CN100560811C - 硅纳米线结构及其生长方法 - Google Patents

硅纳米线结构及其生长方法 Download PDF

Info

Publication number
CN100560811C
CN100560811C CNB2004100513117A CN200410051311A CN100560811C CN 100560811 C CN100560811 C CN 100560811C CN B2004100513117 A CNB2004100513117 A CN B2004100513117A CN 200410051311 A CN200410051311 A CN 200410051311A CN 100560811 C CN100560811 C CN 100560811C
Authority
CN
China
Prior art keywords
silicon
crystal face
nanowire structure
silicon wafer
nanowires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2004100513117A
Other languages
English (en)
Other versions
CN1740406A (zh
Inventor
葛帅平
姜开利
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CNB2004100513117A priority Critical patent/CN100560811C/zh
Priority to US11/214,379 priority patent/US20070235841A1/en
Publication of CN1740406A publication Critical patent/CN1740406A/zh
Application granted granted Critical
Publication of CN100560811C publication Critical patent/CN100560811C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L21/02645Seed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate

Abstract

本发明提供一种硅纳米线结构及其生长方法,属于纳米线技术领域。所述硅纳米线结构包括:一硅晶片基底,其包括一晶面,多根硅纳米线生长在所述晶面;所述硅纳米线沿所述晶面的外延<111>方向形成。所述晶面包括(100)、(110)以及(111)晶面,所述晶面包括多个外延<111>方向。其生长方法包括步骤:在硅晶片的晶面上形成一层金属催化剂层;将含有金属催化剂的硅晶片置于石英管内,在500至1000度反应温度下、通入含硅的反应气及氢气进行反应,并确保反应气含硅的量与氢气的摩尔比值为0.05~0.4,在石英管内壁沉积硅并逐渐达到平衡状态;在硅晶片的晶面上生长出硅纳米线。本发明可应用于纳米光学,纳米电子等领域。

Description

硅纳米线结构及其生长方法
【技术领域】
本发明涉及一维纳米材料,尤其涉及一种硅纳米线的结构及其合成方法。
【背景技术】
半导体工业的发展主题是更小、更快、更低能耗。然而,从微米电子时代进入纳米电子时代之后,传统的半导体制造技术--光刻工艺(属于所谓“自上而下”的技术)逐渐到达其所能企及的极限,显得越来越难以满足现在和未来的要求。由此,“自下而上”的技术,或称为自组装技术被认为是未来发展的趋势。目前,人们已经利用这种“自下而上”的技术合成了各种纳米结构,包括纳米线、纳米管,其潜在的应用领域包括纳米电子、纳米光学、纳米感测器等。由于硅是目前半导体业界最常用的材料,所以,相对而言,对硅纳米线的合成和研究显得较多。早在1964年,Wagner等人已经在硅基底上垂直合成微米级的硅须(Silicon Whisker),具体请参见Appl.Phys.Lett.1964,4,89。发展到目前,硅纳米线的合成方法包括催化剂化学气相沉积(Catalytic Chemical Vapor Deposition,CCVD),激光蒸发法(LaserEvaporation),直接热蒸发法(Direct Thermal Evaporation),模板合成法(Template Synthesis)等。但是,现有方法大多只能合成弯曲缠绕的、长度较小的纳米线,并且夹杂许多杂质。
2001年11月6日公告的美国专利第6,313,015号揭示一种硅纳米线和纳米颗粒链(Nanoparticle Chains)的生长方法。该方法利用热蒸发,激光烧蚀,等离子体或磁控溅射法将一氧化硅蒸发出来,在惰性气体保护下,于800至1000度的基底上合成硅纳米线和纳米颗粒链。硅纳米线沿<112>方向生长,而无方向的纳米颗粒则形成纳米颗粒链。显然,这种方法夹杂有纳米颗粒杂质,且相对于基底,硅纳米线的形成方向并不确定,不利于其实际应用。
Yiying Wu等人在2002年发表于“Nano Letters,2002,Vol.2,No.2,P83-86”的一篇题为“Block-by-Block Growth of Single-Crystalline Si/SiGeSuperlattice Nanowires”的论文上描述一种单晶Si/SiGe超晶格纳米线的生长及其机理。其是在(111)硅晶片(Si Wafer)上涂覆一层厚度约20纳米的金薄膜置于石英炉内,并通入H2和SiCl4于高温下发生反应,其中SiCl4和H2的比值是0.02,同时利用脉冲激光间断的烧蚀一Ge靶,从而在硅晶片上垂直生长出硅纳米线,其中含有Si/SiGe超晶格异质结构。这种方法仅揭示了垂直生长的硅纳米线,并未揭露其他方向可控的硅纳米线及其制备方法。
【发明内容】
为解决现有技术的纳米线方向单一、无法控制等技术问题,本发明之目的在于提供一种硅纳米线结构,其生长方向可控制,并可具有多个预定的生长方向。
为实现上述发明目的,本发明提供一种硅纳米线结构,其包括:一硅晶片基底,其包括一任意晶向的晶面,多根硅纳米线生长在所述晶面;其中,所述硅纳米线沿所述晶面的倾斜的外延<111>方向形成。
对应于本发明的一个方面,所述晶面包括(100)晶面,所述硅纳米线与所述(100)晶面成35.3度夹角。这种硅纳米线可以具有四个外延<111>方向。
对应于本发明的另一个方面,所述晶面包括(110)晶面,所述硅纳米线与所述(110)晶面成54.7度夹角。这种硅纳米线可以具有两个外延<111>方向。
对应于本发明的另一个方面,所述晶面包括(111)晶面,所述硅纳米线可以沿四个外延<111>方向,其中一个方向与所述(111)晶面垂直,另外三个方向与所述(111)晶面成19.4度夹角。
上述硅纳米线的直径范围为50纳米至250纳米。其长度可达10微米至数十微米。
本发明的另一个目的是提供上述硅纳米线结构的生长方法,其包括下列步骤:在硅晶片的晶面上形成一层金属催化剂层;将含有金属催化剂的硅晶片置于石英管内,在500至1000度反应温度下、通入含硅的反应气及氢气进行反应,并确保反应气含硅的量与氢气的摩尔比值为0.05~0.4,在石英管内壁沉积硅并逐渐达到平衡状态;在硅晶片的晶面上生长出硅纳米线。
其中,所述硅晶面包括(100)晶面,(110)晶面以及(111)晶面。
其中,金属催化剂层是薄膜状或颗粒状,其厚度或粒径为数纳米至数百纳米,金属催化剂包括金和铁。
其中,含硅的反应气包括卤化硅,硅烷及其衍生物以及卤硅烷。
相对于现有技术,本发明方法具有如下优点:首先,本发明的硅纳米线结构具有确定的方向,并且,这些方向可包括多个方向;使得本发明的硅纳米线结构可以构筑纳米结构,或直接应用于多个领域。
【附图说明】
图1A和图1B是本发明在(100)硅晶片基底外延生长的硅纳米线结构结构的SEM图;
图1C是本发明在(100)硅晶片基底上外延生长的硅纳米线结构结构的HRTEM图;
图1D是硅纳米线在(100)硅晶片基底上的四个<111>外延生长方向示意图;
图2A和图2B是本发明在(110)硅晶片基底外延生长的硅纳米线结构结构的SEM图;
图2C是本发明在(110)硅晶片基底上外延生长的硅纳米线结构结构的HRTEM图;
图2D是硅纳米线在(110)硅晶片基底上的两个<111>外延生长方向示意图;
图3A、图3B和图3C是本发明在(111)硅晶片基底外延生长的硅纳米线结构结构的SEM图;
图3D是本发明在(111)硅晶片基底上外延生长的硅纳米线结构结构的HRTEM图;
图3E是硅纳米线在(111)硅晶片基底上的四个<111>外延生长方向示意图;
图4是本发明采用的制备装置的示意图。
【具体实施方式】
下面结合说明书附图及具体实施例对本发明的实施方式作详细描述。
本发明是采用外延生长方法在晶体上外延生长纳米线。通过控制生长条件从而实现可控的晶体外延生长(Epitaxial Growth),以实现大规模合成方向和结构可控的纳米线。
本发明可以在硅晶片任意晶向的晶面上生长硅纳米线,并构筑新型的硅纳米线阵列结构。
在实施例中,是采用(100)、(110)及(111)硅晶片为生长基底。所谓(100)硅晶片、(110)硅晶片及(111)硅晶片是指含有(100)、(110)及(111)晶面的硅晶片,并以上述三个晶面作为外延生长面。将完整的硅晶体沿预定方向切割,即可得到三种晶面的硅晶片。
在实施制备之前,首先要准备好上述三种硅晶片,并于各硅晶片对应的晶面表面沉积形成一层厚度为纳米级的催化剂薄膜,催化剂可选用金,但不限于金,例如还可选用铁金属。催化剂薄膜的厚度对最终形成的纳米线的直径有直接影响,催化剂薄膜厚度越厚,则生长所得的纳米线直径越大,反之则越小。一般的,催化剂厚度在数纳米到50纳米范围内。可以选择的,也可以直接在硅晶片的表面撒上粒径小于300纳米的金属催化剂颗粒。
为方便描述,本实施例是在三块较大面积的(100)、(110)及(111)硅晶片上沉积金催化剂薄膜之后,分别将三块硅晶片切成面积大约10mm×10mm的小块,并分别编号,如表1所示:
表1三块硅晶片的切片编号
  次序   (100)硅晶片   (110)硅晶片   (111)硅晶片
  1   11#   12#   13#
  2   21#   22#   23#
  3   31#   32#   33#
为便于比较,本实施例分为三轮次进行,每轮次分别有三块不同晶面的硅晶片进行生长,即每次分别将一块(100)、(110)及(111)硅晶片同时置于反应炉中进行生长硅纳米线。每轮次采用的硅晶片如表1所示。
在描述制备过程之前,先介绍制备装置。首先请参见图4,是本发明实施例采用的制备装置的示意图。该制备装置10包括:一加热炉100;一石英管110,其两端分别具有一入气口112和一出气口114,该石英管110是可活动的置于加热炉100内,且其长度比加热炉100长,这样使得在实验中推、拉移动石英管110时,总能保持石英管110有一部分可以置于加热炉100的内部;在靠近石英管入气口112处,设置有一恒温容器120,其内盛有SiCl4液体,并设有一通气管122伸入SiCl4液体内,本实施例中恒温容器120保持在30度,其出口连接至石英管110靠近入气口112的部位,当在通气管112通入气体,则SiCl4蒸气可以被带入石英管110中进行反应。石英管110内部可放置一陶瓷反应舟116,该陶瓷反应舟116上可放置待反应的硅晶片118。需要注意的是,本发明不仅可采用SiCl4作为硅源,还可采用其他含硅的物质,例如硅烷类的衍生物,卤化硅,卤硅烷等。
制备时,预先将加热炉100升温至反应温度,其范围为500至1100度,本实施例中升温至900度,此时,石英管110伸入加热炉内的部分被加热,而伸出外面的部分仍处于较低温度,即冷却部。然后开始第一轮生长:
首先,将三块硅晶片:11#(100)硅晶片、12#(110)硅晶片及13#(111)硅晶片置于陶瓷反应舟116上,然后将该陶瓷反应舟116置于石英管110的冷却部。在入气口112通入流量为350sccm的高纯氩气作为保护气体流经石英管110;经过20分钟后,石英管110内的空气从出气口114排出完全被清除,将石英管110缓慢推入加热炉100内,使陶瓷反应舟116移至加热炉100的中心加热区。推动石英管110的速度最好应该缓慢,最好确保加热炉的温度变化小于10度。在加热炉100的温度保持在900度时,将入气口112通入的氩气替代为流量为250sccm的氢气;并且由通气管122通入流量为100sccm的氢气,氢气经过恒温容器120并将SiCl4蒸气带入石英管110进行反应。当然,本发明不限于上述流量,只要能够确保带入的SiCl4与氢气的摩尔比例保持在0.05~0.4范围内即可,优选范围是0.05~0.2。本领域技术人员应当理解,进入反应区的SiCl4的量可通过调节通气管122通入氢气的量、SiCl4的温度来调节。反应持续时间为10分钟,可以理解,时间越久,硅纳米线生长越长。在第一轮生长中,除在13#硅晶片上生长硅纳米线之外,还在石英管110的内壁上沉积有硅。然后,将入气口112通入的氢气改为流量为350sccm的氩气,并移动石英管110将陶瓷反应舟116和硅晶片118移出加热炉100,以冷却硅晶片118(包括11#(100)硅晶片、12#(110)硅晶片及13#(111)硅晶片),而加热炉100仍保持在900度高温,并且石英管110的其它部分仍处于加热炉100内。当硅晶片118冷却至室温,取出硅晶片完成第一轮生长。
完成第一轮生长之后,无需清洁石英管110,即保留沉积在石英管110内壁上的硅,紧接着将三片新的21#(100)硅晶片、22#(110)硅晶片及23#(111)硅晶片置于陶瓷反应舟116上,按上述第一轮生长的步骤进行第二轮生长。
完成第二轮生长之后,同样无需清洁石英管110,紧接着将三片新的31#(100)硅晶片、32#(110)硅晶片及33#(111)硅晶片置于陶瓷反应舟116上,按上述第一轮生长的步骤进行第三轮生长。
在上述实施例中,在第一轮生长中,仅在编号为13#的(111)硅晶片上生长有硅纳米线,而在编号为11#的(100)硅晶片和编号为12#的(110)硅晶片上并没有纳米线;在第二轮生长中,在编号为21#、22#和23#的三种硅晶片上均生长有硅纳米线。在第三轮生长中,在编号为31#,32#和33#的三种硅晶片上均生长有硅纳米线。上述纳米线的长度可达10微米至数十微米,直径为50纳米至250纳米。
完成上述实施例之后,对石英管110进行清洁,将管壁上沉积的硅去除,重复上述步骤,即重新制备硅晶片、沉积金催化剂层、切小片、编号并分三轮进行生长,可得到同样的结果。
在上述所有硅晶片上生长的硅纳米线均是沿硅晶片的晶面外延<111>方向生长,不同晶面的硅晶片具有其各自不同的外延<111>方向。例如:对于(100)硅晶片,其具有四个外延<111>方向,分别与硅晶片的(100)晶面成35.3度夹角(如图1D所示);对于(110)硅晶片,其具有两个外延<111>方向,分别与硅晶片的(110)晶面成54.7度夹角(如图2D所示);对于(111)硅晶片,其具有四个外延<111>方向,其中一个方向垂直于硅晶片的(111)晶面,另外三个分别与硅晶片的(111)晶面成19.4度夹角(如图3E所示)。本发明可在不同晶面的硅晶片上得到沿各个外延<111>方向生长的硅纳米线,从而可控制硅纳米线的生长方向,得到不同结构、不同方向的硅纳米线,为硅纳米线在各种领域的应用提供基础。
下面对本发明实施例在具有不同晶面的硅晶片上生长的硅纳米线作详细描述。
请参阅图1A、图1B,是从本发明一个实施例在(100)硅晶片上第二轮和第三轮生长得到的硅纳米线的顶上方拍摄的扫描电子显微镜(ScanningElectron Microscope,SEM)照片。从图中可看出,硅纳米线似乎形成矩形网格状,但实际上硅纳米线是沿四个方向延伸的,分别与硅晶片形成35度左右的夹角。从图1C的高分辨率透射电子显微镜(High Resolution TransmissionElectron Microscope,HRTEM)照片可确认,相邻层间距为0.314纳米,说明硅纳米线是沿硅晶面的四个外延<111>方向生长的。图1D示出(100)晶面的四个外延<111>方向,其中,阴影面即(100)晶面,四条交叉实线即表示其外延<111>方向,分别与(100)晶面成35.3度夹角。本实施例中硅纳米线即沿此四个方向生长。
请参阅图2A、图2B,是从本发明一个实施例在(110)硅晶片上第二轮和第三轮生长得到的硅纳米线的顶上方拍摄的SEM照片。从图中看,大多数硅纳米线是相互平等的,实际上硅纳米线是两个方向延伸的,分别与硅晶片成大约55度夹角。从图2C的HRTEM照片可确认,其间距为0.314纳米,硅纳米线是沿硅晶面的两个外延<111>方向生长的。图2D示出(110)晶面的二个外延<111>方向,其中,阴影面即(110)晶面,两交叉实线即表示其外延<111>方向,分别与(110)晶面成54.7度夹角。本实施例中硅纳米线即沿此两个方向生长。
请参见图3A、图3B及图3C,分别是本发明一个实施例在(111)硅晶片上第一轮、第二轮和第三轮生长得到的硅纳米线的上方拍摄的SEM照片,其中图3A是将样品倾斜大约60度拍摄得到的,另外两个是垂直拍摄得到的。从图3A可看出,第一轮生长的所有硅纳米线均是垂直于硅晶片的表面;在图3B中,第二轮生长的硅纳米线大多数形成三角形网格,还有一些亮点(图中圆圈处即为其中一个),仔细观察可发现硅纳米线有四个方向,其中一个方向是与第一轮生长的方向相同,即垂直于硅晶片表面(即图中的亮点),另外三个方向与硅晶片大约成19度夹角;在图3C中,第三轮生长的硅纳米线形成三角形网格,并且没有亮点存在,也就是说,第三轮生长的硅纳米线沿三个方向生长,其分别与硅晶片大约成19度夹角,而没有垂直生长的硅纳米线。由图3D的HRTEM照片可确认,硅纳米线是沿硅晶片的外延<111>方向生长的,其间距为0.314纳米。图3E示出了(111)硅晶片的四个外延<111>方向,其中一个与(111)晶面垂直,另外三个与该晶面成19.4度夹角。其中,阴影面即(111)晶面,四根实线即外延<111>方向。
从上面多个实施例中可知,在第一轮次中生长的硅纳米线的结构与后两轮次有所不同。其原因在于:虽然外部条件相同,包括实施设备、反应温度、通入的反应气体成份、流量及其浓度均未改变,但是在第一轮次中,实际反应区的SiCl4浓度有所区别,实际上,是硅的浓度决定了硅纳米线的生长是外延与否,因此,不同含硅的气体分子可能由于原子比不同而使得需要通入的气体的量有所不同。在第一轮次生长过程中,由于石英管110是清洁干净的,有一部分SiCl4分解后,硅沈积在石英管110的内壁上,造成在实际反应区的硅浓度下降,即硅的过饱和程度较低,使得硅仅仅沿硅晶面的一个<111>方向,即垂直晶面的方向生长;而在后续的第二、第三轮次生长过程中,由于石英管110内壁在第一轮次生长过程已经沉积有硅,所以硅在内壁上的沉积逐渐减少,直至达到平衡,这样使得实际反应区的硅浓度逐渐上升,即硅的过饱和程度上升,从而造成硅纳米线沿其它<111>方向生长。所以,虽然本实施例是通过三轮次生长硅纳米线结构的,但本发明并不限于这种步骤。只要能控制实际反应区的硅的浓度达到足够高的过饱和程度即可生长出沿倾斜的外延<111>方向的硅纳米线结构。
本发明由于可控制硅纳米线的生长方向,可直接应用于纳米光电子学领域,例如采用图案化生长,可制得相应图案形状的纳米结构,直接用作光器件。亦可利用本发明形成的矩形、三角形及交叉立体网格结构,经过处理得到相应形状的平面器件,例如:可将这三种立体网格结构经压扁制成平面的矩形、三角形及平行图案,应用于纳米电子学领域等。

Claims (16)

1.一种硅纳米线结构,其包括:一硅晶片基底,其包括一晶面,多根硅纳米线生长在所述晶面;其特征在于,所述硅纳米线沿所述晶面的倾斜的外延<111>方向形成。
2.根据权利要求1所述的硅纳米线结构,其特征是,所述硅晶片的晶面包括任意晶向的晶面。
3.根据权利要求2所述的硅纳米线结构,其特征是,所述硅晶片的晶面包括(100)晶面,所述硅纳米线沿该(100)晶面的外延<111>方向形成,所述硅纳米线与所述(100)晶面成35.3度夹角。
4.根据权利要求2所述的硅纳米线结构,其特征是,所述硅晶片的晶面包括(110)晶面,所述硅纳米线沿该(110)晶面的外延<111>方向形成,所述硅纳米线与所述(110)晶面成54.7度夹角。
5.根据权利要求2所述的硅纳米线结构,其特征是,所述硅晶片的晶面包括(111)晶面,所述硅纳米线沿该(111)晶面的外延<111>方向形成,所述硅纳米线与所述(111)晶面成19.4度夹角。
6.根据权利要求5所述的硅纳米线结构,其特征是,还包括与所述(111)晶面垂直的硅纳米线。
7.根据权利要求1至6任意一项所述的硅纳米线结构,其特征是,所述硅纳米线的直径范围为50~250纳米。
8.根据权利要求7所述的硅纳米线结构,其特征是,所述硅纳米线的长度为10微米至数十微米。
9.根据权利要求1所述的硅纳米线结构的生长方法,其包括下列步骤:在硅晶片的任一晶面上形成一层金属催化剂层;将形成有该金属催化剂层的硅晶片置于石英管内,在500至1000度反应温度下、通入含硅的反应气及氢气进行反应,并且反应气含硅的量与氢气的摩尔比值为0.05~0.4,在石英管内壁沉积硅并逐渐达到平衡状态;在硅晶片的所述晶面上生长出硅纳米线。
10.根据权利要求9所述的硅纳米线结构的生长方法,其特征是,所述硅晶片的晶面包括(100)晶面,(110)晶面以及(111)晶面。
11.根据权利要求9所述的硅纳米线结构的生长方法,其特征是,所述金属催化剂层是金属催化剂的薄膜,其厚度小于50纳米。
12.根据权利要求9所述的硅纳米线结构的生长方法,其特征是,所述金属催化剂层包括粒径小于300纳米的金属催化剂颗粒。
13.根据权利要求11或12所述的硅纳米线结构的生长方法,其特征是,所述金属催化剂包括金和铁金属。
14.根据权利要求9所述的硅纳米线结构的生长方法,其特征是,所述含硅的反应气包括卤化硅,硅烷及其衍生物以及卤硅烷。
15.根据权利要求14所述的硅纳米线结构的生长方法,其特征是,所述含硅的反应气为SiCl4
16.根据权利要求15所述的硅纳米线结构的生长方法,其特征是,所述SiCl4与氢气的摩尔比为0.05~0.2。
CNB2004100513117A 2004-08-28 2004-08-28 硅纳米线结构及其生长方法 Active CN100560811C (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNB2004100513117A CN100560811C (zh) 2004-08-28 2004-08-28 硅纳米线结构及其生长方法
US11/214,379 US20070235841A1 (en) 2004-08-28 2005-08-29 Silicon nanowire structure and method for making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100513117A CN100560811C (zh) 2004-08-28 2004-08-28 硅纳米线结构及其生长方法

Publications (2)

Publication Number Publication Date
CN1740406A CN1740406A (zh) 2006-03-01
CN100560811C true CN100560811C (zh) 2009-11-18

Family

ID=36092933

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100513117A Active CN100560811C (zh) 2004-08-28 2004-08-28 硅纳米线结构及其生长方法

Country Status (2)

Country Link
US (1) US20070235841A1 (zh)
CN (1) CN100560811C (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101058421B (zh) * 2007-04-13 2010-05-19 安徽工业大学 一种低温制备无金属催化剂的纳米硅线的方法
CN101549869B (zh) * 2008-04-03 2011-06-22 清华大学 硅化铁纳米线的制备方法
CN101550531B (zh) * 2008-04-03 2013-04-24 清华大学 硅纳米结构的制备方法
CN101399167B (zh) * 2008-07-15 2010-04-14 北方工业大学 硅纳米线装配的方法
CN101603207B (zh) * 2009-07-21 2011-11-09 中国地质大学(北京) 高纯高产率网络状分枝氮化硅单晶纳米结构的制备方法
CN102403130B (zh) * 2010-09-07 2014-04-02 叶南辉 阵列纳米管型太阳能电池薄膜的制作方法
CN103668453B (zh) * 2012-09-21 2016-12-21 浙江大学 一种二维硅烯薄膜及其制备方法
CN104569013B (zh) * 2013-10-10 2017-04-05 清华大学 纳米线带隙分布的测量方法
TWI519668B (zh) * 2014-07-17 2016-02-01 國立清華大學 具有結晶矽薄膜之基板及其製備方法
CN105668540B (zh) * 2014-11-19 2017-11-14 清华大学 一种纳米线阵列的制备方法
CN109850843B (zh) * 2019-03-14 2021-01-15 南京大学 一种悬空纳米线机械手批量制备方法
CN113265237B (zh) * 2021-05-13 2022-09-27 首都师范大学 一种基于纳米线定向发射结构增强硅片发光的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313015B1 (en) * 1999-06-08 2001-11-06 City University Of Hong Kong Growth method for silicon nanowires and nanoparticle chains from silicon monoxide
US6720240B2 (en) * 2000-03-29 2004-04-13 Georgia Tech Research Corporation Silicon based nanospheres and nanowires
US20050279274A1 (en) * 2004-04-30 2005-12-22 Chunming Niu Systems and methods for nanowire growth and manufacturing
CN101010780B (zh) * 2004-04-30 2012-07-25 纳米***公司 纳米线生长和获取的体系和方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Block-by-Block Growth of Single-Crystalline Si/SiGeSuperlattice Nanowires. Yiying Wu等.Nano Letters,Vol.2 No.2. 2002
Block-by-Block Growth of Single-Crystalline Si/SiGeSuperlattice Nanowires. Yiying Wu等.Nano Letters,Vol.2 No.2. 2002 *
Vapor-Liquid-Solid Mechanism of Single Crystal Growth. R. S. Wagner等.Applied Physics Letters,Vol.4 . 1964
Vapor-Liquid-Solid Mechanism of Single Crystal Growth. R. S. Wagner等.Applied Physics Letters,Vol.4 . 1964 *

Also Published As

Publication number Publication date
CN1740406A (zh) 2006-03-01
US20070235841A1 (en) 2007-10-11

Similar Documents

Publication Publication Date Title
Zhang et al. Synthesis of thin Si whiskers (nanowires) using SiCl4
Novotny et al. Vertically aligned, catalyst-free InP nanowires grown by metalorganic chemical vapor deposition
CN101550531B (zh) 硅纳米结构的制备方法
CN100560811C (zh) 硅纳米线结构及其生长方法
Fan et al. Patterned growth of aligned ZnO nanowire arrays on sapphire and GaN layers
Wang et al. Deterministic one-to-one synthesis of germanium nanowires and individual gold nano-seed patterning for aligned nanowire arrays
CN107849730A (zh) 在单晶硅上生长外延3C‑SiC
Shi et al. Functional semiconductor nanowires via vapor deposition
Kong et al. Formation of vertically aligned ZnO nanorods on ZnO templates with the preferred orientation through thermal evaporation
Hibst et al. The mechanisms of platinum-catalyzed silicon nanowire growth
CN103668453B (zh) 一种二维硅烯薄膜及其制备方法
Doerk et al. Branching induced faceting of Si nanotrees
Zhang et al. Formation mechanisms for the dominant kinks with different angles in InP nanowires
Park et al. Position-controlled vertical arrays of single-crystalline ZnO nanowires on periodically polarity inverted templates
KR100952615B1 (ko) 방향성을 갖는 귀금속 단결정 나노와이어 및 그 제조방법
CN105480955B (zh) 一种Ge‑Sb‑Se硫系纳米线的制备方法
WO2011119231A2 (en) Irradiation assisted nucleation of quantum confinements by atomic layer deposition
Wohlert et al. Improved size uniformity of InAs quantum dots grown on a lateral composition modulated InGaAs surface
Aziz et al. Single step growth of vertically oriented zinc oxide nanowire using thermal evaporation
WO2009005261A2 (en) Noble metal single crystalline nanowire and the fabrication method thereof
TWI326247B (en) Silicon nanowire structure and method of making same
CN105019028B (zh) 一种制备特定形貌和晶体结构的InAs纳米线的方法
Li et al. Growth and characterisation of Ge Nanowires by chemical vapour deposition
Soam et al. Controlling the geometrical orientation of hot-wire chemical vapor process grown silicon nanowires
JP4673070B2 (ja) 微小構造の成長制御方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant