CF2-CF2-CF2-SO3H。
101.如权利要求92所述的燃料电池膜电极组件,其中所述聚合物包括下式的侧基:
-O-CF2-CF(CF3)-O-CF2-CF2-SO3H。
102.如权利要求92所述的燃料电池膜电极组件,其比缺少所述多价阳离子的相似燃料电池膜电极组件具有更高的耐久性。
CNA2005800317044A 2004-09-20 2005-06-23 燃料电池耐久性 Pending CN101023550A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/945,178 2004-09-20
US10/945,178 US7572534B2 (en) 2004-09-20 2004-09-20 Fuel cell membrane electrode assembly

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201410195997.0A Division CN104022304B (zh) 2004-09-20 2005-06-23 燃料电池耐久性

Publications (1)

Publication Number Publication Date
CN101023550A true CN101023550A (zh) 2007-08-22

Family

ID=35005682

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201410195997.0A Expired - Fee Related CN104022304B (zh) 2004-09-20 2005-06-23 燃料电池耐久性
CNA2005800317044A Pending CN101023550A (zh) 2004-09-20 2005-06-23 燃料电池耐久性

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201410195997.0A Expired - Fee Related CN104022304B (zh) 2004-09-20 2005-06-23 燃料电池耐久性

Country Status (9)

Country Link
US (3) US7572534B2 (zh)
EP (2) EP1790028B1 (zh)
JP (1) JP2008513951A (zh)
KR (1) KR20070058630A (zh)
CN (2) CN104022304B (zh)
AT (2) ATE479210T1 (zh)
CA (1) CA2579974A1 (zh)
DE (1) DE602005023187D1 (zh)
WO (1) WO2006036237A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101733010B (zh) * 2009-12-10 2011-01-26 山东东岳神舟新材料有限公司 一种掺杂双交联增强全氟质子交换膜及其制备方法
CN108137750A (zh) * 2015-09-23 2018-06-08 3M创新有限公司 制备具有磺酰基侧基的四氟乙烯共聚物的方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005124912A1 (ja) 2004-06-22 2005-12-29 Asahi Glass Company, Limited 液状組成物、その製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法
EP1772919B2 (en) 2004-06-22 2016-11-30 Asahi Glass Company, Limited Electrolyte membrane for solid polymer fuel cell, method for producing same and membrane electrode assembly for solid polymer fuel cell
ATE493770T1 (de) * 2004-07-12 2011-01-15 Asahi Glass Co Ltd Elektrolytmembran für eine festpolymer- brennstoffzelle, herstellungsverfahren dafür und membranelektrodenbaugruppe für eine festpolmer- brennstoffzelle
US8101317B2 (en) * 2004-09-20 2012-01-24 3M Innovative Properties Company Durable fuel cell having polymer electrolyte membrane comprising manganese oxide
US7572534B2 (en) 2004-09-20 2009-08-11 3M Innovative Properties Company Fuel cell membrane electrode assembly
JP4937755B2 (ja) * 2004-10-15 2012-05-23 パナソニック株式会社 燃料電池システム
JP4916668B2 (ja) * 2005-03-01 2012-04-18 旭化成イーマテリアルズ株式会社 高安定性フッ素化スルホン酸ポリマー
CN101218700A (zh) * 2005-07-12 2008-07-09 旭硝子株式会社 固体高分子型燃料电池用电解质膜、其制造方法及固体高分子型燃料电池用膜电极接合体
US8652705B2 (en) * 2005-09-26 2014-02-18 W.L. Gore & Associates, Inc. Solid polymer electrolyte and process for making same
US7622217B2 (en) * 2005-10-12 2009-11-24 3M Innovative Properties Company Fuel cell nanocatalyst
US8628871B2 (en) 2005-10-28 2014-01-14 3M Innovative Properties Company High durability fuel cell components with cerium salt additives
US20080107945A1 (en) * 2006-11-08 2008-05-08 Gm Global Technology Operations, Inc. Fuel cell substrate with an overcoat
JP5431958B2 (ja) * 2006-12-29 2014-03-05 スリーエム イノベイティブ プロパティズ カンパニー 耐久性のあるポリマー電解質薄膜を製造する方法
EP3012895A3 (en) * 2007-11-09 2016-06-01 3M Innovative Properties Company Polymer electrolytes including heteropolyacids
US7989115B2 (en) * 2007-12-14 2011-08-02 Gore Enterprise Holdings, Inc. Highly stable fuel cell membranes and methods of making them
WO2009086354A1 (en) 2007-12-27 2009-07-09 3M Innovative Properties Company Durable fuel cell membrane electrode assembly with combined additives
WO2009086364A1 (en) * 2007-12-27 2009-07-09 3M Innovative Properties Company Electrode inks containing coalescing solvents
EP2338193A1 (en) * 2008-08-25 2011-06-29 3M Innovative Properties Company Fuel cell nanocatalyst with voltage reversal tolerance
CN104821404A (zh) * 2008-12-22 2015-08-05 3M创新有限公司 具有多层阴极的燃料电池膜电极组件
WO2011087842A1 (en) * 2009-12-22 2011-07-21 3M Innovative Properties Company Fuel cell electrode with nanostructured catalyst and dispersed catalyst sublayer
WO2011123275A1 (en) 2010-04-01 2011-10-06 Trenergi Corp. High temperature membrane electrode assembly with high power density and corresponding method of making
WO2011129967A2 (en) 2010-04-16 2011-10-20 3M Innovative Properties Company Proton conducting materials
US9893373B2 (en) 2010-05-25 2018-02-13 3M Innovative Properties Company Reinforced electrolyte membrane
CN103493266B (zh) 2010-11-12 2016-12-14 Appem有限公司 具有在其上含有大环金属螯合物的多孔质碳芯的燃料电池电极
WO2014105407A1 (en) 2012-12-28 2014-07-03 3M Innovative Properties Company Electrode and method of making the same
US11492431B2 (en) 2017-09-14 2022-11-08 3M Innovative Properties Company Fluorinated copolymer having sulfonyl pendant groups and compositions and articles including the same
WO2021205406A1 (en) 2020-04-09 2021-10-14 3M Innovative Properties Company Composite including fluorinated polymer and salt nanoparticles and articles including the same
WO2023057926A1 (en) 2021-10-07 2023-04-13 3M Innovative Properties Company Composite including fluorinated polymer and lithium fluoride nanoparticles and articles including the same

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB149233A (en) 1920-07-12 1922-01-12 Heylandt Ges Fur App Bau Mit B Improved method and means for storing, transporting, and delivering for use gas under pressure from liquefied gases
US3382105A (en) 1964-12-29 1968-05-07 Nasa Usa Ion-exchange membrane with platinum electrode assembly
US3369938A (en) 1966-01-03 1968-02-20 Varta Ag Catalytic electrodes and fuel cells therewith
US4021369A (en) 1973-06-29 1977-05-03 Sun Ventures, Inc. Ion-exchanged transition metal catalysts for the direct oxidation of olefins to epoxyalcohols
GB1449233A (en) 1973-10-31 1976-09-15 Exxon Research Engineering Co Buffer electrolyte fuel cell with low cost electrodes
SE7603539L (sv) 1975-03-31 1976-10-01 Kureha Chemical Ind Co Ltd Katjonbytarmembran
JPS5482042A (en) 1977-12-14 1979-06-29 Hitachi Ltd Fuel cell
US4340276A (en) 1978-11-01 1982-07-20 Minnesota Mining And Manufacturing Company Method of producing a microstructured surface and the article produced thereby
US4284835A (en) 1979-07-05 1981-08-18 Shell Oil Company Hydrogenation process
US4358545A (en) * 1980-06-11 1982-11-09 The Dow Chemical Company Sulfonic acid electrolytic cell having flourinated polymer membrane with hydration product less than 22,000
US4416801A (en) 1980-12-15 1983-11-22 E. I. Du Pont De Nemours & Co. Toluic acid
US4433082A (en) 1981-05-01 1984-02-21 E. I. Du Pont De Nemours And Company Process for making liquid composition of perfluorinated ion exchange polymer, and product thereof
US4568598A (en) 1984-10-30 1986-02-04 Minnesota Mining And Manufacturing Company Article with reduced friction polymer sheet support
US4752369A (en) 1984-11-05 1988-06-21 The Dow Chemical Company Electrochemical cell with improved energy efficiency
GB8605817D0 (en) 1986-03-10 1986-04-16 Ici Plc Membrane
DE3614000A1 (de) 1986-04-25 1987-10-29 Boehringer Mannheim Gmbh Neue isochinolindione, verfahren zu ihrer herstellung und diese verbindungen enthaltende arzneimittel
US5039561A (en) 1986-08-25 1991-08-13 Minnesota Mining And Manufacturing Company Method for preparing an article having surface layer of uniformly oriented, crystalline, organic microstructures
US4812352A (en) 1986-08-25 1989-03-14 Minnesota Mining And Manufacturing Company Article having surface layer of uniformly oriented, crystalline, organic microstructures
US4741744A (en) 1987-02-20 1988-05-03 The Dow Chemical Company Hydrated metal ionomer membranes for gas separation
US5176786A (en) 1988-07-13 1993-01-05 Minnesota Mining And Manufacturing Company Organic thin film controlled molecular epitaxy
CA2043583C (en) 1990-05-31 1999-01-05 Fumio Hanada Bipolar membrane and method for its production
JPH04162365A (ja) 1990-10-25 1992-06-05 Tanaka Kikinzoku Kogyo Kk 燃料電池用電極の作製法
JPH05208135A (ja) 1991-02-23 1993-08-20 Tanaka Kikinzoku Kogyo Kk 負極用電極触媒
US5336558A (en) 1991-06-24 1994-08-09 Minnesota Mining And Manufacturing Company Composite article comprising oriented microstructures
JPH05258755A (ja) 1991-12-31 1993-10-08 Stonehard Assoc Inc 高分子固体電解質型燃料電池の製造方法
JP3271801B2 (ja) 1992-09-22 2002-04-08 田中貴金属工業株式会社 高分子固体電解質型燃料電池、該燃料電池の加湿方法、及び製造方法
US5523181A (en) 1992-09-25 1996-06-04 Masahiro Watanabe Polymer solid-electrolyte composition and electrochemical cell using the composition
US5338430A (en) 1992-12-23 1994-08-16 Minnesota Mining And Manufacturing Company Nanostructured electrode membranes
BE1006774A3 (fr) 1993-02-24 1994-12-06 Univ Bruxelles MEMBRANE BIPOLAIRE, PROCEDE POUR SON OBTENTION ET UTILISATION DE CELLE-CI POUR LA PRODUCTION DE BASES ET D'ACIDES OU POUR LA REGULATION DU pH D'UNE SOLUTION AQUEUSE.
EP0631337B1 (en) 1993-06-18 2000-07-12 Tanaka Kikinzoku Kogyo K.K. Electrochemical cell comprising solid polymer electrolyte composition.
US5766787A (en) 1993-06-18 1998-06-16 Tanaka Kikinzoku Kogyo K.K. Solid polymer electrolyte composition
JPH08227716A (ja) 1995-02-22 1996-09-03 Tanaka Kikinzoku Kogyo Kk 高分子固体電解質型燃料電池用電極構成原料及びその製造方法
US5958822A (en) * 1995-09-19 1999-09-28 E. I. Du Pont De Nemours And Company Modified fluorosulfonic acids
JPH1092444A (ja) 1996-09-13 1998-04-10 Japan Gore Tex Inc 電気化学反応装置用固体高分子電解質複合体及びそれを用いた電気化学反応装置
US6059943A (en) 1997-07-30 2000-05-09 Lynntech, Inc. Composite membrane suitable for use in electrochemical devices
US6635384B2 (en) 1998-03-06 2003-10-21 Gore Enterprise Holdings, Inc. Solid electrolyte composite for electrochemical reaction apparatus
US5879828A (en) 1997-10-10 1999-03-09 Minnesota Mining And Manufacturing Company Membrane electrode assembly
US5879827A (en) 1997-10-10 1999-03-09 Minnesota Mining And Manufacturing Company Catalyst for membrane electrode assembly and method of making
IT1296949B1 (it) * 1997-12-10 1999-08-03 De Nora Spa Cella a combustibile a membrana polimerica operante a temperatura superiore a 100°c
JP4028076B2 (ja) 1998-04-14 2007-12-26 富士通テン株式会社 機器制御システム、及び車載用機器
JP2000106203A (ja) * 1998-09-30 2000-04-11 Aisin Seiki Co Ltd 固体高分子電解質膜及び燃料電池用電極及び固体高分子電解質型燃料電池
GB9822576D0 (en) 1998-10-16 1998-12-09 Johnson Matthey Plc Membrane
DE19917812C2 (de) 1999-04-20 2002-11-21 Siemens Ag Membranelektrodeneinheit für eine selbstbefeuchtende Brennstoffzelle, Verfahren zu ihrer Herstellung und Brennstoffzellenbatterie mit einer solchen Membranelektrodeneinheit
DE19919988A1 (de) 1999-04-30 2000-11-02 Univ Stuttgart Protonenleitende Keramik-Polymer-Kompositmembran für den Temperaturbereich bis 300 DEG C
US6380126B1 (en) 1999-08-20 2002-04-30 Medis El Ltd Class of electrocatalysts and a gas diffusion electrode based thereon for fuel cells
JP4539896B2 (ja) 1999-09-17 2010-09-08 独立行政法人産業技術総合研究所 プロトン伝導性膜、その製造方法及びそれを用いた燃料電池
JP3925764B2 (ja) 1999-10-19 2007-06-06 株式会社豊田中央研究所 高耐久性固体高分子電解質
US6482763B2 (en) 1999-12-29 2002-11-19 3M Innovative Properties Company Suboxide fuel cell catalyst for enhanced reformate tolerance
EP1249053B1 (en) 2000-01-18 2010-06-16 Tel-Aviv University Future Technology Development L.P. Fuel cell with proton conducting membrane
KR100343209B1 (ko) 2000-03-27 2002-07-10 윤종용 강화제가 부가된 복합 이온 전도성 고분자막 및 이를채용하고 있는 연료전지
WO2001080336A2 (en) 2000-04-18 2001-10-25 3M Innovative Properties Company Membrane electrode assembly having annealed polymer electrolyte membrane
JP2001321664A (ja) 2000-05-12 2001-11-20 Toyota Motor Corp 吸着材およびその製造方法
GB0016379D0 (en) * 2000-07-05 2000-08-23 Johnson Matthey Plc Electrochemical cell
KR20000063843A (ko) 2000-08-07 2000-11-06 이홍기 고분자 전해질 연료전지용 백금-금속산화물 촉매의 제조방법
JP3411897B2 (ja) 2000-10-12 2003-06-03 本田技研工業株式会社 固体高分子型燃料電池の活性固体高分子電解質膜
US6630263B1 (en) 2000-11-20 2003-10-07 Plug Power Inc. Fuel cell systems and methods
JP3924675B2 (ja) 2001-01-09 2007-06-06 独立行政法人産業技術総合研究所 プロトン伝導性膜、その製造方法及びそれを用いた燃料電池
AU2002242146A1 (en) 2001-01-29 2002-08-12 3M Innovative Properties Company Decal method of making membrane electrode assemblies for fuel cells
DE10130828A1 (de) 2001-06-27 2003-01-16 Basf Ag Brennstoffzelle
JP2003017074A (ja) 2001-07-02 2003-01-17 Honda Motor Co Ltd 燃料電池
WO2003007412A1 (en) * 2001-07-13 2003-01-23 Brown University Research Foundation Polymer electrolyte membrane for electrochemical and other applications
JP2003059497A (ja) 2001-08-08 2003-02-28 Mori Fukuo 燃料電池アノード電極保護触媒
JP2003123777A (ja) 2001-10-19 2003-04-25 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池
JP4472258B2 (ja) 2002-01-17 2010-06-02 日揮触媒化成株式会社 燃料電池用プロトン導電膜および該膜を備えた燃料電池
US6925618B1 (en) * 2002-01-31 2005-08-02 Cadence Design Systems, Inc. Method and apparatus for performing extraction on an integrated circuit design with support vector machines
DE10209774A1 (de) 2002-02-28 2004-07-29 Universität Stuttgart - Institut für Chemische Verfahrenstechnik Composites und Compositemembranen
JP2004018573A (ja) 2002-06-13 2004-01-22 Kanegafuchi Chem Ind Co Ltd プロトン伝導性高分子膜
US6630265B1 (en) 2002-08-13 2003-10-07 Hoku Scientific, Inc. Composite electrolyte for fuel cells
US7112386B2 (en) 2002-09-04 2006-09-26 Utc Fuel Cells, Llc Membrane electrode assemblies with hydrogen peroxide decomposition catalyst
US6946362B2 (en) 2002-09-06 2005-09-20 Hewlett-Packard Development Company, L.P. Method and apparatus for forming high surface area material films and membranes
JP2004134294A (ja) 2002-10-11 2004-04-30 Toyota Central Res & Dev Lab Inc 固体高分子電解質
DE10257643A1 (de) * 2002-12-10 2004-06-24 Basf Ag Verfahren zur Herstellung einer Membran-Elektrodeneinheit
US6624328B1 (en) 2002-12-17 2003-09-23 3M Innovative Properties Company Preparation of perfluorinated vinyl ethers having a sulfonyl fluoride end-group
US20040116742A1 (en) 2002-12-17 2004-06-17 3M Innovative Properties Company Selective reaction of hexafluoropropylene oxide with perfluoroacyl fluorides
US7348088B2 (en) 2002-12-19 2008-03-25 3M Innovative Properties Company Polymer electrolyte membrane
JP4161750B2 (ja) 2003-03-12 2008-10-08 トヨタ自動車株式会社 プロトン伝導性材料、プロトン伝導性材料膜、及び燃料電池
US7419741B2 (en) 2003-09-29 2008-09-02 3M Innovative Properties Company Fuel cell cathode catalyst
US7537857B2 (en) 2003-12-17 2009-05-26 Bdf Ip Holdings Ltd. Reduced degradation of ion-exchange membranes in electrochemical fuel cells
WO2005124912A1 (ja) * 2004-06-22 2005-12-29 Asahi Glass Company, Limited 液状組成物、その製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法
CN100544087C (zh) * 2004-06-22 2009-09-23 旭硝子株式会社 固体高分子型燃料电池用电解质膜及其制造方法以及固体高分子型燃料电池用膜电极接合体
US7220509B2 (en) 2004-08-30 2007-05-22 General Motors Corporation Constituents and methods for protecting fuel cell components, including PEMs
US7572534B2 (en) * 2004-09-20 2009-08-11 3M Innovative Properties Company Fuel cell membrane electrode assembly
US8101317B2 (en) 2004-09-20 2012-01-24 3M Innovative Properties Company Durable fuel cell having polymer electrolyte membrane comprising manganese oxide
US20060099475A1 (en) 2004-11-11 2006-05-11 Mitsubishi Heavy Industries, Ltd. Solid polymer electrolyte membrane electrode assembly and solid polymer electrolyte fuel cell using same
KR101135479B1 (ko) 2005-01-26 2012-04-13 삼성에스디아이 주식회사 연료전지용 고분자 전해질막, 이의 제조방법, 및 이를포함하는 연료전지 시스템
JP5095089B2 (ja) 2005-05-31 2012-12-12 株式会社豊田中央研究所 固体高分子電解質、並びに、固体高分子型燃料電池及びその製造方法
US7622217B2 (en) * 2005-10-12 2009-11-24 3M Innovative Properties Company Fuel cell nanocatalyst
US20070082814A1 (en) 2005-10-12 2007-04-12 3M Innovative Properties Company Ternary nanocatalyst and method of making
US8367267B2 (en) 2005-10-28 2013-02-05 3M Innovative Properties Company High durability fuel cell components with cerium oxide additives
US8628871B2 (en) 2005-10-28 2014-01-14 3M Innovative Properties Company High durability fuel cell components with cerium salt additives
US7989115B2 (en) 2007-12-14 2011-08-02 Gore Enterprise Holdings, Inc. Highly stable fuel cell membranes and methods of making them

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101733010B (zh) * 2009-12-10 2011-01-26 山东东岳神舟新材料有限公司 一种掺杂双交联增强全氟质子交换膜及其制备方法
CN108137750A (zh) * 2015-09-23 2018-06-08 3M创新有限公司 制备具有磺酰基侧基的四氟乙烯共聚物的方法

Also Published As

Publication number Publication date
US20090297916A1 (en) 2009-12-03
ATE542257T1 (de) 2012-02-15
EP2254185B1 (en) 2012-01-18
EP1790028B1 (en) 2010-08-25
US7803847B2 (en) 2010-09-28
CN104022304A (zh) 2014-09-03
CN104022304B (zh) 2016-07-13
JP2008513951A (ja) 2008-05-01
US20100316932A1 (en) 2010-12-16
EP1790028A1 (en) 2007-05-30
DE602005023187D1 (de) 2010-10-07
ATE479210T1 (de) 2010-09-15
US9034538B2 (en) 2015-05-19
WO2006036237A1 (en) 2006-04-06
KR20070058630A (ko) 2007-06-08
EP2254185A1 (en) 2010-11-24
US20060063055A1 (en) 2006-03-23
CA2579974A1 (en) 2006-04-06
US7572534B2 (en) 2009-08-11

Similar Documents

Publication Publication Date Title
CN101023550A (zh) 燃料电池耐久性
JP6231588B2 (ja) 酸化セリウム添加物を有する高い耐久性の燃料電池構成要素
CN101297430B (zh) 具有铈盐添加剂的高耐久性燃料电池元件
KR100971640B1 (ko) 고체 고분자형 연료 전지용 전해질막, 그 제조 방법 및고체 고분자형 연료 전지용 막전극 접합체
CN101023551B (zh) 耐久的燃料电池
CN102318121B (zh) 具有多层阴极的燃料电池膜电极组件
CN101953012B (zh) 具有组合添加剂的耐久性燃料电池膜电极组件
WO2008083091A1 (en) Method of making durable polymer electrolyte membranes
Frey et al. Fuel cell membrane electrode assembly

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20070822