CN100561838C - 开关调节器 - Google Patents

开关调节器 Download PDF

Info

Publication number
CN100561838C
CN100561838C CNB2005800438941A CN200580043894A CN100561838C CN 100561838 C CN100561838 C CN 100561838C CN B2005800438941 A CNB2005800438941 A CN B2005800438941A CN 200580043894 A CN200580043894 A CN 200580043894A CN 100561838 C CN100561838 C CN 100561838C
Authority
CN
China
Prior art keywords
voltage
signal
cycle
circuit
triangular signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005800438941A
Other languages
English (en)
Other versions
CN101084621A (zh
Inventor
冈本成弘
山伦章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Publication of CN101084621A publication Critical patent/CN101084621A/zh
Application granted granted Critical
Publication of CN100561838C publication Critical patent/CN100561838C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/901Starting circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明提供一种开关调节器,其中作为软启动电路不需要大的时间常数电容器,能够降低软启动时间的偏差且缩短电源电压稳定化控制开始之前的时间,并且适于IC化。在本发明中,将软启动电路的输出电压作为以规定的速率阶跃上升或者阶跃下降的阶跃电压信号,将该阶跃电压变化的周期在电源接通时设为规定的周期,并由检测电路监视PWM脉冲的输出,输出在所述电源接通时的初期以后,根据从“H”向“L”或者从“L”向“H”变化的定时,将软启动电路的输出信号的阶跃电压的变化周期设为大于所述规定的周期。

Description

开关调节器
技术领域
本发明涉及开关调节器(switching regulator),具体地涉及在使用开关调节器的DC/DC转换器中,适于不需要作为软启动电路而设置的用于得到大的时间常数的电容器,能够降低软启动时间的偏差,并且缩短电源电压稳定化控制开始之前的时间的IC化的开关调节器。
背景技术
以往,在便携式的音响设备或个人计算机、PHS、便携式电话机、便携用电子设备中,为得到有效转换的电源电压,采用了使用开关调节器的DC/DC转换器的电源电路。
图4是该DC/DC转换器(开关调节器)的一例的说明图。
10是开关调节器,11是其误差放大器,12是基准电压发生电路,13是PWM脉冲发生电路,14是驱动器。15是开关电路,P沟道的MOSFET晶体管Q与肖特基二极管D的串联电路设置在电源线+Vcc(输入侧直流电源的电压)和地线GND之间。
16是其输出端子,在该输出端子16上,电力用的电容器Co设置在与地线GND之间。并且,晶体管Q和肖特基二极管D的连接点与该输出端子16之间连接线圈L。作为线圈L,使用例如10μH左右的线圈,作为电容器Co,使用例如150μF左右的电容器。此外,在输出端子16上,还在和地线GND之间设有输出电压检测用的电阻分压电路17,由电阻分压电路17检测的电压Vs反馈到误差放大器11。该检测电压Vs在误差放大器11中与基准电压发生电路12的比较基准电压Vref进行比较。根据该比较结果,在误差放大器11中产生误差电压VE(误差检测信号),然后输入到PWM脉冲发生电路13中。PWM脉冲发生电路13通常由比较器(COM)13a和三角波发生电路13b构成。
在PWM脉冲发生电路13中,这些三角波发生电路13b的电压波形在比较器13a中与误差电压Eo进行比较。用基于与比较基准电压Vref的比较结果的误差电压Eo来对三角波进行限幅,并与被限幅的宽度对应地生成PWM脉冲。PWM脉冲被施加到驱动器14。驱动器14根据PWM脉冲的脉冲宽度来导通/截止晶体管Q,从而向输出端子16产生降压的电压(在升压型时为由回扫脉冲产生的升压电压)。
而且,肖特基二极管D为在晶体管Q截止时、将从线圈L流出的电流换流向线圈L的续流二极管(flywheel diode)。
由此,以使由电阻分压电路17分压的电压、即检测电压Vs与比较基准电压Vref一致的方式控制晶体管Q的导通/截止,在输出端子16产生输出电压Vo,且该输出电压Vo被稳定为作为目标的恒定电压Vta。
而且,因为在比较器13a的输出中具有晶体管Q的驱动能力,因此,在不需要驱动器14的情况下则将其删除。此时,比较器13a的输出直接被送出到晶体管Q。
此处,输出电压检测用的电阻分压电路17由电阻R1和电阻R2串联构成。另外,比较器13a的被比较信号的(-)输入端子有两个,其中一个接收来自软启动电路18的输出。
软启动电路18是下述的电路:通过比较器13a产生PWM脉冲,改变其占空比,通过逐渐扩大驱动脉冲的脉冲宽度来逐渐提高输出电压的电路。在图4中,因为晶体管Q是P沟道晶体管,所以从驱动器14输出的驱动脉冲对应于PWM脉冲的脉冲宽度的变化,LOW电平期间的脉冲宽度逐渐增加,与此相对应,晶体管Q的导通期间增加。
该软启动电路18一般公知有使用了CR时间常数电路的电压发生电路或者软启动电压发生电路(专利文献1),其中,所述CR时间常数电路将对电容器的充电电压设为三角波临界值,所述软启动电压发生电路使用计数器和D/A转换器,根据时钟CLK产生阶梯状上升的电压信号。
特别是前者的软启动电路18,其二次侧的电容器Co的电电容量大。由此,相对于输出电流,在需要大的稳定性的电路中,防止冲击电流(冲流),或在多沟道电源电路中,在控制各个输出定时时便利。
通过设置这种软启动电路18,逐渐扩大开关晶体管Q的导通期间,因此,向电容器Co的充电电流逐渐增加,从而防止了在启动时向未充电状态的电容器Co流入大的电流。由此,具有在开关晶体管Q不被破坏地情况下完成的优点。
专利文献1:日本专利文献特开2004-23948号公报。
发明内容
用于软启动的时间根据输出电流值和二次侧电容器Co的电容量的不同而不同,但通常将输出电压Vo上升到目标电压Vta或其附近的正常电压的时间设为1msec~20msec左右。
在前者使用CR时间常数电路的软启动电路中,如专利文献1的现有技术中所记载,时间常数用的电容器变大,则存在不能IC化的问题。另一方面,专利文献1所示的使用D/A的软启动电压发生电路虽适于IC化,但由于软启动电压对应固定周期的时钟CLK而阶梯状上升,因此存在启动时间依赖时钟周期的问题。因此,时钟周期被限制。并且,由比较器比较的三角波信号的电压与软启动的阶跃电压在最初交叉之前的时间没有余裕。这样,由于三角波信号的振幅偏差与D/A转换电路的转换特性的偏差,存在不能按照时间软启动的问题。因此,输出电压Vo产生之前的响应迟钝,输出电压难以进入正常的电压状态。
在三角波信号的频率高的情况下,为了加快响应,如果使对于D/A的时钟周期接近三角波信号的周期,或者提高时钟频率,使其对应地接近三角波信号的频率,则达不到软启动的状态。此情况,特别在二次侧的电容器Co的电容量大时,存在问题。例如,如果以几百μF左右的电容量使输出电流达到一百mA以上,则即使设置软启动电路,有时几十倍以上的冲流流过,开关晶体管Q被破坏。
在专利文献1中,三角波信号的频率低,且使三角波信号的下限电压与软启动电压发生电路的电压一致地开始软启动。但在实际上,存在由于电路的偏差,难以使这些一致,且需要电平调整电路等缺点。并且现状是,如果将三角波信号的频率设为高频率,则不能使其一致地启动。
另一方面,如果为了软启动而延长时钟周期(降低其频率),则在进入正常的电压状态之前花费的时间过多,并且,因为时钟周期长,因计数器值的多少的差和D/A转换电路的转换特性的偏差而导致在电源电压稳定化控制开始之前的时间的偏差增大。因此,在具有多个电源电路的情况下,特别是在多沟道型的电源电路中,不得不控制与偏差最大的电源电路相符合的软启动产生的电源电压,所以,在得到稳定的电压之前的等待时间不得不增加。
本发明的目的在于解决该现有技术中的问题,并提供一种作为软启动电路不需要大的时间常数电容器、且适于IC化的开关调节器。
本发明的另一个目的是提供一种能够降低软启动时间的偏差、并且缩短在电源电压稳定化控制开始之前的时间的开关调节器。
为达到上述目的,本发明的开关调节器的特征在于,将从输出端子向负载输出的电力的电压的一部分或全部返回到误差放大器的一侧的输入,在误差放大器的另一侧的输入上施加规定的恒定电压,根据从误差放大器得到的输出信号而产生脉冲宽度变化的PWM脉冲,根据该PWM脉冲来开关从直流电源接受的电力,由此在所述输出端子上产生规定的稳定化的电压的电力,该开关调节器包括:产生三角波信号的三角波发生电路;通过比较误差放大器的输出信号的电压与三角波信号的电压来产生PWM脉冲的PWM脉冲发生电路;对PWM脉冲从高电平(以下为“H”)向低电平(以下为“L”)的变化或相反变化进行检测的检测电路;以及软启动电路,其产生顺次阶跃上升或顺次阶跃下降且与三角波信号的电压进行比较的阶梯状电压信号(阶跃电压信号),并且从该电压信号的一阶梯变化到下一阶梯的变化周期在所述电压信号的初始电压位于所述三角波信号的电压振幅范围的外侧的电源接通的初期为规定的周期,根据检测电路的检测信号,变化周期被切换成大于规定的周期且适于软启动的周期;PWM脉冲发生电路具有接受电压信号并比较电压信号的电压与三角波信号的电压的比较器,根据该比较器的比较结果,在所述电源接通的初期,PWM脉冲处于高电平或低电平中的某一种状态,当电压信号的电压进入三角波信号的电压振幅范围时,以适于软启动的周期产生脉冲宽度变化的PWM脉冲;比较器在软启动所需的经过时间之前包含所述软启动所需的经过时间,比较电压信号的电压与三角波信号的电压,在软启动所需的经过时间之后,比较输出信号的电压与三角波信号的电压,并且具有三个输入端子,在第一输入端子接受误差放大器的输出信号,在第二输入端子接受电压信号,在第三输入端子接受三角波信号,软启动所需的经过时间是从1msec~20msec的范围中选择的期间,适于软启动的周期为选择期间的1/20至1/50。
发明效果
在本发明中,将软启动电路的输出电压设为顺次阶跃上升或顺次阶跃下降的阶跃电压,且将该阶跃电压变化的周期在电源接通时设为规定的周期,并由检测电路检测PWM脉冲的输出,该输出在所述电源接通时的初期以后,根据从“H”向“L”或者从“L”向“H”变化的定时,将软启动电路的输出信号的阶跃电压的变化周期设为大于所述规定的周期。而且,此时的“H”、“L”的电压电平根据开关晶体管的导通/截止驱动来决定,可以是“H”>“L”。
因此,本发明的软启动电路在电源接通初期,首先产生例如周期是适于软启动的阶跃电压信号的1/5左右或以下的短周期的阶跃电压信号。在该阶跃电压信号达到进入三角波信号的电压范围内的电压电平后,从检测电路产生检测信号,根据该检测信号,将阶跃电压信号设为从50~600的范围内选择的周期,进入软启动的PWM控制开始状态。在软启动的PWM控制中,阶跃电压信号以适于软启动的周期改变PWM脉冲的脉冲宽度。
对于该情况下的电源接通初期时的正常周期,例如如果以适于软启动的阶跃电压的变化周期(软启动的PWM控制开始状态的阶跃电压的周期)侧为基准,则可以从其1/50~1/600的范围内选择。
其理由是,在考虑用于软启动的时间为所述的1msec~20msec左右的情况下,由于适于软启动的周期需要对三角波信号进行10次以上的限幅,所以规定的周期是阶跃电压的周期的1/10或以下。
与此相对,因为所述电源接通时的初期是在进入软启动的PWM控制开始状态之前的等待时间,所以短些好。因此,规定的周期优选适于软启动的周期的1/10的再1/5以下的比例。这是由于,当以适于软启动的周期的1/10的期间为基准时,如果设为其1/5以下的周期,则在所述电源接通时的初期,能够在该初期的期间内确保五次以上的阶跃电压的变化。
而且,相对于所述的10次以上,如果将软启动的阶跃电压的周期设为其10倍的100次以上,则相应地,规定的周期为1/500,如果为12倍的120次,则为1/600。
由此,因为软启动电路产生的电压在电源接通时的初期以快的周期上升,所以即使阶跃电压信号的初期电压在三角波信号的电压振幅范围的外侧,也能够高速地到达三角波信号的电压电平。并且,到达时检测电路产生检测信号,阶跃电压信号变为适于软启动的周期的阶跃变化。
从而,能够早地进入软启动的PWM控制开始状态,在与三角波信号的周期独立地开始软启动后,阶跃电压信号变为适于软启动的周期的阶梯状的信号,并能够在软启动电路中产生此种信号。
在本发明中,由于软启动电路产生阶梯状的电压信号,所以不需要时间常数电路。如果开始软启动的PWM控制,则从该时刻起,变成将三角波信号的振幅用最合适的周期的阶跃电压限幅的形式的软启动控制,所以即使在三角波信号的振幅或阶跃电压的变化中多少有偏差,作为结果,因为被限幅的三角波信号的数量与阶跃电压的上升率或下降率的关系紧密,所以偏差基本消除,且软启动时间的偏差降低。
其结果是,能够实现作为软启动电路不需要大的时间常数电容器、软启动时间的偏差降低且启动之前的时间缩短、且适于IC化的开关调节器。
附图说明
图1是使用了本发明的开关调节器的一个实施例的框图。
图2是PWM脉冲发生比较器的电路的具体例子的说明图。
图3是说明该软启动动作的时序图。
图4是以往的DC/DC转换器(开关调节器)的一例的说明图。
图中,1、10-开关调节器;2、18-软启动电路;3-PWM控制开始检测电路;4-1/n分频电路;5-选择器;6-计数器;7-D/A转换电路(D/A);8-PWM脉冲发生比较器;9-时钟发生电路;11、11a-误差放大器;12-基准电压发生电路;13、130-PWM脉冲发生电路;14-驱动器;15-开关电路;16-输出端子;17-电阻分压电路;D-肖特基二极管;D1、D2-二极管;Q1-MOSFET晶体管。
具体实施方式
图1是使用了本发明的开关调节器的一个实施例的框图,图2是PWM脉冲发生比较器的电路的具体例子的说明图,图3是说明该软启动动作的时序图。与图4的相同构成要素标注同一符号,且说明从略。
实施例
在图1的开关调节器1中,取代图4的软启动电路18,设置了软启动电路2。
130是PWM脉冲发生电路,由软启动电路2、PWM比较器8和三角波发生电路13b构成。
软启动电路2产生阶跃电压信号ST(参照图3(a)),该阶跃电压信号ST产生短周期和长周期的阶跃电压。该软启动电路2由PWM控制开始检测电路3、1/n分频电路4、选择器5、计数器6、以及D/A转换电路(D/A)7构成,计数器6经由选择器5接受由1/n分频电路4分频的时钟CK与分频前的时钟CLK。在图1中,图4的驱动器14被删除,但也可以设置驱动器14。
选择器5按照PWM控制开始检测电路3的输出,从时钟发生电路9的输出向1/n分频电路4的输出切换端子的选择。此处,设n=300,将时钟CLK进行1/300分频,从而产生周期T=300×t的时钟CK(分频时钟)。t是分频前的时钟CLK的周期。分频率n以输出电压Vo上升到目标电压Vta或与之接近的电压(正常电压)之前的时间、即1msec~20msec左右的期间作为基准,将适于软启动的周期赋予分频时钟CK。其优选生成具有1msec~20msec左右的期间的1/20至1/50左右的周期的分频时钟CK。因此,在将该分频时钟CK的周期设为几百μsec,将分频前的时钟CLK的周期设为几个μsec的情况下,分频率n优选为从n=50~600中选择的数值。
三角波发生电路13b接受时钟发生电路9的时钟CLK,并产生周期与CLK的周期对应的三角波信号S(参照图3(a))。
D/A7对计数器6的计数值进行D/A转换,从而向PWM脉冲发生比较器8(以下称为PWM比较器8)的(-)输入端子B输出模拟转换电压信号Vc。PWM比较器8与图4的比较器13a对应,但在(-)输入端子A接受误差放大器11a的输出电压Eo。
并且在PWM比较器8的(+)输入端子C接受来自三角波发生电路13b的三角波信号S。
这里,误差放大器11a与图4的误差放大器11对应,由电流输出放大器11b和电容器11c构成,电容器11c将输出电流转换为电压,并向(-)输入端子A送出电压信号Eo。电压信号Eo是根据与输出电压值Vo对应的检测电压Vs和基准电压发生电路12的基准电压值Vref的差而产生的误差电压。
PWM控制开始检测电路3包括由触发器构成的闩锁电路3a和转换器3b,转换器3b与PWM比较器8的输出(设置驱动器14时也可以为其输出)连接。闩锁电路3a在PWM比较器8的输出从“H|”变成“L”时,使其反转,通过被提升到电源电压的数据端子D来锁住数据“1”。并且,根据触发器的Q输出,将“H”作为检测信号DT输出,并将其送至选择器5。
而且,在电源接通时的初始状态下,闩锁电路3a的设定值被清零,Q输出为“L”。只要在闩锁电路3a中被锁住的数据“1”不被重设、即只要电源不是再次接通时,则始终保持被锁住的数据“1”。
选择器5在电源接通时的初始状态下,从闩锁电路3a接受“L”,选择时钟发生电路9的输出侧,将时钟CLK加到计数器6。并且,在闩锁电路3a变成“H”时,选择1/n分频电路4的输出侧,将分频时钟CK加到计数器6。
其结果是,计数器6在从电源接通时的初期至闩锁电路3a被设置成“H”之间,换言之,在软启动的PWM控制开始之前,与快的时钟CLK同步,其值以周期t向上计数。然后,闩锁电路3a被设置成“H”,软启动的PWM控制开始,从在闩锁电路3a设置“H”时刻起,按分频时钟CK(=300×时钟CLK),换言之,利用慢的分频时钟CK,计数器6以周期T(=300t)向上增加。
PWM比较器8在电源接通初期,使(-)输入端子B的模拟转换电压信号Vc与三角波信号S的电压的比较有效,并且在经过规定的软启动时间TS(=1msec~20msec左右的期间)后(参照图3(e)),使电压信号Eo与三角波信号S的电压的比较有效。因此,在比三角波信号S的上限值电压低的电压电平范围内,对于两个(-)输入端子A、B的输入信号进行逻辑和动作。
如图2所示,PWM比较器8由电流开关电路构成,在该电流开关中,PNP晶体管Q3与并联设置的两个PNP晶体管Q1、Q2构成联合差动对。晶体管Q1的基极与(-)输入端子A连接,晶体管Q2的基极与(-)输入端子B连接。晶体管Q3的基极成为(+)输入端子。
晶体管Q1、Q2、Q3的发射极连接在一起,并经由恒流电路8a与电源线+Vcc(或+VDD)连接。晶体管Q1、Q2的集电极连接在一起,该集电极与晶体管Q3的集电极经由构成有源负载的电流镜电路的NPN晶体管Q4、Q5分别与地线GND连接。电流镜电路的输出侧的晶体管Q5的集电极与NPN的输出段晶体管Q6的基极连接。晶体管Q6的集电极与PWM比较器8的输出端子D连接,进而经由电阻R3与电源线+VDD连接,发射极与地线GND连接。
在电源接通时刻,因为输出端子Vo的电压没有上升,所以产生具有大的误差电压的电压信号Eo。此时,电压信号Eo为高于“H”的电压。另一方面,三角波信号S的上限电压值被设定为“H”。因此,晶体管Q1为截止状态。
另一方面,D/A7的转换模拟电压Vc被输入到PWM比较器8的(-)输入端子B,从而施加在晶体管Q2的基极上。因此,按照D/A7的转换模拟电压Vc的值驱动晶体管Q2,并在PWM比较器8的输出端子D处产生脉冲宽度与(-)输入端子B的输入电压对应的PWM脉冲(输出电压)。
而且,在该(-)输入端子B处施加来自软启动电路2的阶跃电压信号ST(参照图3(a))。
因此,对来自软启动电路2的阶跃电压信号ST的产生进行说明。
在计数器6中,在初始状态下设定规定的计数值,计数器6接受时钟CLK,从该初始值开始计数。此情况的计数器6的初始值为,将D/A7对该初始值进行D/A转换后的电压Vc设定在三角波发生电路13b的三角波信号S的波形的下限值电压的下侧附近的值(参照图3(a))。此为阶跃电压信号ST的初始电压值。例如,如果“L”设为0.5V,“H”设为1.0V,则设定在0.5V~1.0V的范围内产生三角波信号S。
在本实施例中,选择阶跃电压信号ST的阶跃电压的上升率,使得阶跃电压信号ST的电压从进入三角波信号S的振幅范围(0.5V~1.0V)到离开的时间与软启动需要的经过时间TS(=1msec~20msec左右)相当。
阶跃电压信号ST的初始电压值为,作为D/A7的模拟转换电压Vc,产生约490mV(=0.5V-1.0V)左右的电压的值。在本发明中,可以将该初始电压值设定为相对于三角波信号S的下限电压值低2%~5%左右的值。这是由于,软启动电路8产生的初始电压能够通过将D/A转换周期改变成与三角波信号S的周期对应的周期而以几个mV/LSB的高分辨率得到提高。
而且,此处的阶跃电压信号ST以几个mV/LSB产生其电压值上升的阶跃电压。即使在三角波信号的振幅或阶跃电压的变化中多少有偏差,该几个mV仍然位于能够吸收的范围。
在计数器6中设定的所述初始值为由MPU(未图示)等在计数器6中设置的值,其能够以阶跃电压信号ST的初始电压值按照电路的偏差变成比所述三角波信号S的下限电压值低2%~5%左右的值的方式存储在非易失性存储器中,并存储成为调整后的数据。
因此,软启动电路2产生以几个mV为单位阶梯状上升的阶跃电压信号ST,在电源接通初期,首先产生与时钟CLK的周期对应的短周期的阶跃电压信号ST。当该阶跃电压信号ST达到进入三角波信号的电压范围内的电压电平时,进入软启动的PWM控制开始状态。在软启动的PWM控制中,变为与分频时钟CK对应的长周期的阶跃电压信号ST,并以适于软启动的周期来改变PWM脉冲的脉冲宽度。
以下,参照图3的时序图,对开关调节器1的软启动的动作进行说明。
如果接通电源,开始开关调节器1启动,则在计数器6中设定初始值,如图3(a)所示,在PWM比较器8的输出端子D,根据所述初始值,生成相对于三角波信号S的下限电压值低约10mv(=0.5V×0.02)左右的下侧电压,该电压按照时钟CLK依次上升。
此时,因为选择器5在电源接通时的初始状态下接受来自闩锁电路3a的“L”,所以利用时钟发生电路9的时钟CLK的周期t,计数器6的计数值增加上升。因此,例如,如果设周期t=1.5μsec,三角波信号S的下限电压为0.5v,D/A7的分辨率为3.0mV/LSB,则即使D/A7与三角波信号S的电压电平中存在偏差,阶跃电压信号ST仍能在几个μsec~6μsec左右的时间从电源接通时刻到达三角波信号S的边界(参照图3(b)的周期t的限幅期间)。此时之前,由于(-)输入端子B的输入电压总是低于三角波信号S的电压,所以在PWM比较器8的输出端子D输出相当于“H”或其以上的、仅使开关晶体管Q截止的规定电压电平的电压信号(参照图3(d))。
在D/A7的模拟转换电压Vc到达三角波信号S的边界,(-)输入端子B的输入电压高于三角波信号S的下限电压的时刻,进入软启动的PWM控制开始状态。此时,在PWM比较器8的输出端子D,与时钟CLK的周期t对应地产生窄宽度的“L”的脉冲信号。按照该“L”脉冲信号的最初的信号,经由转换器3b向闩锁电路3a施加“H”,从而在闩锁电路3a的Q输出中产生“H”的输出(参照图3(b)),并产生检测信号DT。其结果,选择器5的选择被切换到1/n分频电路4的输出侧。
此处,计数器6的计数增长的周期变为n×t倍,在本例中,周期变为时钟CLK的300倍,且在PWM比较器8的输出端子D以三角波信号S的周期(时钟CLK的周期)产生“L”的输出。然后,在输出端子D处,得到“L”期间的宽度在每n个时钟CLK逐渐增加的PWM脉冲。
“L”期间的宽度按每n个该时钟CLK逐渐增加的PWM脉冲被施加到开关晶体管Q上,开关晶体管Q被三角波信号S的周期(时钟CLK的周期)斩波控制,从而断续地变为导通,并且导通期间逐次地增加(参照图3(a))。
由此,输出电压Vo成为软启动。
如果D/A7的模拟转换电压Vc达到三角波信号S的上限1.0V以上,则PWM脉冲的占空比变为100%,开关晶体管Q变为导通的状态,但此时,因为电容器Co的充电已经在一定程度上完成,所以输出信号Vo接近目标电压Vta。因此,电阻分压电路17产生的检测电压Vs接近基准电压发生电路12的比较基准电压Vref,与此对应,误差放大器11a的输出电压Eo降低(参照图3(e))。另一方面,D/A7的模拟转换电压Vc随着计数器6的计数值的上升而上升,并超过三角波信号S的上限的1.0V。
而且,如图3(b)所示的阶跃电压信号ST在到达三角波信号S的边界之前的时间、即几个μsec~6μsec,可以相对于1msec~20msec左右的经过时间TS而忽略,所以在图3(e)中没有特别的表示出。
在模拟转换电压Vc超过三角波信号S的上限值的时刻,晶体管Q2截止,相反,在输出电压Eo降低到三角波信号S的上限值以下的时刻,晶体管Q1导通。
因此,通过选择D/A7的分辨率和分频率n,使得输出电压Eo的电压值降低,从而降低到三角波信号S的上限值以下的定时和晶体管Q2截止的定时在三角波信号S的上限值附近,该切换的定时在三角波信号S的上限值附近产生,切换之前的时间为规定的软启动经过时间Ts(=1msec~20msec左右的其间),软启动的PWM的控制完成。
如果输出电压Eo降低到三角波信号S的上限值以下,则晶体管Q1根据误差放大器11a的输出电压Eo而导通/截止,如图3(e)所示,切换到通常的PWM进行的输出电压Vo的稳定化控制(正常的PWM控制期间)。
在实施例中,虽然使在时钟发生电路9中产生的时钟CLK的周期与三角波信号S的周期对应,但在到达三角波信号S的下限的电压之前,不需要对三角波信号进行限幅,所以该时钟CLK也可以小于该周期。相反,如果将三角波信号S的频率提高为实施例中的两倍、三倍…,则到达三角波信号的下限电压之前的时钟CLK的周期变为三角波信号S的周期的两倍、三倍…。
因而,三角波信号S的频率与时钟CLK的周期是相对的。在实施例中,考虑了在通常的软启动期间为1msec~20msec左右的情况下,将分频率设为从n=50~600中选择的数值。因此,如果以软启动的PWM控制开始状态的分频时钟CK侧的周期为基准考虑,则时钟CLK的最合适的周期为如上所述,从分频周期CK的周期的1/50~1/600的范围内选择。
此外,在实施例中,相对于三角波信号S的下限电压,将在软启动电路2中产生的初始电压值设定在下限的下侧附近。但是,在开关晶体管是N沟道MOS晶体管的情况下,与实施例相反,PWM比较器8的输出为“H”,晶体管Q为导通。此时,在软启动电路2中产生的初始电压值(D/A7的电压值)相反地设定在超过三角波信号S的上限的上侧附近。然后,控制在软启动电路2中产生的电压(D/A7的模拟转换电压Vc)从该处逐渐降低。在该情况下,计数器6从大的初始值倒计数。
此时的软启动电路2产生的初始电压值(D/A7的模拟转换电压Vc)优选设定为相对于三角波信号S的上限电压值高3mV至15mV以上、即上限电压值的1%~2.5%左右的高的值。
此外,与实施例相反,PWM比较器8的三角波信号S的输入侧变为(-)输入端子,软启动电路2及误差放大器11a的输入端子也能够设为(+)输入侧。在此情况下,相对于三角波信号S的上限电压,将在软启动电路2中产生的初始电压值设定在超过上限的上侧附近,然后将在软启动电路2中产生的电压(D/A7的电压)从此处逐渐降低。
此外,在实施例中,将开关晶体管设为MOS晶体管,但也可以是双极晶体管。
此外,实施例的PWM比较器8的构成为一个例子,在软启动所需的经过时间TS(=1msec~20msec左右的期间)前比较阶跃电压信号ST和三角波信号S的电压,也可在软启动所需的经过时间后比较误差放大器的输出信号的电压和三角波信号的电压。本发明不限定于比较信号为两个输入的比较器。
例如,也可以是设置比较(-)输入端子A侧与三角波信号S的第一比较器和比较(-)输入端子B侧与三角波信号S的第二比较器,在对各自的输出进行所述逻辑或的条件下驱动开关晶体管的电路。
工业实用性
实施例举了降压型的开关调节器进行了说明,但本发明当然也能够适用于升压型的DC/DC转换器。

Claims (9)

1.一种开关调节器,其将从输出端子向负载输出的电力的电压的一部分或全部返回到误差放大器的一侧的输入,在误差放大器的另一侧的输入上施加规定的恒定电压,根据从所述误差放大器得到输出信号产生脉冲宽度变化的PWM脉冲,并根据该PWM脉冲来开关从直流电源接收的电力,由此在所述输出端子产生规定的稳定化的电压的电力,
所述开关调节器包括:
产生三角波信号的三角波发生电路;
通过比较所述误差放大器的所述输出信号的电压与所述三角波信号的电压来产生所述PWM脉冲的PWM脉冲发生电路;
对所述PWM脉冲从高电平向低电平的变化或相反变化进行检测的检测电路;以及
软启动电路,其产生顺次阶跃上升或顺次阶跃下降且与所述三角波信号的电压进行比较的阶梯状电压信号,并且从该电压信号的一阶梯变化到下一阶梯的变化周期在所述电压信号的初始电压位于所述三角波信号的电压振幅范围的外侧的电源接通的初期为规定的周期,根据所述检测电路的检测信号,所述变化周期被切换成大于所述规定的周期且适于软启动的周期;
所述PWM脉冲发生电路具有接受所述电压信号并比较所述电压信号的电压与所述三角波信号的电压的比较器,根据该比较器的比较结果,在所述电源接通的初期,所述PWM脉冲处于高电平或低电平中的某一种状态,当所述电压信号的电压进入所述三角波信号的电压振幅范围时,以适于所述软启动的周期产生脉冲宽度变化的所述PWM脉冲;
所述比较器在所述软启动所需的经过时间之前包含所述软启动所需的经过时间,比较所述电压信号的电压与所述三角波信号的电压,在所述软启动所需的经过时间之后,比较所述输出信号的电压与所述三角波信号的电压,并且具有三个输入端子,在第一输入端子接受所述误差放大器的所述输出信号,在第二输入端子接受所述电压信号,在第三输入端子接受所述三角波信号,所述软启动所需的经过时间是从1msec~20msec的范围中选择的期间,适于所述软启动的周期为所述选择期间的1/20至1/50。
2.如权利要求1所述的开关调节器,其中,所述比较器在所述电源接通初期,将所述电压信号的电压与所述三角波信号的电压的比较结果设为有效,并根据所述输出信号的电压值将所述误差放大器的所述输出信号的电压与所述三角波信号的电压的比较结果设为有效。
3.如权利要求2所述的开关调节器,其中,所述比较器将所述误差放大器的所述输出信号的电压和所述电压信号的电压逻辑或的电压与所述三角波信号的电压进行比较,所述电压信号的电压以规定的速率顺次上升,以使所述电压信号的电压从进入所述三角波信号的振幅的范围至离开为止的时间与所述软启动所需的经过时间相当地来选择所述电压信号的电压的上升率。
4.如权利要求1所述的开关调节器,其中,所述规定的周期与所述三角波信号的周期对应,或小于所述三角波信号的周期。
5.如权利要求1所述的开关调节器,其中,所述规定的周期是从适于所述软启动的周期的1/50~1/600的范围中选择的周期。
6.如权利要求1所述的开关调节器,其中,所述初始电压在所述三角波信号的电压振幅范围的外侧附近,所述比较器在所述电源接通的初期将所述电压信号的电压与所述三角波信号的电压的比较设为有效,在所述软启动所需的经过时间之后,将所述输出信号的电压与所述三角波信号的电压的比较设为有效。
7.如权利要求6所述的开关调节器,其中,还具有时钟发生电路,所述软启动电路具有计数器和D/A转换电路,通过所述D/A转换电路将所述计数器的计数值进行D/A转换来生成所述电压信号,在所述电源接通的初期,所述计数器计数来自所述时钟发生电路的时钟,根据所述检测信号,所述计数器计数周期比所述时钟长的时钟信号。
8.如权利要求7所述的开关调节器,其中,所述时钟的周期实质上与所述三角波信号的周期对应,所述时钟信号的周期是所述时钟的周期的50倍~600倍,与所述初始电压相当的数值在所述计数器中被设定为初始值。
9.如权利要求8所述的开关调节器,其中,所述软启动电路还具有选择电路和分频电路,所述外侧附近位于与所述三角波信号的电压振幅的上限电压或下限电压具有3~15mV的电位差的范围,周期比所述时钟长的时钟信号通过由所述分频电路分频所述时钟而生成,所述选择电路接受所述检测信号,从所述时钟切换到所述时钟信号,并送出到所述计数器。
CNB2005800438941A 2004-12-21 2005-12-14 开关调节器 Expired - Fee Related CN100561838C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004368707 2004-12-21
JP368707/2004 2004-12-21

Publications (2)

Publication Number Publication Date
CN101084621A CN101084621A (zh) 2007-12-05
CN100561838C true CN100561838C (zh) 2009-11-18

Family

ID=36601613

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005800438941A Expired - Fee Related CN100561838C (zh) 2004-12-21 2005-12-14 开关调节器

Country Status (5)

Country Link
US (1) US7675279B2 (zh)
JP (1) JP4808635B2 (zh)
CN (1) CN100561838C (zh)
TW (1) TWI354435B (zh)
WO (1) WO2006068012A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106257810A (zh) * 2015-06-22 2016-12-28 晶宏半导体股份有限公司 用以降低注入电流的升压转换器及其驱动方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008131763A (ja) * 2006-11-21 2008-06-05 Rohm Co Ltd 電圧生成回路、それを用いたスイッチングレギュレータの制御回路ならびに電子機器
FI20075854A0 (fi) * 2007-11-29 2007-11-29 Nokia Corp Ohjauspiiri ja ohjausmenetelmä
JP2009033090A (ja) * 2007-12-27 2009-02-12 Rohm Co Ltd 駆動装置
CN101277058B (zh) * 2008-02-28 2012-07-04 艾默生网络能源有限公司 一种dc/dc变换器副边延时软启动电路
JP5470765B2 (ja) * 2008-07-17 2014-04-16 株式会社リコー スイッチング電源回路
US20100066334A1 (en) * 2008-09-15 2010-03-18 Yang Doris Softstart controller
US8164319B2 (en) * 2008-09-30 2012-04-24 Infineon Technologies Ag System and method for adapting clocking pulse widths for DC-to-DC converters
WO2010062629A1 (en) * 2008-10-27 2010-06-03 Wildcharge, Inc. Switch-mode power supply method and apparatus using switch-node feedback
CN101771339A (zh) * 2008-12-29 2010-07-07 深圳艾科创新微电子有限公司 一种用于开关电源的软启动电路
JP5486221B2 (ja) * 2009-06-23 2014-05-07 スパンション エルエルシー Dc−dcコンバータの制御回路、dc−dcコンバータ及び電子機器
JP2011061989A (ja) * 2009-09-10 2011-03-24 Renesas Electronics Corp スイッチングレギュレータ
JP2011067025A (ja) * 2009-09-17 2011-03-31 Seiko Instruments Inc Dc−dcコンバータ
US8232791B2 (en) * 2009-10-05 2012-07-31 World Properties, Inc. Soft starting driver for piezoelectric device
TWI425755B (zh) * 2010-07-21 2014-02-01 Noveltek Semiconductor Corp 可減緩電源突波的脈波寬度調變降壓轉化器及其相關方法
JP5623175B2 (ja) 2010-07-30 2014-11-12 キヤノン株式会社 高電圧発生装置並びに画像形成装置、高電圧発生装置の電圧制御方法
JP2012034496A (ja) * 2010-07-30 2012-02-16 Canon Inc 高電圧発生装置及び画像形成装置
JP6009810B2 (ja) 2012-05-14 2016-10-19 ローム株式会社 電源装置、車載機器、車両
CN102751860A (zh) * 2012-07-24 2012-10-24 贵州大学 一种带有软加载功能的软启动电路
CN103107800B (zh) * 2012-12-13 2016-08-17 广州慧智微电子有限公司 一种能快速平稳启动控制环路的方法及其电路
US9203383B2 (en) * 2013-03-14 2015-12-01 Sandisk Technologies Inc. Digital soft start with continuous ramp-up
JP6358861B2 (ja) * 2014-06-09 2018-07-18 日置電機株式会社 絶縁抵抗測定装置
US9819274B2 (en) * 2014-11-20 2017-11-14 Microchip Technology Incorporated Start-up controller for a power converter
US10277130B2 (en) 2015-06-01 2019-04-30 Microchip Technolgoy Incorporated Primary-side start-up method and circuit arrangement for a series-parallel resonant power converter
US9912243B2 (en) 2015-06-01 2018-03-06 Microchip Technology Incorporated Reducing power in a power converter when in a standby mode
TWI563783B (en) * 2015-07-06 2016-12-21 Ultrachip Inc Boost converter for reducing inductor current and driving method thereof
US9705408B2 (en) 2015-08-21 2017-07-11 Microchip Technology Incorporated Power converter with sleep/wake mode
JP6656956B2 (ja) * 2016-03-07 2020-03-04 エイブリック株式会社 スイッチングレギュレータ
EP3229373A1 (en) 2016-04-06 2017-10-11 Volke Andreas Soft shutdown modular circuitry for power semiconductor switches
JP6726300B2 (ja) * 2016-11-25 2020-07-22 日立オートモティブシステムズ株式会社 電源回路
US10491125B2 (en) 2018-02-12 2019-11-26 Silanna Asia Pte Ltd Switched-mode power controller with multi-mode startup
CN111736680B (zh) 2020-05-28 2022-04-22 广东浪潮大数据研究有限公司 电源缓启动的控制方法、控制装置、控制设备及存储介质
JP7499110B2 (ja) 2020-08-11 2024-06-13 ローム株式会社 制御装置及びコンバータ
CN113504405A (zh) * 2021-06-22 2021-10-15 瀚昕微电子(无锡)有限公司 电压波动检测电路

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2731577B2 (ja) * 1988-03-04 1998-03-25 エスジェエス―トムソン マイクロエレクトロニク エスエー スイッチング電源用漸進的始動回路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324939A (ja) * 2002-04-26 2003-11-14 Matsushita Electric Ind Co Ltd スタータ回路
JP4026422B2 (ja) 2002-06-19 2007-12-26 富士電機デバイステクノロジー株式会社 電源制御回路、多チャネル電源回路装置、及びソフトスタート回路
JP3963794B2 (ja) * 2002-07-09 2007-08-22 ローム株式会社 Dc/dcコンバータ
JP4390036B2 (ja) * 2003-03-06 2009-12-24 セイコーエプソン株式会社 電源回路
JP3739760B2 (ja) * 2003-06-04 2006-01-25 ローム株式会社 スイッチングレギュレータ
JP2005051956A (ja) * 2003-07-31 2005-02-24 Rohm Co Ltd Dc/dcコンバータ
US6969977B1 (en) * 2004-06-10 2005-11-29 National Semiconductor Corporation Soft-start voltage regulator circuit
JP4823604B2 (ja) * 2005-08-05 2011-11-24 ローム株式会社 ソフトスタート回路、電源装置、電気機器
US7541795B1 (en) * 2006-02-09 2009-06-02 National Semiconductor Corporation Apparatus and method for start-up and over-current protection for a regulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2731577B2 (ja) * 1988-03-04 1998-03-25 エスジェエス―トムソン マイクロエレクトロニク エスエー スイッチング電源用漸進的始動回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106257810A (zh) * 2015-06-22 2016-12-28 晶宏半导体股份有限公司 用以降低注入电流的升压转换器及其驱动方法
CN106257810B (zh) * 2015-06-22 2018-06-26 晶宏半导体股份有限公司 用以降低注入电流的升压转换器及其驱动方法

Also Published As

Publication number Publication date
WO2006068012A1 (ja) 2006-06-29
CN101084621A (zh) 2007-12-05
TW200629700A (en) 2006-08-16
US20090273324A1 (en) 2009-11-05
JP4808635B2 (ja) 2011-11-02
TWI354435B (en) 2011-12-11
US7675279B2 (en) 2010-03-09
JPWO2006068012A1 (ja) 2008-06-12

Similar Documents

Publication Publication Date Title
CN100561838C (zh) 开关调节器
CN101009465B (zh) 电源控制器及其方法
US6286127B1 (en) Control circuit having multiple functions set by a single programmable terminal
CN100372221C (zh) 电源电路及pwm装置
CN100585996C (zh) 控制直流-直流变换器的方法和电路
US20050116697A1 (en) Method and apparatus for power supply controlling capable of effectively controlling switching operations
US7777467B2 (en) Voltage rising/falling type switching regulator and operation control method thereof
KR101810749B1 (ko) Dc-dc 컨버터를 위한 자동 벅/부스트 모드 선택 시스템
US7804698B2 (en) Switched capacitor controller and method therefor
US5801518A (en) Pulse frequency modulated DC-DC converter
US7550955B2 (en) Power supply circuit
CN1954480A (zh) 开关调节器及其电压控制方法
CN102265495B (zh) 直流-直流转换器以及具有直流-直流转换器的电源电路
CN101110549B (zh) 升压电路
CN102136800A (zh) 开关调节器
CN101449451B (zh) 电荷泵控制器及其方法
CN101896874A (zh) 恒压电路
CN101820272B (zh) 电平位移电路和包括该电平位移电路的切换电路
CN100380794C (zh) 直流-直流转换器
CN101499656B (zh) 具有改变其电阻值的电阻元件的电源电路
CN101312326A (zh) 开关脉冲产生电路和利用该开关脉冲产生电路的调节器
CN1969446B (zh) Dc-dc转换器以及电源装置
US11594959B1 (en) Switched capacitor circuit with passive charge recycling
US20110068856A1 (en) Charge pump
CN100511936C (zh) 负电压输出电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091118

Termination date: 20121214