CN100541834C - 平面型碲镉汞光伏器件离子注入损伤层的消除方法 - Google Patents

平面型碲镉汞光伏器件离子注入损伤层的消除方法 Download PDF

Info

Publication number
CN100541834C
CN100541834C CNB2007101707185A CN200710170718A CN100541834C CN 100541834 C CN100541834 C CN 100541834C CN B2007101707185 A CNB2007101707185 A CN B2007101707185A CN 200710170718 A CN200710170718 A CN 200710170718A CN 100541834 C CN100541834 C CN 100541834C
Authority
CN
China
Prior art keywords
curve
layer
ion
dark current
begins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2007101707185A
Other languages
English (en)
Other versions
CN101170150A (zh
Inventor
乔辉
汤英文
李向阳
龚海梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CNB2007101707185A priority Critical patent/CN100541834C/zh
Publication of CN101170150A publication Critical patent/CN101170150A/zh
Application granted granted Critical
Publication of CN100541834C publication Critical patent/CN100541834C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本发明公开了一种平面型碲镉汞光伏器件离子注入损伤层的消除方法,该方法采用湿法腐蚀剥离离子注入表面严重损伤层,腐蚀液用1‰的溴/乙醇或1‰的溴/氢溴酸,腐蚀液温度为冰水点。剥层厚度的确定是基于反偏条件下PN结的I-V曲线给出的暗电流大小或R-V曲线的形状和峰值可以反映器件表面漏电和产生-复合中心密度的大小。通过监测腐蚀过程中PN结的I-V曲线或R-V曲线的变化来确定腐蚀剥层的截止点。本发明的优点是:方法简便有效、重复件好。

Description

平面型碲镉汞光伏器件离子注入损伤层的消除方法
技术领域
本发明涉及平面型碲镉汞(HgCdTe)光伏器件的制备工艺,具体是指器件离子注入后在HgCdTe表面产生的严重损伤层的去除方法。
背景技术
HgCdTe红外探测器有光导型和光伏型二类,目前以光伏型器件的应用为主要方向。光伏型器件的核心是PN结,PN结的形成方法包括扩散和离子注入,其中离子注入由于工艺简单可控性强以及常温注入等优点而得到广泛的应用。离子注入过程是通过在P(或N)型材料表面进行选择性区域注入,使注入区域发生反型而形成N(或P)型区,从而形成平面型N-on-P或P-on-N PN结结构。高能离子注入会对材料晶格结构产生损伤,这些损伤会充当产生复合中心,增加器件表面漏电和暗电流,降低PN结的性能。在平面型HgCdTe光伏器件的制备中,尽管离子注入之前已经在HgCdTe表面沉积一层ZnS介质层作为离子注入阻挡层,以此来降低注入过程对HgCdTe晶格的损伤,但是由于HgCdTe材料属于窄禁带半导体,其Te-Hg键的结合能很小,微弱能量的离子注入就会使晶格原子发生位移而形成损伤,增大表面的产生-复合中心密度。因此需要在注入后对晶格进行修复,目前对P-on-N离子注入后的修复方式主要是通过高温退火电学激活来消除注入损伤,由于HgCdTe晶体的特殊性,对退火条件的要求十分苛刻,设备比较复杂,而且各个批次生长的HgCdTe晶体的物理和化学性质不尽相同,需要分别探索相应的退火方法,因此退火条件的适应性和重复性不高。对于N-on-P结构,由于对P型HgCdTe的注入损伤可转型成为N型,无须对注入N型导电离子进行高温退火电学激活就可形成PN结,这种结构虽然注入损伤会使P型区域转型,但表面的注入损伤还是存在,它会提高器件表面漏电和产生-复合电流,从而降低器件性能。
发明内容
基于已有的对N-on-P或P-on-N HgCdTe离子注入后的损伤和损伤修复方式存在的问题,本发明的目的是提出一种适应性和重复性较高的湿法腐蚀剥离离子注入严重损伤层的方法,该方法可改善器件的表面状态,从而降低由于注入损伤而导致器件较大的表面漏电和暗电流。
本发明的离子注入严重损伤层消除方法,其步骤如下:
A.配制1‰的溴/乙醇或1‰的溴/氢溴酸腐蚀溶液,将溶液置于容器内。
B.对离子注入后的样品进行腐蚀剥层前的I-V或R-V扫描测试,并记录I-V或R-V扫描曲线,测试温度根据器件工作温度而定。
C.然后将样品浸入腐蚀溶液中,腐蚀液温度为冰水点,腐蚀时间为1秒后即取出,进行I-V或R-V扫描测试,与腐蚀剥层前的I-V比较,此时会观察到I-V曲线的反向暗电流开始变小,从R-V曲线看则是反向电阻的增大。
D.如此重复上述C步骤进行腐蚀、测试,当反向暗电流减小或电阻增大到某一值后便开始相反方向的变化,即暗电流开始变大,电阻开始减小,表明离子注入严重损伤层已去除,即停止腐蚀剥层。
本发明的优点是:方法简便有效、重复性好,特别适用于N-on-P型HgCdTe平面光伏器件。
附图说明
图1为本发明的I-V或R-V扫描测试示意图。
图2为本实施例的I-V扫描曲线。
图3为图2中的确定腐蚀剥层截止的一段I-V扫描曲线放大图。
图4为本实施例的R-V扫描曲线。
具体实施方式
下面以N-on-P型HgCdTe为实施例,结合附图对本发明的具体实施方式作进一步的详细说明:
见图1,样品1为N-on-P型HgCdTe光伏器件,I-V扫描测试仪2采用Keithley4200分析仪,样品置于测试仪的77K冷探针台上,N针尖电极3置在N型离子注入区,P针尖电极4置在P型HgCdTe上。然后对离子注入后的样品进行腐蚀剥层前的I-V扫描测试,并记录I-V扫描曲线。
本发明的关键是要掌握腐蚀剥层截止点,若剥层太薄,则达不到预期的效果,若剥层太厚,则会使得剩下的注入层深度太薄反而降低PN结性能。这一剥层厚度的确定是通过剥层过程中I-V或R-V特性的连续测试来获得。反偏条件下PN结的I-V曲线给出的暗电流大小以及R-V曲线的形状和峰值可以反映器件表面漏电和产生-复合中心密度的大小,通过监测腐蚀过程中PN结的I-V曲线或R-V曲线的变化来确定腐蚀剥层的截止点。由于剥层厚度通常较小,为了获得较小的腐蚀剥层速率,需要尽量低配比浓度的腐蚀液和尽量低的腐蚀温度,本实施例中我们选1‰的Br2/HBr溶液,腐蚀温度为冰水点(0度)。
图2给出了随着剥层过程的进行,器件I-V曲线的变化。为了能看清楚器件I-V曲线的变化,特将图2中的确定腐蚀剥层截止的一段I-V扫描曲线放大,见图3。图3中的曲线1为腐蚀剥层前、曲线2为第一次腐蚀剥层、曲线3为第二次腐蚀剥层、曲线4为第三次腐蚀剥层。从图3可明显看出,当进行第一次剥层后,器件反向暗电流明显降低,见曲线2;但从第二次剥层后,器件反向暗电流开始呈增大趋势,见曲线3;第三次剥层后,器件反向暗电流明显增大,见曲线4,表明离子注入严重损伤层已去除,即停止腐蚀剥层。图4给出的是对图3进行微分得到的R-V曲线。

Claims (1)

1.一种平面型碲镉汞光伏器件离子注入损伤层的消除方法,其特征在于具体步骤如下:
A.在容器内配制1‰的溴/乙醇或1‰的溴/氢溴酸腐蚀溶液;
B.对离子注入后的HgCdTe样品进行腐蚀剥层前的反向偏压I-V或R-V扫描测试,并记录I-V或R-V扫描曲线,测试温度根据器件工作温度而定;
C.然后将样品浸入腐蚀溶液中,腐蚀液温度为冰水点,腐蚀时间为1秒后即取出,进行I-V或R-V扫描测试,与腐蚀剥层前的I-V比较,此时会观察到I-V曲线的反向暗电流开始变小,从R-V曲线看则是反向电阻的增大;
D.反复重复上述C步骤,进行腐蚀、测试,当反向暗电流减小或电阻增大到某一值后便开始向反方向变化,即暗电流明显开始变大,电阻明显开始减小,表明此时离子注入严重损伤层已去除,即停止腐蚀剥层。
CNB2007101707185A 2007-11-21 2007-11-21 平面型碲镉汞光伏器件离子注入损伤层的消除方法 Expired - Fee Related CN100541834C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007101707185A CN100541834C (zh) 2007-11-21 2007-11-21 平面型碲镉汞光伏器件离子注入损伤层的消除方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2007101707185A CN100541834C (zh) 2007-11-21 2007-11-21 平面型碲镉汞光伏器件离子注入损伤层的消除方法

Publications (2)

Publication Number Publication Date
CN101170150A CN101170150A (zh) 2008-04-30
CN100541834C true CN100541834C (zh) 2009-09-16

Family

ID=39390676

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007101707185A Expired - Fee Related CN100541834C (zh) 2007-11-21 2007-11-21 平面型碲镉汞光伏器件离子注入损伤层的消除方法

Country Status (1)

Country Link
CN (1) CN100541834C (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103343390A (zh) * 2013-06-21 2013-10-09 中国科学院上海技术物理研究所 碲镉汞气相外延材料的p型热处理工艺方法
CN104032304A (zh) * 2014-06-12 2014-09-10 中国科学院上海技术物理研究所 一种用于碲镉汞材料的腐蚀液及配制方法
CN105047574B (zh) * 2015-06-02 2017-08-25 中国科学院上海技术物理研究所 一种用于碲镉汞探测器n区横向展宽的变间距测量方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1442886A (zh) * 2003-04-15 2003-09-17 中国科学院上海技术物理研究所 碲镉汞材料离子注入p-n结产生损伤的修复方法
CN2760760Y (zh) * 2004-12-13 2006-02-22 中国科学院上海技术物理研究所 碲镉汞红外光电探测器微小光敏元芯片

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1442886A (zh) * 2003-04-15 2003-09-17 中国科学院上海技术物理研究所 碲镉汞材料离子注入p-n结产生损伤的修复方法
CN2760760Y (zh) * 2004-12-13 2006-02-22 中国科学院上海技术物理研究所 碲镉汞红外光电探测器微小光敏元芯片

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HgCdTe光伏器件多层钝化膜等离子体处理的研究. 储开慧等.光学仪器,第28卷第4期. 2006 *
碲镉汞光伏型探测器的氢化处理研究. 乔辉等.红外与毫米波学报,第26卷第5期. 2007 *
碲镉汞表面硫化的光电子能谱及器件性能研究. 汤英文等.激光与红外,第35卷第11期. 2005 *
碲镉汞长波光导红外探测器的侧面钝化研究. 徐勤飞等.红外与激光工程 增刊,第36卷. 2007 *

Also Published As

Publication number Publication date
CN101170150A (zh) 2008-04-30

Similar Documents

Publication Publication Date Title
Hameiri et al. Laser induced defects in laser doped solar cells
Peibst et al. Building blocks for industrial, screen-printed double-side contacted POLO cells with highly transparent ZnO: Al layers
Taguchi et al. An approach for the higher efficiency in the HIT cells
CN101562207A (zh) 晶体硅太阳能电池
CN100541834C (zh) 平面型碲镉汞光伏器件离子注入损伤层的消除方法
CN112490324A (zh) 一种n型单晶硅hbc太阳能电池制备方法
Chaudhary et al. Screen printed Ag contacts for n-type polysilicon passivated contacts
CN201289855Y (zh) 晶体硅太阳能电池
Bao et al. Towards 24% efficiency for industrial n-type bifacial passivating-contact solar cells with homogeneous emitter
Ryu et al. Fundamental understanding, impact, and removal of boron-rich layer on n-type silicon solar cells
CN101226971A (zh) 一种降低碲镉汞光伏器件离子注入损伤影响的方法
NL2034299B1 (en) Solar cell and photovoltaic module
Zin et al. Progress in the development of all-back-contacted silicon solar cells
Augusto et al. Heterojunction solar cells on flexible silicon wafers
Kang et al. Firing stability of phosphorus doped polysilicon passivation layers
Tous et al. Nickel silicide formation using excimer laser annealing
Li et al. High efficiency PERL cells on CZ P-type crystalline silicon using a thermally stable a-Si: H/SiNx rear surface passivation stack
Narayanan et al. Improvement in the open-circuit voltage and efficiency of silicon solar cells by rear aluminium treatment
Abbott et al. N-type bifacial solar cells with laser doped contacts
Chaudhary et al. Advancement in screen printed fire through silver paste metallisation of polysilicon based passivating contacts
Duttagupta et al. Initial Results of monoPoly TM Silicon Solar Cells at SERIS
Zin et al. Laser-assisted shunt removal on high-efficiency silicon solar cells
Wang et al. Performance Improvements of Selective Emitters by Laser Openings on Large‐Area Multicrystalline Si Solar Cells
Roy et al. Design and Fabrication of PERC-Like CdTe Solar Cells Using Micropatterned Al 2 O 3 Layer
Hameiri et al. Double Sided Laser Doped Solar Cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090916

Termination date: 20161121