CN100564891C - Pump - Google Patents

Pump Download PDF

Info

Publication number
CN100564891C
CN100564891C CNB2007101927664A CN200710192766A CN100564891C CN 100564891 C CN100564891 C CN 100564891C CN B2007101927664 A CNB2007101927664 A CN B2007101927664A CN 200710192766 A CN200710192766 A CN 200710192766A CN 100564891 C CN100564891 C CN 100564891C
Authority
CN
China
Prior art keywords
pump
impeller
suction port
wall surface
intake section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2007101927664A
Other languages
Chinese (zh)
Other versions
CN101187385A (en
Inventor
阿南哲也
酒井敏辅
福木晴海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Publication of CN101187385A publication Critical patent/CN101187385A/en
Application granted granted Critical
Publication of CN100564891C publication Critical patent/CN100564891C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • F04D29/4273Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps suction eyes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/0633Details of the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • F04D29/0413Axial thrust balancing hydrostatic; hydrodynamic thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/047Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/165Sealings between pressure and suction sides especially adapted for liquid pumps
    • F04D29/167Sealings between pressure and suction sides especially adapted for liquid pumps of a centrifugal flow wheel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A kind of pump comprises: pumping unit comprises the impeller that is used to suck with drain in this pumping unit; And pump casing, wherein holding described pumping unit, and have and be used for liquid is drawn into the inlet of pump and the outlet that liquid is discharged from pump, wherein said impeller has cylindrical suction port part, this suction port part is outstanding towards pump casing, and described pump casing has the shell intake section and inserts and be formed near the annular groove part of shell intake section movably for described suction port part.

Description

Pump
Technical field
The present invention relates to a kind of by the pump of motor driving with suction and drain.
Background technique
In being mainly used in always water-filled pump of water cycle while, water might partly leak by shaft sealing.In view of this, for example, the enclosed type electric pump has obtained extensive use, and it wherein makes the structure that water is partly mobile and the driving mechanism with motor partly separates with impeller without axle sealing structure but adopt.
This enclosed type electric pump is constructed such that with the integrally formed rotor of impeller and is accommodated in the partition wall to be sealed, thereby without seal shaft.Rotor rotates by the rotation magnetic force that is produced by the stator that is positioned at partition wall outside, this magnetic force by wall functions on rotor.
In addition, also adopt a kind of magnetic coupling type pump with cyclic electromagnetic drive, wherein plate-like or cylindrical magnet are rotated by motor, carry out magnetic couplings with the magnet by a partition wall and internal rotor, thus driven pump.
Said pump, promptly enclosed type electric pump and magnetic coupling type pump with cyclic electromagnetic drive are called as unprssurized pump, and wherein electric energy is transported to impeller in the pump casing by electromagnetic force, and does not use axle sealing structure.
As for these unprssurized pumps, thereby need recently that exploitation is a kind of to have high head and high reliability has high efficiency small size pump.
In order to improve the efficient of pump, can adopt various structures.For example, in the self-starting pump, the gap between the internal diameter that the performance of pumps water and pump efficiency can be by reducing mouth in the demarcation strip and the external diameter of impeller be improved (document 1 for example, sees reference).
Reference 1: Japanese Unexamined Patent Publication No No.2005-48675
But, in reference 1 disclosed self-starting pump, need take time and regulate described gap, because will control this gap and this space is fixing herein by the demarcation strip that meticulous adjusting is in the exact position by mechanical screw.In addition, this self-starting pump is configured to reduce the water yield by single clearance leakage, and does not have enough flow resistances.
Summary of the invention
In view of aforesaid drawbacks, the invention provides a kind of pump, it is assembled easily, and has the structure that can guarantee enough resistances, and this structure can prevent the backflow and the leakage of freezing mixture.
According to an aspect of the present invention, a kind of pump is provided, it comprises pumping unit and pump casing, comprise the impeller that is used to suck with drain in the described pumping unit, holding described pumping unit in the described pump casing, and having and be used for liquid being drawn into the inlet of pump and being used for from the outlet of pump drain.Wherein, impeller has columniform suction port part, and it is outstanding towards pump casing, and described pump casing has shell intake section and annular groove part, the suction port part of impeller is inserted in the annular groove part movably, and this annular groove section divides formation near the shell intake section.In addition, the end of shell intake section can be given prominence to one and do not stoped liquid to be drawn into height in the pump, can form one at the inclined surface or the curved surface that tilt from shell intake section inboard to lateral direction at the place, end of shell intake section.
In above-mentioned, the end of shell intake section is projected into the height that does not stop liquid to be drawn in the impeller and means the following meaning: the length maximization of shell intake section, with guiding liquids for example freezing mixture be drawn in the inlet, thereby the end of shell intake section is formed the outstanding height and position that surpasses the blade upper surface to a certain degree, and this projecting degree does not stop liquid such as flow of coolant.
Preferably, partly locate to be formed with projection, be formed with the groove that inserts movably for this projection in the casing wall surface of pump casing at the preceding screen cover of impeller.
In addition, preferably, on the periphery wall surface of suction eye part, be formed with a rib, be formed with the pit that inserts movably for this rib in the inner circle wall surface of annular groove part.
In addition, preferably, be formed with V-shaped groove in the suction port periphery wall surface partly of impeller.
In addition, preferably, the suction port of impeller part is made of magnet, and a kind of magnetic fluid is adhered on this magnet by magnetic force.Wherein, suction port part and divide for the annular groove section that the suction port part is inserted movably between the space filled by magnetic fluid.
Therefore, according to embodiments of the invention, can provide a kind of pump, it is configured to easy assembling, and has backflow or leakage that enough flow resistances prevent liquid, thereby strengthens pump performance.In addition, by aforesaid pump being combined to liquid supply device for example in the water supply installation, can significantly improve the convenience of using this liquid supply device.
Description of drawings
From the embodiment's that provides below in conjunction with accompanying drawing description, above-mentioned feature of the present invention will be more obvious, wherein:
Fig. 1 is the overall schematic of coolant circulating system according to an embodiment of the invention;
Fig. 2 is the sectional view of pump according to this embodiment of the invention;
Fig. 3 is the sectional view of the critical piece of impeller in the conventional pump and pump casing;
Fig. 4 A is the sectional view of the critical piece of the impeller of pump in according to this embodiment of the invention the modification and pump casing; Fig. 4 B is its partial enlarged drawing;
Fig. 5 is the sectional view of the critical piece of the impeller of pump in according to this embodiment of the invention another modification and pump casing;
Fig. 6 is the sectional view of the critical piece of the impeller of pump in according to this embodiment of the invention the another modification and pump casing;
Fig. 7 is the phantom of the impeller of pump in according to this embodiment of the invention the another modification and the critical piece of pump casing (particularly the periphery wall surface of suction port part form V-shaped groove); And
Fig. 8 is the sectional view of the critical piece of the impeller of pump in according to this embodiment of the invention the another modification and pump casing.
Embodiment
Describe one embodiment of the present of invention in detail below with reference to accompanying drawing, this embodiment constitutes a part of the present invention.
As shown in Figure 1, coolant circulating system comprises the heater element 1 that is installed on the substrate 2, and heat sink unit 3 radiator for example, is used for by using freezing mixture (for example water) and heater element 1 to carry out heat exchange and heater element 1 being cooled off.
This coolant circulating system also comprises a radiator 4, is used for taking away heat from freezing mixture; Storage box 5 is used for storing therein freezing mixture; Pump is used to make circulate coolant; And pipeline 7, it links to each other heat sink unit 3, radiator 4, storage box 5 and pump 6.
Freezing mixture in the storage box 5 discharges to flow into heat sink unit 3 from pump 6 by pipeline 7.In heat sink unit 3, heat is transferred to freezing mixture from heater element 1, thereby the temperature of freezing mixture raises.Then, freezing mixture is sent to radiator 4, to be cooled, is turned back to storage box 5 by the freezing mixture after radiator 4 coolings.Aforesaid heat-sink system is used for by coming circulating coolant and cooling heating element 1 with pump 6.
As shown in Figure 2, pump 6 has the pump casing 12 that is positioned at pump main body 8 upsides, wherein pump casing 12 by plastics for example PPS (poly-inferior benzene sulphide) or metal such as stainless steel make, and have inlet 9 and outlet 10.Pump casing 12 surrounds pumping unit 11, and this pumping unit 11 is used for sucking and discharging freezing mixture.
Being positioned at below the pump casing 12 is waterproof partition wall 14, holds the electric motor units 13 that is useful on driven pump 6 in it.Waterproof partition wall 14 is made by for example metal such as aluminium or heat resistant plastice, and electric motor units 13 and pumping unit 11 are separated, and therefore prevents that freezing mixture from leaking into the electric motor units 13 from pumping unit 11.
Electric motor units 13 has the cylinder shape stator 15 that can produce magnetic field; The controller 16 of control stator 15; And the lid 17 that covers and shield stator 15 and controller 16.Stator 15 is installed in the sunk part of the outside office that is formed at partition wall 14.In addition, controller 16 is positioned at below the stator 15, and has electric elements for example transformer, transistor etc.
In addition, pumping unit 11 has cylindrical rotor 18, and rotor comes rotary driving by the magnetic field that stator 15 produces.Rotor 18 has and is fixed on its peripheral permanent magnet.Pumping unit 11 also has a plurality of blades 19 that are fixed on rotor 18 surfaces, to form a single body.In addition, by plastics for example the cylindrical impeller 20 made of PPS link to each other with rotor 18.Impeller 20 is used for sucking and discharge freezing mixture by blade 19.
What be installed in impeller 20 rotating centers is by the metal columnar shaft 22 made of stainless steel for example, is used for rotatably support rotor 18 and impeller 20, and the bearing of being made by sintered carbon or mold carbon 21 is arranged in around the axle 22.
In addition, the hollow plate-like shaft bearing plate of being made by for example pottery 23 links to each other with two ends of axle 22, thereby shaft bearing plate 23 contacts slidably with bearing 21.Rotor 18 is arranged through the partition wall 14 that is clipped in therebetween and faces stator 15.
Here, shown in Fig. 4 A and 4B, be formed with columniform suction port part 24, thereby it is outstanding towards pump casing 12 at impeller 20 places.In addition, near the shell intake section 40 of pump casing 12, be formed with the annular groove part of inserting movably for suction port part 24 25.The end 40A of shell intake section 40 is projected into and does not stop freezing mixture to be drawn into a height in the impeller 20.In addition, be formed on shell intake section 40 40A place, this end be inclined surface or the curved surface that tilts from the outside surface direction of the internal surface of shell intake section 40.
In addition, as shown in Figure 5, can before impeller 20, shield and cover the further one or more projections 26 of formation of part 20A place, form one or more grooves 27 that can supply projection 26 to insert movably at the 12A place, casing wall surface of pump casing 12.In the embodiment shown, be formed with two annular projections 26 at the preceding screen cover part 20A place that is positioned at suction port part 24 outsides.
In addition, as shown in Figure 6, can on the 24A of the periphery wall surface of impeller 20 suction port parts 24, form one or more ribs 28 extraly, form the one or more pits 29 that insert movably for rib 28 at the 25A place, inner circle wall surface of annular groove part 25.In the embodiment shown, two annular projections are formed on the 24A place, periphery wall surface of suction port part 24 as rib 28, and each annular projection all has semi-circular cross-section.
Alternatively, as shown in Figure 7, can form a plurality of grooves 30 at the 24A place, periphery wall surface of impeller 20 suction port parts 24, each groove all is a V-arrangement.V-shaped groove 30 can be arranged such that on the sense of rotation of impeller 20 that each V-arrangement faces the side.
Also alternatively, as shown in Figure 8, the suction port part 24 of impeller 20 can be formed by magnet 31, and magnetic fluid 32 can adhere on the magnet 31 by magnetic force, thereby the space between suction port part 24 and the annular groove part 25 is full of magnetic fluid 32.
In the pump in accordance with the present invention that as above-mentioned, is configured to, can make pump assembling easily and have backflow and a leakage that enough flow resistances prevent freezing mixture.
The operation of describing pump and comprising the coolant circulating system of pump in accordance with the present invention below with reference to Fig. 1-8.
In pump 6, when stator 15 was actuated to produce magnetic field under the control of controller 16, rotor 18 was rotated by this magnetic field.
When rotor 18 rotations, the impeller 20 that is made of one with rotor 18 also rotates, thus driven pump 6.When pump 6 operations, freezing mixture is sucked by impeller 20 by the inlet 9 that is formed at pump 6 upsides.
The freezing mixture that sucks is forced in and upwards shifts out in week, and discharges by exporting 10 blades 19 that are arranged on the impeller 20 of rotation.In addition, the freezing mixture of discharge is by being sent to heat sink unit 3 with outlet 10 pipelines that link to each other 7.In heat sink unit 3, heat is transferred to freezing mixture from heater element 1, thereby the temperature of freezing mixture raises.Freezing mixture is sent to radiator 4 to be cooled then.Turned back to then in the storage box 5 by the freezing mixture after radiator 4 coolings.
As mentioned above, freezing mixture is recycled by the pump in the coolant circulating system 6.And the coolant cools that heater element 1 is recycled.Coolant path in the heat sink unit 3 has extra high flow resistance increases heat exchange efficiency.
According to embodiments of the invention, freezing mixture is forced in the blade 19 that upwards is arranged in week on the rotary blade 20 and transmits, and is discharged from pump 6 by the outlet 10 of impeller 20 cross sides.But because be positioned under the negative pressure near the zone around the impeller 20 suction port parts 24, a part of freezing mixture can turn back to the suction port part 24 (in other words, freezing mixture refluxes or leaks) of impeller 20.The freezing mixture that refluxes moves along being formed on the return passage 42 that shields between the casing wall surface 12A that covers 20A and pump casing 12 before the impeller 20, shown in the arrow X among Fig. 4 A.The backflow of freezing mixture can make the pump efficiency variation.
Fig. 3 shows traditional pump structure, and wherein the length in the face of part 43 of the length of impeller 20 suction port parts 41 and pump casing 12 is very short.Therefore, to the suction port part 41 of impeller 20, the space S in the face of between the part 43 in the face of suction port part 41 of suction port part 41 and pump casing 12 does as much as possible for a short time in order to prevent freezing mixture from returning (that is backflow or the leakage of being represented by arrow X).Therefore, in this conventional construction, when assembling, need regulate this gap.
With reference to Fig. 4 A of the embodiment of the invention, cylindrical suction port part 24 is located on the impeller 20 with outstanding towards pump casing 12 again.In addition, the annular groove part of inserting movably for suction port part 24 25 is located near the shell intake section 40 of pump casing 12, and the end 40A of shell intake section 40 is projected into the height that does not stop freezing mixture to be drawn into impeller 20.In addition, inclined surface that tilts from the internal surface outward surface of shell intake section 40 or the curved surface end 40A that is formed on the shell intake section.Therefore, increased the resistance of stream.
As mentioned above, form by the end 40A that makes shell intake section 40 and to be projected into the height that does not stop freezing mixture to be drawn into impeller 20, the total length of stream can become greatly, to increase the flow resistance of the stream (being backflow shown in the arrow X or leakage among Fig. 4) that freezing mixture returns.In addition, form at 40A place, the end of shell intake section 40 to tilt from the internal surface outward surface by making inclination or curved surface, freezing mixture flows along sliding from the blade that enters the mouth.
Like this, the appearance of cylindrical suction port part 24 makes freezing mixture increase along the flow resistance that the return path between the casing wall surface 12A of preceding screen cover 20A that is formed at impeller 20 and pump casing 12 returns the stream of suction port part 24.Therefore, can prevent the backflow or the leakage of freezing mixture.
If the end 40A of shell intake section 40 extends towards motor 13 shown in Fig. 4 B, thereby may stop ANALYSIS OF COOLANT FLOW to reduce the efficient of pump.For this reason, the end 40A of shell intake section 40 is formed and has the height that does not stop ANALYSIS OF COOLANT FLOW.
Equally, in Fig. 5, screen covered the 20A place before projection 26 was formed on impeller, and groove 27 is formed on the casing wall surface 12A of pump casing 12, thereby projection 26 is inserted in the groove 27 movably, to increase the flow resistance of return path 42.
In a similar fashion, in Fig. 6, rib 28 is formed on the 24A place, periphery wall surface of impeller 20 suction port parts 24, and pit 29 is formed on the 25A place, inner circle wall surface of annular groove part 25, thereby rib 28 is inserted in the pit 29, thereby can increase the flow resistance of return path 42.Alternatively, rib 28 can be formed on the 25A place, inner circle wall surface of annular groove part 25, and pit 29 is formed at the 24A place, periphery wall surface of suction port part 24.
Equally, in Fig. 7, V-shaped groove 30 is formed on the 24A place, periphery wall surface of impeller 20 suction port parts 24, thereby dynamic pressure is formed on the place, space between the inner circle wall surface 25A of annular groove part 25 of the periphery wall surface 24A of suction port part 24 and pump casing, thereby has increased the flow resistance of return path 42.Alternatively, V-shaped groove 30 can be formed on the inner circle wall 25A place, surface of annular groove part 25 rather than the 24A place, periphery wall surface of suction port part 24, or is formed among periphery wall surface 24A and the inner circle wall surface 25A.
In addition, with reference to figure 8, the suction port part 24 of impeller 20 is formed by magnet 31, magnetic liquid 32 adheres on the magnet 31 by magnetic force, thereby suction port part 24 and the space of inlet between the groove part 25 be by magnet fluid sealing, thereby prevent that freezing mixture from returning (that is, reflux or leak).
Therefore, according to present embodiment, can provide a kind of pump, it is arranged such that in assembling the time does not need gap adjustment, and pump assembles easily, and has enough resistances, to prevent liquid return or leakage.
Though example is coolant circulating system in an embodiment of the present invention, the present invention also can be applicable to the liquid delivery system of other kinds, well pump system for example, hot water supply system, drainage system etc.
Though the present invention is diagram and the explanation of carrying out with regard to this embodiment, it should be appreciated by those skilled in the art that under the situation that does not depart from the scope of the invention defined in the claims and can make variations and modifications.

Claims (9)

1. pump comprises:
Pumping unit comprises the impeller that is used to suck with drain in this pumping unit; And
Pump casing is wherein holding described pumping unit, and has and be used for liquid is drawn into the inlet of pump and the outlet that liquid is discharged from pump,
Wherein said impeller has cylindrical suction port part, this suction port part is outstanding towards pump casing, and described pump casing has the shell intake section and inserts and be formed near the annular groove part of described shell intake section movably for the described suction port part of impeller; And
The length of the end of described shell intake section is maximized, and be drawn in the inlet with guiding liquids, thereby the end nipple of described shell intake section goes out above the height and position of blade upper surface to a certain degree, and this projecting degree does not stop liquid to be drawn in the impeller.
2. pump according to claim 1 is characterized in that, partly locates to be formed with at least one projection at the preceding screen cover of impeller, is formed with at least one groove that inserts movably for described projection in the casing wall surface of pump casing.
3. pump according to claim 1 is characterized in that, is formed with at least one rib in the suction port periphery wall surface partly of impeller, is formed with at least one pit that inserts movably for described rib in the inner circle wall surface of described annular groove part.
4. pump according to claim 1 is characterized in that, is formed with V-shaped groove in the suction port periphery wall surface partly of impeller.
5. pump according to claim 1 is characterized in that, the suction port of described impeller part is formed by magnet, and magnetic fluid adheres on this magnet by magnetic force, and
Wherein suction port part and divide for the annular groove section that described suction port part is inserted movably between the space be full of magnetic fluid.
6. pump according to claim 1 is characterized in that, is formed with inclined surface or the curved surface that tilts from shell intake section inboard direction laterally at the place, end of shell intake section.
7. pump according to claim 1 is characterized in that, is formed with at least one rib in the inner circle wall surface of annular groove part, is formed with at least one pit that inserts for described rib in the periphery wall surface of suction port part.
8. pump according to claim 1 is characterized in that, is formed with V-shaped groove in the inner circle wall surface of annular groove part.
9. pump according to claim 1 is characterized in that, is formed with V-shaped groove in the inner circle wall surface of annular groove part and the suction port periphery wall surface partly of impeller.
CNB2007101927664A 2006-11-21 2007-11-20 Pump Expired - Fee Related CN100564891C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006314177A JP4274230B2 (en) 2006-11-21 2006-11-21 pump
JP314177/2006 2006-11-21

Publications (2)

Publication Number Publication Date
CN101187385A CN101187385A (en) 2008-05-28
CN100564891C true CN100564891C (en) 2009-12-02

Family

ID=39479900

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB2007101927664A Expired - Fee Related CN100564891C (en) 2006-11-21 2007-11-20 Pump
CNU2007201932780U Expired - Fee Related CN201173214Y (en) 2006-11-21 2007-11-20 Pump

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNU2007201932780U Expired - Fee Related CN201173214Y (en) 2006-11-21 2007-11-20 Pump

Country Status (4)

Country Link
US (1) US20080260515A1 (en)
JP (1) JP4274230B2 (en)
CN (2) CN100564891C (en)
TW (1) TW200833956A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010124703A1 (en) * 2009-04-30 2010-11-04 Braeuer Hans Device for filtering fluids
JP2013502532A (en) * 2009-08-19 2013-01-24 ホフマン エンクロージャーズ インコーポレイテッド ディー/ビー/エー ペンテアー テクニカル プロダクツ Magnetic drive pump assembly with built-in motor
JP2011132916A (en) * 2009-12-25 2011-07-07 Kps Kogyo Kk Canned pump
JP5747632B2 (en) * 2011-04-26 2015-07-15 日本電産株式会社 Centrifugal fan
DE102011086128A1 (en) * 2011-11-10 2013-05-16 Continental Automotive Gmbh Centrifugal pump for conveying liquids in a motor vehicle
DE102012216196A1 (en) * 2012-09-12 2014-03-13 E.G.O. Elektro-Gerätebau GmbH pump
CN113586512B (en) * 2015-09-30 2023-12-26 浙江三花汽车零部件有限公司 Rotor assembly and electrically driven pump
EP3284952B1 (en) * 2016-08-15 2020-09-23 Sulzer Management AG Inlet device for a vertical pump and an arrangement comprising such an inlet device
GB2568715B (en) 2017-11-24 2020-02-26 Jaguar Land Rover Ltd Pump assembly with tortuous flow path
DE102019115774A1 (en) * 2019-06-11 2020-12-17 HELLA GmbH & Co. KGaA Pump, in particular pump for a fluid circuit in a vehicle, with a rim of an impeller, immersed in a housing
DE102019122042A1 (en) * 2019-08-16 2021-02-18 HELLA GmbH & Co. KGaA Pumping device
JP7526058B2 (en) 2020-09-14 2024-07-31 株式会社酉島製作所 Fluid Machinery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2444100A (en) * 1944-02-28 1948-06-29 Marison Company Pump
US4269564A (en) * 1978-10-02 1981-05-26 Bank Of America N.T. & S.A. Flow control device
IT1234116B (en) * 1989-06-07 1992-04-29 Novax S R L SELF-PRIMING CENTRIFUGAL PUMP.

Also Published As

Publication number Publication date
CN101187385A (en) 2008-05-28
US20080260515A1 (en) 2008-10-23
JP4274230B2 (en) 2009-06-03
CN201173214Y (en) 2008-12-31
TW200833956A (en) 2008-08-16
JP2008128099A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
CN100564891C (en) Pump
CN106341007B (en) The manufacturing method of electric drive pump
US6668911B2 (en) Pump system for use in a heat exchange application
JP4293217B2 (en) Pump and fluid supply device
US7255154B2 (en) Cooling device
US20160153453A1 (en) Fluid Transfer Using Devices with Rotatable Housings
US20220099088A1 (en) Electrical screw spindle coolant pump
CN104410182B (en) Electric pump
CN103062135A (en) Internal circulating cooling system and internal circulating cooling method of submersible electric pump motor
JP2003161284A (en) Thin vortex pump and cooling system provided therewith
KR100299266B1 (en) Regeneration pump
CN109751248B (en) Automobile electronic water pump
CN112160909A (en) Axial-flow type explosion-proof water pump
TWM325534U (en) Liquid cooling type heat dissipation device
JP2008240656A (en) Impeller structure of pump
CN204692115U (en) A kind of submersible pump with refrigerating function
CN211288111U (en) Water pump with internal circulation water cooling
CN100408863C (en) Water pump
CN115653897B (en) Vortex line based air pump
CN220646303U (en) Pump with a pump body
CN216342845U (en) Low-energy-consumption circulating water pump
CN115664119B (en) Permanent magnet motor based on heat pipe heat dissipation
JPH10238489A (en) Small-sized fluid pump
CN220791585U (en) Amphibious swimming pool filtration system water pump
CN215419840U (en) Vacuum pump motor with cantilever-mounted rotating shaft

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091202

Termination date: 20131120