CN101007357A - Nanometer nickel powder and its preparation method - Google Patents

Nanometer nickel powder and its preparation method Download PDF

Info

Publication number
CN101007357A
CN101007357A CN 200710026458 CN200710026458A CN101007357A CN 101007357 A CN101007357 A CN 101007357A CN 200710026458 CN200710026458 CN 200710026458 CN 200710026458 A CN200710026458 A CN 200710026458A CN 101007357 A CN101007357 A CN 101007357A
Authority
CN
China
Prior art keywords
nickel powder
nickel
preparation
liquid
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200710026458
Other languages
Chinese (zh)
Other versions
CN100491026C (en
Inventor
任山
刘大勇
王国帅
洪澜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
National Sun Yat Sen University
Original Assignee
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University filed Critical National Sun Yat Sen University
Priority to CNB2007100264584A priority Critical patent/CN100491026C/en
Publication of CN101007357A publication Critical patent/CN101007357A/en
Application granted granted Critical
Publication of CN100491026C publication Critical patent/CN100491026C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention discloses a linear nanometer nickel powder and its preparation method. The linear nanometer nickel powder synthesized by the invention is slightly bend, part linear nickel powder is cross bonding and generates branched or netted structures, and the surface of each nickel line is full of lunge in nano-size. The invention uses macromolecular polymer or monomer as soft template, then microwave heats liquid phase and nickel salt is reduced chemically to synthesizing linear nickel powder in nanometer structure. The preparation method has simple art, easy operation, fast response rate and low needed temperature; the uniformity and crystallinity of synthesized nanometer structure nickel line is good, activity is high, it can meet the demand of various industries to high activity nickel powder; meanwhile the branched or netted structure nickel line and its nano lunge is fastened with polymer firmly, that can improve the strength and toughness and other mechanical properties of polymer matrix composite material.

Description

A kind of nanometer nickel powder and preparation method thereof
Technical field
The present invention relates to a kind of nanometer nickel powder and preparation method thereof, belong to field of nanometer technology.
Background technology
Nano-nickel powder because of the surface-active height, catalytic performance is good, electromagnetic performance is good, field extensive uses such as electrode, electrocondution slurry and catalyst in battery, magnetic recording material, multi-layer capacitor, the performance of Nano metal powder not only depends on its particle size, and is also closely related with its shape.As for reducing the contraction when the sintering of electrode in the multilayer ceramic capacitor, adopt the spherical nickel powder of better crystallinity degree best.And linear nickel powder is when improving the electromagnetic performance of polymer matrix composite, also can improve mechanical properties such as the intensity of polymer matrix composite and toughness, and therefore, the development of nanometer nickel powder has received very big concern.Hydro-thermal method, micro emulsion method, organic metal compound decomposition method, AAO template electric-sedimentation method and soft template method etc. all can prepare wire or bar-shaped nano-nickel powder.
According to Journal of Crystal Growth 252 (2003) 612~617 reports, in the microemulsion of water-butanols-potassium oleate-kerosene, use hydrazine hydrate reduction NiCl 26H 2It is 8~10nm that O prepares diameter, the rod-like nano nickel powder of long 100~200nm.
According to another Transactions of Nonferrous Metals Society of China 16 (2006) 96~100 reports, with the nickel oxalate is raw material, PVP, PEG is a soft template, having synthesized diameter by the thermal decomposition nickel hydroxide is 10~15nm, and length is the monocrystalline nickel nanometer rods of 70~120nm, but its complex procedures, the reaction temperature height, and the reaction time reach 18 hours.
Materials Letters 57 (2003) 3992-3997 report in ethylene glycol solution, is a raw material with the nickelous sulfate, and it is 0.1-0.5 μ m that the hydrazine hydrate reduction nickel hydroxide has synthesized diameter, and length is the bar-shaped nickel powder of 1~8 μ m.
Patent CN 1491762A report at first reacts nickel salt and compound precipitants to the presoma that obtains nickel powder, and the presoma of nickel powder has obtained the fibrous nano nickel powder 350~600 ℃ elevated temperature heat decomposition.
The heating using microwave reaction is a kind of means of very effective preparation super-fine metal powder, since adding chemical reaction from the discovery microwave thermal, has been widely used in the synthetic preparation of various nano materials.Journal ofCrystal Growth 273 (2005) 439-445 report adopts heating using microwave, reduces AgNO3 with natrium citricum, adds the Au crystal seed simultaneously, has obtained the nano-silver powder of wire.Generally speaking, wire precious metal powder (Au, Ag, Pt etc.) is synthesized in heating using microwave, existing report on the document.
Compare with noble metal, the chemism of nickel is higher, easy and other material generation chemical reaction; And nickel has magnetic, attracts each other between particle.The granularity of nano-nickel powder and pattern control ratio be difficulty, the synthetic method ubiquity complex procedures of present linear nickel powder, the reaction temperature height, deficiencies such as the reaction time is long, and synthetic linear nickel powder smooth surface, add in the macromolecular material, the not high enough problem of bond strength still exists between metal powder and organic matter, has influenced mechanical properties such as the intensity of polymer matrix composite and toughness.Therefore, seek an advantages of simplicity and high efficiency preparation method, rapidly and efficiently synthetic linear nickel powder is still one and is rich in challenging work; Simultaneously, develop a kind of linear nickel powder of special nanostructured, make it in the electromagnetic performance that improves as polymer matrix composite, also improve mechanical properties such as its intensity and toughness.The development of the linear nickel powder of this special construction has very high realistic meaning.
Summary of the invention
At the deficiency that existing linear nickel powder is used, primary and foremost purpose of the present invention provides a kind of nanometer nickel powder of function admirable.
Linear nickel powder is case of bending slightly, and part linear nickel powder is cross-linked with each other and forms dendritic or network structure.The nickel wire surface has been covered with the thorn of nano-scale, the specific area height of nickel wire, and catalytic activity is good, can satisfy the demand of domestic battery industry to high activity nickel.Dendritic or network structure nickel powder and nanometer thorn thereof combine firmly with polymer, can improve mechanical properties such as the intensity of polymer matrix composite and toughness greatly.
The nanostructured nickel wire diameter that the present invention synthesizes is 0.05~2 μ m, and line length is 5~20 μ m, has been covered with the thorn of nano-scale on every nickel wire surface, and thorn length is 20nm~100nm, and the diameter of thorn is 10nm-100nm, and the density of thorn is 4.9 * 10 5Individual/cm 2~1.8 * 0 6Individual/cm 2
Another object of the present invention provides above-mentioned preparation method with nanometer nickel powder.The present invention adopts the linear nickel powder of heating using microwave electronation nickel salt synthesis of nano structure, and its technology is simple, and reaction speed is fast, and temperature is low, rapidly and efficiently.
The preparation method of nanometer nickel powder of the present invention is as follows: nickel salt and high molecular polymer or monomer stirring soluble in water and abundant are obtained A liquid; With reducing agent and the alkali B liquid that obtains soluble in water; A liquid with after B liquid mixes, is reacted to reaction solution with heating using microwave and to become clear, and Separation of Solid and Liquid is carried out in cooling, makes described nanometer nickel powder.
As preferred version, carry out isothermal reaction to 60-100 ℃ with heating using microwave.Heating using microwave can be adopted dual mode: a kind of is to react with the firm power heating, or keeps steady temperature with different microwave powers and react.
In the mixed solution of described A and B, the concentration of nickel salt is 0.01~0.5mol/L, and the concentration of high molecular polymer or monomer is 0.1~50g/L, and the concentration of reducing agent is 0.01~1.0mol/L, and the concentration of alkali is 0.01~0.5mol/L.As preferred version, the concentration of nickel salt is 0.05~0.2mol/L, and the concentration of high molecular polymer or monomer is 0.1~20g/L, and the concentration of reducing agent is 0.1~1.0mol/L; The concentration of alkali is 0.02~0.2mol/L.
Described high molecular polymer or monomer comprise water soluble polymers such as PVP, polyvinyl alcohol, polyethylene glycol, polyacrylic acid.
Described nickel salt is NiSO 4Or NiCl 2, Ni (OH) 2, reducing agent is hydrazine hydrate or sodium borohydride.
Described alkali is NaOH, sodium carbonate or ammoniacal liquor.
Theoretical foundation of the present invention is as follows: water and PVP are polar molecules, under the microwave electromagnetic field action, the warm-up movement state of polar molecule is oriented according to the direction alternation of electromagnetic field, produce similar frictional heat, the energy of alternating electromagnetic field is converted into the heat energy in the medium in this microprocess, makes medium temperature rising on the macroscopic view occur.Because and heating using microwave speed does not need heat conducting process, each position of object usually can both the uniformly penetrating electromagnetic wave, produces the localized hyperthermia district and can promote reduction reaction, makes kinetics improve two orders of magnitude.As seen, PVP molecule and hydrone align according to alternation before and after the direction of electromagnetic field under the microwave electromagnetic field action, the frictional heat that produces promotes nickel crystallite to form and grows up, nickel crystallite forms and grows up to reunite becomes nickel wire, and as seen, PVP becomes the soft template that linear nickel powder forms.
It is under certain alkali condition that chemical reduction method prepares nickel powder, by reducing agent the corresponding metal nickel salt is reduced, utilize the effect of surfactant or high molecular polymer or monomer to particle surface, obtain the controlled nano-nickel powder of size shape, the advantage of chemical reduction method is that reaction temperature is lower, reaction condition is gentle, simple to operate.And heating using microwave is compared with the traditional heating method, and its advantage is that firing rate is fast, inside and outside heating simultaneously; In heating systems, produce local high-temperature region, promote reaction; Heating using microwave can improve the order of magnitude to kinetics one or two.Microwave is auxiliary to add thermal synthesis sodium metal ground rice has become a new technology that has a extensive future.With the mutual supplement with each other's advantages of heating using microwave and chemical reduction method, high efficiency is synthesized linear nickel powder just in the present invention.This preparation method technology is simple, processing ease, and reaction rate is fast, and temperature is low.
Description of drawings
Fig. 1 is the electron scanning micrograph of 5 dried times nanometer nickel powders.
Fig. 2 is the electron scanning micrograph of 20,000 times of nanometer nickel powders.
Fig. 3 is the transmission electron microscope photo of 200,000 times of nanometer thorns.
The specific embodiment
Embodiment one:
1) with 0.025mol NiCl 2With obtain 250ml A liquid in the water-soluble solution of 2g PVPK30, and fully stir A liquid evenly mixed.
2) with 0.5mol N 2H 4.H 2The miscible 250ml B liquid that in the aqueous solution, obtains of O and 0.025mol NaOH.
3) A liquid is mixed with B liquid, adopt low microwave power to be heated to 70 ℃ in 6 minutes after, keep stationary temperature with this power heating, become black to mixed liquor, the clear back adding of solution becomes cold water is cooled to room temperature (10~30 ℃).
4) nickel powder is carried out Separation of Solid and Liquid according to a conventional method, the diameter of the nickel powder of preparation is 0.5~0.6 μ m, and length is the linear nickel powder of 10~15 μ m, and linear nickel powder forms network structure.The lip-deep thorn length of linear nickel powder is 50nm~70nm, and the diameter of thorn is 10-30nm, and the density of thorn is 1.8 * 10 6Individual/cm 2
Embodiment two:
1) with 0.5mol NiSO 4With obtain 400ml A liquid in the water-soluble solution of 10g polyvinyl alcohol, and fully stir A liquid evenly mixed.
2) with 1mol sodium borohydride and the miscible 100ml B liquid that in the aqueous solution, obtains of 0.5mol sodium carbonate.
3) A liquid is mixed with B liquid, after microwave power was heated to 80 ℃ in 3 minutes in the employing, add thermal response with this power, become black to mixed liquor, the clear back of solution becomes adds cold water and is cooled to room temperature (10~30 ℃).
4) nickel powder is carried out Separation of Solid and Liquid according to a conventional method, the diameter of the nickel powder of preparation is 0.5~2 μ m, and length is the linear nickel powder of 5~15 μ m, and linear nickel powder forms dendritic morphology.The lip-deep thorn length of linear nickel powder is 20nm~40nm, and the diameter of thorn is 20-50nm, and the density of thorn is 8.1 * 10 5Individual/cm 2
Embodiment three:
1) with 0.025mol NiCl 2With obtain 400ml A liquid in the water-soluble solution of 20g NVP, and fully stir A liquid evenly mixed.
2) with 0.375mol and the miscible 100ml B liquid that in the aqueous solution, obtains of 0.025mol ammoniacal liquor.
3) A liquid is mixed with B liquid, adopt high microwave power to be heated to 100 ℃ in 1.5 minutes after, add thermal response with this power, become black to mixed liquor, the clear back of solution becomes adds cold water and is cooled to room temperature (10~30 ℃).
4) nickel powder is carried out Separation of Solid and Liquid according to a conventional method, the diameter of the nickel powder of preparation is 0.05~0.2 μ m, and length is the linear nickel powder of 5~10 μ m, and linear nickel powder forms network structure.The length of stinging on the linear nickel powder surface is 20nm~40nm, and the diameter of thorn is 40-100nm, and the density of thorn is 4.9 * 10 5Individual/cm 2
Embodiment four:
1) with 0.25mol Ni (OH) 2With obtain 250ml A liquid in the water-soluble solution of 0.2g polyacrylic acid, and fully stir A liquid evenly mixed.
2) with 0.5mol sodium borohydride and the miscible 250ml B liquid that in the aqueous solution, obtains of 0.025mol sodium carbonate.
3) A liquid is mixed with B liquid, adopt the highest microwave power to be heated to 60 ℃ in 1 minute after, keep stationary temperature with this grade heating, become black to mixed liquor, the clear back of solution becomes adds cold water and is cooled to room temperature (10~30 ℃).
4) nickel powder is carried out Separation of Solid and Liquid according to a conventional method, the diameter of the nickel powder of preparation is 0.1~0.5 μ m, and length is the linear nickel powder of 5~10 μ m, and linear nickel powder forms network structure.The length of the lip-deep thorn of linear nickel powder is 40nm~80nm, and the diameter of thorn is 30-50nm, and the density of thorn is 9.8 * 10 5Individual/cm 2
Embodiment five:
1) with 0.005molNiCl 2With obtain 400ml A liquid in the water-soluble solution of 10g ethylene glycol, and fully stir A liquid evenly mixed.
2) with 0.15mol N 2H 4.H 2The miscible 100ml B liquid that in the aqueous solution, obtains of O and 0.01molNaOH.
3) A liquid is mixed with B liquid, adopt minimum microwave power to be heated to 80 ℃ in 10 minutes after, keep stationary temperature with this grade heating, become black to mixed liquor, the clear back of solution becomes adds cold water and is cooled to room temperature (10~30 ℃).
4) nickel powder is carried out Separation of Solid and Liquid according to a conventional method, the diameter of the nickel powder of preparation is 0.1~0.2 μ m, and length is the linear nickel powder of 1~5 μ m, and linear nickel powder forms dendritic morphology.The lip-deep thorn length of linear nickel powder is 50nm~10nm, and the diameter of thorn is 10-30nm, and the density of thorn is 1.6 * 10 6Individual/cm 2

Claims (10)

1, a kind of nanometer nickel powder is characterized in that: be sweep state slightly, and be covered with the thorn of nano-scale on every nickel wire surface, being cross-linked with each other between the part linear nickel powder forms dendritic or network structure.
2, nanometer nickel powder as claimed in claim 1 is characterized in that: linear diameter is 0.05~2 μ m, and line length is 5~20 μ m, the thorn that has been covered with nano-scale on every nickel wire surface, thorn length is 20nm~100nm, and the thorn diameter is 10-100nm, and the density of thorn is 4.9 * 10 5Individual/cm 2~1.8 * 0 6Individual/cm 2
3, a kind of preparation method of nanometer nickel powder as claimed in claim 1 is characterized in that: nickel salt and high molecular polymer or high polymer monomer stirring soluble in water and abundant are obtained A liquid; With reducing agent and the alkali B liquid that obtains soluble in water; With after B liquid mixes, the heating using microwave reaction becomes clear to reaction solution with A liquid, and Separation of Solid and Liquid is carried out in cooling, makes described nanostructured linear nickel powder.
4, preparation method according to claim 3 is characterized in that: with microwave the mixed liquor of A liquid and B liquid is heated to 60-100 ℃ and carries out described reaction.
5, preparation method according to claim 4 is characterized in that following any mode of heating using microwave employing: react with the firm power heating, or keep steady temperature with different microwave powers and react.
6, preparation method according to claim 3, it is characterized in that: in the mixed solution of A and B, the concentration of nickel salt is 0.001~0.5mol/L, the concentration of high molecular polymer or monomer is 0.1~50g/L, the concentration of reducing agent is 0.01~1.0mol/L, and the concentration of alkali is 0.01~0.5mol/L.
7, preparation method according to claim 6 is characterized in that: in the solution, the concentration of nickel salt is 0.05~0.2mol/L after the mixing of A and B, and the concentration of high molecular polymer or monomer is 0.1~20g/L, and the concentration of reducing agent is 0.1~1.0mol/L; The concentration of alkali is 0.02~0.2mol/L.
8, preparation method according to claim 3 is characterized in that: described high molecular polymer is PVP, polyvinyl alcohol, polyethylene glycol or polyacrylic acid or their monomer.
9, preparation method according to claim 3 is characterized in that: described nickel salt is NiSO 4Or NiCl 2, Ni (OH) 2, reducing agent is hydrazine hydrate or sodium borohydride.
10, preparation method according to claim 3 is characterized in that: described alkali is NaOH, sodium carbonate or ammoniacal liquor.
CNB2007100264584A 2007-01-22 2007-01-22 Line-shape nanometer nickel powder and its preparation method Expired - Fee Related CN100491026C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007100264584A CN100491026C (en) 2007-01-22 2007-01-22 Line-shape nanometer nickel powder and its preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2007100264584A CN100491026C (en) 2007-01-22 2007-01-22 Line-shape nanometer nickel powder and its preparation method

Publications (2)

Publication Number Publication Date
CN101007357A true CN101007357A (en) 2007-08-01
CN100491026C CN100491026C (en) 2009-05-27

Family

ID=38696138

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007100264584A Expired - Fee Related CN100491026C (en) 2007-01-22 2007-01-22 Line-shape nanometer nickel powder and its preparation method

Country Status (1)

Country Link
CN (1) CN100491026C (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103586482A (en) * 2013-10-25 2014-02-19 江苏大学 Method for preparing nanometer nickel under microwave and ultraviolet irradiation
CN103978227A (en) * 2014-05-22 2014-08-13 冷劲松 Method for preparing controllable nickel nanowires conveniently at low cost
CN104384525A (en) * 2014-11-27 2015-03-04 东北大学 Dispersing and assembling method of nickel-iron metal nano-wires
CN108500292A (en) * 2018-04-08 2018-09-07 合肥学院 A kind of preparation method of chain-like metal Ni nanopowders
CN110340376A (en) * 2019-07-16 2019-10-18 浙江大学 A kind of flower-shaped nickel wire absorbing material and preparation method thereof
CN115401208A (en) * 2022-09-02 2022-11-29 江苏大学 Preparation method of nickel-based nano powder with controllable morphology

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103586482A (en) * 2013-10-25 2014-02-19 江苏大学 Method for preparing nanometer nickel under microwave and ultraviolet irradiation
CN103586482B (en) * 2013-10-25 2016-06-15 江苏大学 The preparation method of nano nickel under a kind of microwave, ultraviolet irradiation
CN103978227A (en) * 2014-05-22 2014-08-13 冷劲松 Method for preparing controllable nickel nanowires conveniently at low cost
CN103978227B (en) * 2014-05-22 2016-06-08 冷劲松 A kind of cheap convenient method preparing controlled nickel nano wire
CN104384525A (en) * 2014-11-27 2015-03-04 东北大学 Dispersing and assembling method of nickel-iron metal nano-wires
CN104384525B (en) * 2014-11-27 2016-05-25 东北大学 The dispersion of a kind of nickel or ferronickel metal nanometer line and assemble method
CN108500292A (en) * 2018-04-08 2018-09-07 合肥学院 A kind of preparation method of chain-like metal Ni nanopowders
CN108500292B (en) * 2018-04-08 2021-03-23 合肥学院 Preparation method of chain-like metallic nickel nano powder
CN110340376A (en) * 2019-07-16 2019-10-18 浙江大学 A kind of flower-shaped nickel wire absorbing material and preparation method thereof
CN110340376B (en) * 2019-07-16 2020-11-13 浙江大学 Flower-shaped nickel wire wave-absorbing material and preparation method thereof
CN115401208A (en) * 2022-09-02 2022-11-29 江苏大学 Preparation method of nickel-based nano powder with controllable morphology
CN115401208B (en) * 2022-09-02 2024-02-27 江苏大学 Preparation method of nickel-based nano powder with controllable morphology

Also Published As

Publication number Publication date
CN100491026C (en) 2009-05-27

Similar Documents

Publication Publication Date Title
CN100491026C (en) Line-shape nanometer nickel powder and its preparation method
CN101920942B (en) Method for controlling synthesis of zinc selenide multi-morphological nano material
CN101804459B (en) Method for preparing nanometer nickel powder by micro passage reaction vessel
CN107867726B (en) A kind of preparation method of nano oxidized ruthenium
CN101342598A (en) Method for preparing metallic nickel nano-wire
CN100500896C (en) Method for preparing ultra-fine crystal grain tungsten-copper alloy and tungsten-copper alloy
CN101367044B (en) Method for preparing nano-catalyst copper chromite and copper ferrite
CN103305185A (en) Method for preparing reduced-oxidized graphene/Fe3O4/Ag nano composite wave-absorbing material
CN102139909A (en) Method for synthesizing micron-nano-sized cuprous oxide micropowder by controlling shape of micron-nano-sized cuprous oxide micropowder
CN104402041B (en) A kind of SnO 2/ Ag composite nano-powder and preparation method thereof
CN102198510B (en) Method for preparing nano copper/carbon nano tube composite powder by liquid phase method
CN108213456A (en) A kind of preparation method of cube copper nanoparticle
CN105293441A (en) Three-dimensional high-dispersion nano layered double hydroxide synthesis method
CN100556587C (en) Microwave auxiliary liquid phase reduction method preparing needle-shaped nanometer nickel
CN100431750C (en) Liquid phase preparation process of nano nickle powder
CN106883818A (en) Hud typed carbon ball/carbon nano tube composite wave-absorbing material and preparation method
CN109607605A (en) A kind of preparation method of titanium dioxide/carbon nanotube composite nano plate
CN109267091A (en) A kind of method and its application of the ultrasonic method auxiliary preparation ultra-fine Ni/N-C composite catalyzing material of cross-linked structure
CN102962470B (en) Method for preparing spherical ultrafine nickel powder at room temperature
CN110255598A (en) A kind of preparation method of flower-like microsphere cerous carbonate and ceria
CN106517361A (en) Preparation method of spinel type nano nickel ferrite powder
CN1273251C (en) Nano structure nickel powde and its preparing method
CN100368281C (en) Preparation method of nanometer metal oxide and composite metal oxide
CN101696028B (en) Method for preparing zinc oxide nanocrystals between oil-water two-phase interfaces
CN108479761B (en) Method for preparing spherical perovskite catalyst by taking casein as biological template

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090527

Termination date: 20160122

EXPY Termination of patent right or utility model