CN100508260C - 电能储存器件及其制造方法 - Google Patents

电能储存器件及其制造方法 Download PDF

Info

Publication number
CN100508260C
CN100508260C CNB200480037093XA CN200480037093A CN100508260C CN 100508260 C CN100508260 C CN 100508260C CN B200480037093X A CNB200480037093X A CN B200480037093XA CN 200480037093 A CN200480037093 A CN 200480037093A CN 100508260 C CN100508260 C CN 100508260C
Authority
CN
China
Prior art keywords
substrate
mcp
film
chamber
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB200480037093XA
Other languages
English (en)
Other versions
CN1894812A (zh
Inventor
梅纳赫姆·内森
埃马努埃尔·佩莱德
迪亚娜·哥洛德尼特斯凯
埃拉·施特劳斯
弗拉迪米尔·尤菲特
塔尼亚·里彭拜恩
因纳·谢克特曼
斯韦特兰娜·门金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tel Aviv University Future Technology Development LP
Original Assignee
Tel Aviv University Future Technology Development LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tel Aviv University Future Technology Development LP filed Critical Tel Aviv University Future Technology Development LP
Publication of CN1894812A publication Critical patent/CN1894812A/zh
Application granted granted Critical
Publication of CN100508260C publication Critical patent/CN100508260C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/26Structural combinations of electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices with each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • H01M4/0452Electrochemical coating; Electrochemical impregnation from solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/42Grouping of primary cells into batteries
    • H01M6/425Multimode batteries, batteries with "reserve cells"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0472Vertically superposed cells with vertically disposed plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种电能储存器件(20)包括具有形成在其中的通道(24)的微通道板(MCP)(22),所述通道具有表面区域。薄膜(26)形成在表面区域上并限定阳极(34、38)、阴极(34、38)以及位于阳极和阴极之间的固体电解质(36)。

Description

电能储存器件及其制造方法
相关申请的交叉参考
本申请要求在2003年10月14日递交的美国临时申请60/511382的优先权。它涉及美国专利申请10/382466,是美国专利6197450的重新发行。这里引入这些相关申请的内容作为参考。
技术领域
本发明主要涉及电能源,特别涉及薄膜微电池。
背景技术
上述美国专利6179450介绍了薄膜微型电化学储存单元,如微电池和双层电容器。这些单元是通过在基板上淀积薄膜电极和固体电解质层来制造的,其中所述基板具有贯穿其刻蚀的具有高的纵横比(即,腔深度与宽度的高比例)的多个腔室。作为这种设计的结果,这些单元每单位体积具有高的总电极面积,并且因此具有高的电容量。
微通道板(MCP)是极小直径的管子(通称为毛细管或通道)的二维阵列,它们熔合在一起并被切片以形成薄板。典型的MCP具有几百万个独立的通道。MCP广泛地用在低水平辐射和电子信号的检测当中,其中每个通道作为独立的电子倍增器(multiplier)来工作。MCP在商业上可从大量不同的来源获得,如Del Mar Ventures(SanDiego,California)和Burle Electro-Optics公司(Sturbridge,Massachusetts)获得。
MCP在大多数情况下通常由玻璃制成。例如在由Del MarVentures发表的题为“Microchannel Plates and Microchannel PlateDetectors,”的文章(可在www.sciner.com/MCP/MCP.htm,2004找到)中介绍了制造工艺,这里引入该文章作为参考。简言之,MCP以安装有固体的、可酸刻蚀的芯的玻璃管开始,其通过光纤(fiberoptic)技术拉制形成单个纤维。大量这样的纤维堆叠成阵列,并且再次拉制整个组件,从而形成多纤维。然后将多纤维堆叠在一起并在高温下熔合,以形成毛坯(boule)。在晶片锯上切割毛坯、磨边成一定尺寸,然后按照需要研磨并抛光。对单独的薄片进行化学处理,从而除去固体芯材料,留下几百万个微小孔的“蜂房”结构。
用于制造MCP的其它方法在本领域中也是已知的。这些方法中有些方法可用于制造非常精细的MCP结构,并可以制造除了玻璃以外的其它材料的MCP。例如,美国专利6300709介绍了用于制造具有微米和亚微米孔径的MCP的方法。美国专利6260388介绍了一种使用挤压和拉制技术的组合来制造多通道波导结构的方法。美国专利6270714介绍了一种一起浇灌(pot)或浇铸中空纤维束从而形成管子薄板的方法。这种方法可以用于由各种材料如碳纤维来形成MCP。这里引入所有上述专利的内容作为参考。
发明内容
在本发明的实施例中,三维储存单元,如微电池,是通过在微通道板(MCP)结构上形成多个薄膜层而制造的。薄膜层覆盖微通道管的内表面。通常情况下,薄膜层还覆盖板的上表面和/或下表面,以便在整个MCP上提供层的电连续性。在有些实施例中,管子内部的层完全充满了管子的体积。如上所述,MCP可以由玻璃或其它合适的材料制成,并且可以使用各种液相或汽相工艺来淀积薄膜层。
尽管MCP本身在辐射和电子检测领域中是公知的,但是它们作为用于能量储存器件的基板的用途是新的。由于制造MCP的工艺-通过将多个管子熔合在一起-它们可以制造成具有非常小的通道直径、高通道密度和高通道纵横比。结果,基于MCP的微电池具有比本领域已知的微电池如上述的美国专利6197450中介绍的微电池更大的电极面积/体积比,并且因此具有更高的电容量。本发明的原理可类似地用于其它类型的电储存单元,如能量储存电容器。这里使用的术语“微电池”仅仅表示小规模的电池,其中本发明的某些特征特别有利,但是本发明的原理通常可适用于电池和其它电储存单元,而与规模无关。
因此,根据本发明的实施例,提供一种电能储存器件,包括:
具有形成在其中的多个腔室的基板,所述腔室具有大于1的纵横比并具有表面区域;和
形成在表面区域上的薄膜,该薄膜界定了阳极、阴极以及位于阳极和阴极之间的固体电解质,薄膜包括最后层,形成该最后层,以便填充腔室。
基板可以包括非导电材料、半导体材料和导电材料中的至少一种。通常,基板具有顶表面和底表面,并且形成腔室,以便从顶表面到底表面贯穿基板。
而且,根据本发明的实施例,还提供一种微电子器件,包括:
微电路;
具有形成在其中的多个腔室的基板,所述腔室具有大于1的纵横比并具有表面区域;和
形成在表面区域上的薄膜,该薄膜界定了阳极、阴极以及位于阳极和阴极之间的固体电解质,所述薄膜包括最后层,形成所述最后层,以便填充这些通道,所述薄膜被连接成向微电路提供电能。
在公开的实施例中,微电路设置在基板上。
而且,根据本发明实施例,还提供一种制造电储存单元的方法,包括:
提供具有形成在其中的多个腔室的基板,所述腔室具有大于1的纵横比并具有表面区域,所述基板限定第一电极;和
在表面区域上形成薄膜,以便限定第二电极以及以及位于第一电极和第二电极之间的固体电解质。
附图说明
从下面结合附图对本发明实施例的详细说明将更全面地理解本发明,其中:
图1是根据本发明实施例的基于MCP的电池的示意图;
图2是示出根据本发明实施例的基于MCP的电池中的薄膜层的细节的示意剖面图;
图3是根据本发明实施例的基于MCP的电池的一部分的示意剖面图;以及
图4是根据本发明实施例的包括微电池的集成微电子器件的示意顶视图。
具体实施方式
图1是根据本发明实施例的基于MCP的电池20的示意图。电池20包括用作电池基板的MCP22。MCP可包括非导电材料,如玻璃或石英,或者导电材料,如合适形式的碳。在制造MCP22时可采用本领域已知的任何合适的方法,如在发明背景部分以及在这里引入的专利文献中介绍的方法。
MCP22包括被通道壁30分开的通道24的矩阵。通常,通道24的纵横比大于1,并且MCP22含有几千或甚至几百万个通道。然而,为了清楚表示,在图中已经相对于MCP22的总直径和厚度放大了通道24的直径。在本领域目前公知的这种类型的MCP中,通道24可以具有从小于1μm到大约50μm范围内的直径,并且构成MCP的横截面的至少50%(并且经常大于50%)。MCP的总直径通常可以从1mm到大于100mm,厚度从0.5mm到10mm。然而,这些尺寸只是举例而已,并且本发明的原理可以适用于以更小或更大尺寸的MCP基板为基础的电池的制造。
如上所述,MCP 22是通过将多个管子结合在一起而形成的,其中管子的内腔限定通道24。在图1所示的实施例中,管子堆叠成六边形结构,并且管子的壁熔接在一起,以形成一个整体的、连续的壁结构,其中原始管子的独立壁不再彼此可以区分开。这种结构对于大多数商业上可获得的MCP是普遍的。
或者,其它MCP结构也可用作器件20的基板。例如,MCP可以包括一束管子,在结合在一起之后,这些管子的壁仍然保持很清晰,并在壁之间的空间中具有附加的腔。尽管所示MCP 22具有圆形结构,具有六边形的通道24封装结构,但是也可以将MCP制作成本领域中已知的任何合适的结构。例如,可以将MCP切割成正方形或其它矩形形状,和/或可以将通道设置成正方形或矩形矩阵或设置成随机图形。MCP基板的形状和厚度可以简单地通过将MCP材料切割成所希望的尺寸而任意确定。此外,对于需要极度最小化的应用,可以应用本发明的原理,以在只有几个管子的一捆内或者甚至在单个管子内形成微电池。
用多层薄膜结构26填充通道24,所述结构26包括电极、固体电解质和可能的附加层。下面将介绍一些典型结构和材料。结构26可以填充通道24的整个体积,如图1所示,以及如图3所示,或者薄膜层可以只覆盖壁30的内部,而保持通道的中心是打开的,如图2所示(下面将更详细地介绍图2和3)。通常,薄膜结构26还覆盖MCP 22的上表面和下表面中的一个或两个,使得这些层在整个MCP上是邻接的。
电池20的电功率输出设置在端子28,其分别连接(任选地通过集流体层)到薄膜结构的阴极和阳极层。(图中的正和负端子的表示是任意的,并且可以相反,这取决于结构26中的层的顺序)。结构26在MCP的上表面和/或下表面上的邻接允许使用端子28作为用于整个MCP上的薄膜层的公用接触。或者,其它电气方案可以用于接触MCP的独立通道中的薄膜层,这对于本领域技术人员来说是很显然的。电池20可以设计成用作一次电池或二次(可再充电)电池,这取决于结构26中的层的组成物。
图2是示出根据本发明实施例的在通道24内部的薄膜结构26的细节的电池20的示意剖面图。为了清楚说明,图中放大了薄膜层的相对厚度。在图中可以看到,两层都覆盖通道24的内壁,并且在MCP的上表面和下表面上延伸。薄膜层可以使用本领域公知的任何合适的工艺来淀积,如湿法工艺或化学汽相淀积(CVD)工艺。下面将介绍一些具体制造例子。
在图2所示的实施例中,集流体层32淀积在MCP基板上并因此覆盖壁30。可以是电池20的阳极或阴极的电极层34淀积在集流体层32上。或者,如果电极层34能起到集流功能(如下面在例1中的),或者如果壁30本身由导电材料如碳的合适形式制成,则可以取消集流体层。在下面例4中介绍的可替代的实施例中,MCP基板还用作电极之一,例如阳极。在这种情况下,可以从结构26中省掉层32和层34两者。
电极层34被电解质层36覆盖,电解质层36通常是聚合物基体中的固态电解质。第二(阴极或阳极)电极层38形成在电解质层36上。如果需要的话,电极层38的后面跟随另一(任选的)集流体层40。或者,如果电极层38是足够导电的(例如,如果层38包括石墨阳极),则不需要集流体层40。
图3是根据本发明实施例的示出薄膜结构26的细节的电池20的示意剖面图。在本实施例中,在壁30上和在MCP 22的上表面和下表面上依次淀积层32、34和36。然后淀积最后层-在这种情况下是电极层38,以便完全填充通道24,并覆盖MCP的顶部和底部。(在本实施例中,假设层38包括导电材料,如石墨,因此不需要集流体层40)。为了清楚表示,图中将薄膜层32、34和36的厚度再次放大。在典型实施例中,壁30为大约10μm厚,而通道24的直径最初为50μm。层32、34和36中的每一个的厚度在大约0.5μm和5μm之间,并且层38填充通道体积的其余部分(大致80%)。由于这些层都是邻接的,因此端子28可以在电池30的外表面中在外层中留下的开口处接触内电极层34或相邻的集流体层32或壁30。
按照这种方式填充通道24使电池20中的活性材料的总体积相对于MCP基板的尺寸最大。这种完全填充不仅在MCP基电池中有用,而且在建立在具有多个腔的基板(如在上述美国专利6197450中所述的基板)上的其它种类的三维存储单元中也是有用的。
现在介绍以本发明的原理为基础的微电池的许多具体例子。下面的例1-3使用圆形钠钙玻璃MCP(Burle Electro-Optics,partno.C13S05M50)作为它们的基板,其外部直径为13mm,有效区域直径为9mm,厚度为0.5mm,通道直径为50μm。(“有效区域”是可接近微通道的MCP的一部分,而MCP的外部分被安装凸缘覆盖)。引用所有这些例子都是为了帮助理解本发明的可行实施方式,并且不应该理解为以任何方式限制本发明的范围。在上述美国专利6197450中介绍了可以在三维薄膜微电池的各个层中使用的其它材料。例1
将包括锂离子阳极、混合聚合物电解质(HPE)和MoS2阴极的可再充电电化学电池(基于MCP的电池)组装在如上所述的玻璃MCP基板上。在用Ni集流体涂覆基板之前,为了除去可能的有机残余物,将玻璃基板浸在丙酮中,并且在100-200g/LNaOH的弱碱溶液中进行脱脂5分钟。在去离子水中漂洗之后,在NH4F:???HF溶液中刻蚀基板2分钟,以增加粗糙度并提高镍对玻璃基板的粘接性。在室温下在PdCl2:SnCl2:HCl:KCl溶液中进行表面催化3-10分钟。这种溶液的成分如下,(g/L):1-10PdCl2;30-100SnCl2*2H2O;25-120HCI;80-100KCl。选择对于提供保形淀积来说是公知的无电镀工艺来涂覆玻璃通道内部和基板的顶部及底部上的Ni集流体。镀液由作为主要镍源的NiSO4、作为还原剂的NaH2PO2、和作为缓冲剂的CH3COONa以及适度的Ni配位剂构成。对于每个实验使用新鲜的镀液(pH=10-11,70℃),以便保持镍浓度恒定并且避免污染。Ni淀积的厚度是时间的函数并且可以改变。
在刚刚镍涂覆的MCP基板上通过MoS4 2-离子的还原来制备0.3-1μm厚的MoS2阴极。由0.05M连四钼酸盐(tetrathiomolybdate)的水溶液进行MoS2的淀积。氯化钾(0.1M)是支持电解质。在室温下进行电学淀积。该电学淀积是在10mA/cm2的恒定电流密度下进行4分钟来完成的。将淀积的样品在去离子水中彻底漂洗并在升高温度下进行真空干燥。
选择用于混合聚合物电解质(HPE)的聚合物是商业上可获得的PVDF-2801共聚物(Kynar)。将PVDF粉末溶解在高纯的环戊酮(Aldrich)中。添加烟熏的硅石130(Degussa)和碳酸丙烯(PC,Merck),并且在室温下搅动混合物大约24小时,从而获得均匀的浆料。在完全溶解之后,将浆料浇注在MCP基板上。为了促进孔的保形填充,使用几个连续的步骤,包括真空和旋涂。HPE的厚度为1-5μm数量级。环戊酮蒸发之后,将涂覆有三层的基板在真空中干燥,以保证溶剂完全蒸发。
使用例如Hashikawa等人在Zeitschrift fur Naturforschung 57a(2002),第857-862页的“Lithium Isotope Effect AccompanyingChemical Insertion of Lithium into Graphite,”中介绍的利用n丁基锂的化学锂化(lithiation)工艺制备锂化石墨,这里引入该文献作为参考。得到的粉末与聚苯乙烯混合并溶解在甲苯中,从而得到粘性均匀浆料,将其***通道中并通过真空和旋涂在平坦表面上扩散。最后,将由镍集流体、硫化钼阴极、混合聚合物电解质和锂化石墨阳极构成的具有夹层状结构的MCP基板浸泡在1M Li酰亚胺乙烯碳酸酯(EC):二甲基碳酸酯(DMC)1∶1(v/v)基电解质中。
将得到的锂离子/HPE/MoS2-MCP电池***纽扣电池(coin cell)并使用Maccor(Tulsa,Oklahoma)系列2000电池测试***在室温下循环。截止电压为1.3-2.4V;充电/放电电流密度在10和100μA/cm2之间变化。Li/HPE/MoS2电池在100μA/cm2下每循环的输送在860μAh以上,并且可以达到200个可逆循环以上,且容量减弱为0.05%/循环。法拉第效率接近于100%。
例2
在与上述相同的基板上制备基于MCP的电池。在升高温度(90℃)下在pH=10的NiSO4:NaH2PO2:EDTA中进行镍集流体的淀积,时间为5分钟。如例1中那样制备阴极。PEO(10%w/w)用作复合锂化石墨阳极中的粘接剂。将具有夹层状结构的MCP基板浸泡在1M LiI-四甘醇二甲醚(tetraglyme):10%碳酸亚乙酯(EC)(v/v)基电解质中。
将得到的Li-离子/HPE/MoS2电池在室温下并且在50μA/cm2的电流密度下进行循环。放电时的截止电压为1.3V。充电时的截止电压为2.4V。该电池经历40个以上的可逆循环(100%的放电深度),并且退化的程度不超过0.1%/循环。
例3
将无电淀积的铜用作阴极集流体。用于无电铜淀积的溶液由(g/L):10-15 CuSO4 x 5H2O、10-15NaOH、2-3NiCl2 x H2O、0.001Na2S2O8和15-25mL/L HCOH(37%)构成。在pH12.2和20分钟淀积时间时,Cu层的厚度大约为2-2.5μm。将这个铜层在0.1-0.5mA/cm2的恒定电流下在聚硫化物(10mM Na2S、0.1M NaOH和元素硫的混合物)的水溶液中进行电氧化,时间为0.5分钟。
得到的Li/HPE/Cu2S电池经历40个以上的可逆循环,并且退化的程度不超过0.8%/循环。
例4
在本例中,假设电池基板包括导电材料,如合适形式的碳。例如,基板可以包括如在上述美国专利6270714中介绍的碳MCP。或者,可以使用具有腔阵列的金刚石基板,如在美国专利6521149中介绍的,这里引入其内容作为参考。(尽管这个专利将这种结构称为“独立的固体金刚石MCP”,但是它不是如在本专利申请中定义的MCP,因为它不是由多个管子形成的)。
导电基板既用作集流体又用作阳极。基板可以被如在例1中所述的HPE薄膜涂覆。然后可以用含有10%w/w苯乙烯作为粘接剂的锂化氧化钴(或其他纳米尺寸的锂化阴极材料)的浆料填充剩余的腔。具有阴极集流体的这种夹层结构可用作高能量密度微电池。
图4是根据本发明实施例的包括作为微电池构成的电池20的集成微电子器件50的示意顶视图。器件50包括基板52,其具有形成在基板的一部分上的微电路54。微电池20同样地安装在基板52上并向微电路54输送功率。在一个实施例中,基板52包括半导体材料,例如硅,在其上通过如本领域公知的光刻工艺形成微电路54。在这种情况下,微电池20通常是分开地制造在合适的MCP上,然后粘接到基板上。
在另一实施例中,基板52包括玻璃材料,如例如用于生物-芯片和一些微机电***(MEMS)器件中的材料。在这种情况下,微电池20可以制造在玻璃MCP上,然后熔化或者粘接到基板上。或者,基板52本身可以包括MCP,微电路54粘接到到该MCP上。此外,基板52可包括塑料、陶瓷和/或金属材料,如在本领域公知的芯片载体、芯片封装和各种混合器件中使用的。
尽管图4中示出的微电池20安装在微电路54的旁边,但是微电池也可以安装在微电路的上方或下方、在基板52的同一侧或者相对侧。此外,微电池20可以是圆形的(如图1所示)或可以具有在器件50的封装要求方面较为便利的其它形状。
应该理解,作为例子列举了上述实施例,并且本发明不限于上面特别示出和说明的内容。而是,本发明的范围包括本领域技术人员在阅读了前述说明书之后可以进行的并在现有技术中没有公开的上述各个特征的组合和子组合、以及其变化和修改。

Claims (20)

1、一种电能储存器件,包括:
具有形成在其中的多个腔室的基板,所述腔室具有大于1的纵横比并具有表面区域;和
形成在该表面区域上的薄膜,该薄膜用于限定阳极、阴极以及设置在该阳极和该阴极之间的固体电解质,所述薄膜包括最后层,形成该最后层以便填充所述腔室。
2、根据权利要求1所述的器件,其中所述基板包括非导电材料、半导体材料和导电材料中的至少一种。
3、根据权利要求1或2所述的器件,其中所述基板具有顶表面和底表面,并且其中形成所述腔室,以便从所述顶表面到所述底表面贯穿所述基板。
4、根据权利要求1或2中的任一项所述的器件,其中所述基板具有顶表面和底表面,并且其中所述薄膜进一步形成在所述顶表面和底表面中的至少一个上。
5、根据权利要求1或2中的任一项所述的器件,其中所述薄膜包括至少一个集流体层。
6、根据权利要求1或2中的任一项所述的器件,其中所述固体电解质包括混合聚合物电解质。
7、根据权利要求1或2所述的器件,其中所述基板包括具有形成在其中的通道的微通道板(MCP),所述通道用作为所述腔室。
8、根据权利要求7所述的器件,其中所述MCP包括熔合在一起并被切割以限定MCP的多个管子,这些管子具有限定所述通道的内腔。
9、一种微电子器件,包括:
微电路;
具有形成在其中的多个腔室的基板,所述腔室具有大于1的纵横比并且具有表面区域;和
形成在该表面区域上的薄膜,该薄膜用于限定阳极、阴极以及位于该阳极和该阴极之间的固体电解质,所述薄膜包括最后层,形成所述最后层以便填充所述腔室,所述薄膜被连接成向所述微电路提供电能。
10、根据权利要求9所述的器件,其中所述微电路设置在所述基板上。
11、根据权利要求9或10所述的器件,其中所述基板包括具有形成在其中的通道的微通道板(MCP),所述通道用作为所述腔室。
12、根据权利要求11所述的器件,其中所述MCP包括熔合在一起并被切割以限定MCP的多个管子,这些管子具有限定所述通道的内腔。
13、一种制造电储存单元的方法,包括:
提供具有形成在其中的多个腔室的基板,所述腔室具有大于1的纵横比并具有表面区域;和
在该表面区域上形成薄膜,以便限定阳极、阴极以及位于该阳极和该阴极之间的固体电解质,所述薄膜包括最后层,形成所述最后层以便填充所述腔室。
14、根据权利要求13所述的方法,其中所述基板包括非导电材料、半导体材料和导电材料中的至少一种。
15、根据权利要求13或14所述的方法,其中所述基板具有顶表面和底表面,并且其中形成所述腔室,以便从所述顶表面到所述底表面贯穿所述基板。
16、根据权利要求13或14所述的方法,其中所述基板具有顶表面和底表面,并且其中形成所述薄膜还包括在所述顶表面和所述底表面的至少一个上形成所述薄膜。
17、根据权利要求13或14所述的方法,其中所述薄膜包括至少一个集流体层。
18、根据权利要求13或14所述的方法,其中所述固体电解质包括混合聚合物电解质。
19、根据权利要求13或14所述的方法,其中所述基板包括具有形成在其中的通道的微通道板(MCP),所述通道用作为所述腔室。
20、根据权利要求19所述的方法,其中所述MCP包括多个管子,所述管子熔合在一起并被切割以限定所述MCP,所述管子具有限定所述通道的内腔。
CNB200480037093XA 2003-10-14 2004-10-14 电能储存器件及其制造方法 Expired - Fee Related CN100508260C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US51138203P 2003-10-14 2003-10-14
US60/511,382 2003-10-14

Publications (2)

Publication Number Publication Date
CN1894812A CN1894812A (zh) 2007-01-10
CN100508260C true CN100508260C (zh) 2009-07-01

Family

ID=34435150

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200480037093XA Expired - Fee Related CN100508260C (zh) 2003-10-14 2004-10-14 电能储存器件及其制造方法

Country Status (5)

Country Link
US (1) US7527897B2 (zh)
EP (1) EP1678772A4 (zh)
JP (1) JP5103016B2 (zh)
CN (1) CN100508260C (zh)
WO (1) WO2005036711A2 (zh)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006056963A2 (en) * 2004-11-26 2006-06-01 Koninklijke Philips Electronics N.V. Energy system, electronic module, electronic device, and method for manufacturing of said energy system
CN101065830A (zh) * 2004-11-26 2007-10-31 皇家飞利浦电子股份有限公司 表面区域进行改性的方法和电子器件
FR2880197B1 (fr) * 2004-12-23 2007-02-02 Commissariat Energie Atomique Electrolyte structure pour microbatterie
US7618748B2 (en) * 2006-03-13 2009-11-17 Tel Aviv University Future Technology Development L.P. Three-dimensional microbattery
JP2008147177A (ja) * 2006-11-16 2008-06-26 Yamagata Univ リチウムイオン二次電池
US20110097623A1 (en) * 2008-02-12 2011-04-28 Massachusetts Institute Of Technology Small-scale batteries and electrodes for use thereof
US8906534B2 (en) * 2008-05-28 2014-12-09 Taiwan Semiconductor Manufacturing Company, Ltd. Stacked multi-cell battery concept
CN102165627A (zh) * 2008-09-29 2011-08-24 Nxp股份有限公司 固态电池
CN102823021B (zh) 2010-01-26 2017-10-20 Cymbet公司 电池阵列,构造以及方法
EP2533340B1 (en) 2010-02-01 2018-12-05 LG Chem, Ltd. Cable-type secondary battery
KR101279409B1 (ko) * 2010-02-01 2013-06-27 주식회사 엘지화학 케이블형 이차전지
WO2011154862A1 (en) 2010-06-06 2011-12-15 Ramot At Tel-Aviv University Ltd Three-dimensional microbattery having a porous silicon anode
KR101322695B1 (ko) * 2010-08-25 2013-10-25 주식회사 엘지화학 케이블형 이차전지
CN102456920B (zh) * 2010-10-28 2014-02-26 华东师范大学 一种基于硅微通道板的三维锂离子电池的固体电解质的制备方法
WO2012076950A1 (en) * 2010-12-05 2012-06-14 Ramot At Tel-Aviv University Ltd. Electrophoretic deposition of thin film batteries
CN103515108B (zh) * 2012-06-29 2017-11-28 中国科学院长春应用化学研究所 电化学电容器和活性中间相炭微球的制备方法
US9419463B2 (en) 2012-11-29 2016-08-16 Cymbet Corporation Thin film microbattery charge and output control
CN104821414A (zh) * 2014-01-30 2015-08-05 纳米及先进材料研发院有限公司 透明或半透明电池制造方法
CN104409690B (zh) * 2014-05-31 2016-09-07 福州大学 一种基于3d打印技术制备锂离子电池叠层垂直交叉电极的方法
FR3021524A1 (fr) 2014-06-02 2015-12-04 Small Bone Innovations Internat Tige d'ancrage metacarpien, notamment pour une prothese trapezo-metacarpienne
US20160064769A1 (en) * 2014-08-29 2016-03-03 Kobi Goldstein System for fabricating an electrical storage cell
WO2016144944A1 (en) * 2015-03-09 2016-09-15 President And Fellows Of Harvard College Method of making an electrode structure and a microbattery cell
WO2017055984A1 (en) 2015-09-30 2017-04-06 Ramot At Tel Aviv University Ltd. 3d micro-battery on 3d-printed substrate
DE102015122773A1 (de) 2015-12-23 2017-06-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Kondensator mit beschichteten Poren
CN106206213B (zh) * 2016-07-18 2017-10-31 中国科学院西安光学精密机械研究所 一种采用mems工艺制备有机微通道板的方法
KR102654868B1 (ko) 2016-09-28 2024-04-05 삼성전자주식회사 전고체형 3차원 배터리 및 그 제조방법
KR102553859B1 (ko) * 2017-01-02 2023-07-11 3디베터리즈 리미티드 에너지 저장 장치 및 시스템
WO2018175423A1 (en) * 2017-03-20 2018-09-27 Millibatt, Inc. Battery system and production method
US10903672B2 (en) * 2017-03-30 2021-01-26 International Business Machines Corporation Charge method for solid-state lithium-based thin-film battery
US10622680B2 (en) 2017-04-06 2020-04-14 International Business Machines Corporation High charge rate, large capacity, solid-state battery
DE102017118308A1 (de) * 2017-08-11 2019-02-14 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Herstellung einer elektrochemischen Speichervorrichtung
CN111525181B (zh) * 2020-05-08 2022-01-18 上海空间电源研究所 一种低界面电阻的全固态电池及其制备方法
CN116438689A (zh) * 2020-08-19 2023-07-14 米莉巴特有限公司 三维折叠电池组及其制造方法
EP4302354A1 (en) * 2021-03-05 2024-01-10 Zelos Energy Ltd. Rechargeable cell architecture

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4659637A (en) * 1986-04-17 1987-04-21 The United States Of America As Represented By The United States Department Of Energy Electrochemical cell with high conductivity glass electrolyte
US4906536A (en) * 1986-12-15 1990-03-06 Fremont Special Machine Company, Inc. Tubelet panel and method of manufacture thereof
DE3838329A1 (de) * 1987-11-11 1989-05-24 Ricoh Kk Negative elektrode fuer sekundaerbatterie
US6066020A (en) 1997-08-08 2000-05-23 Itt Manufacturing Enterprises, Inc. Microchannel plates (MCPS) having micron and submicron apertures
IL123462A0 (en) 1998-02-26 1998-09-24 Carbon Membranes Ltd A method for potting or casting inorganic hollow fiber membranes intotube sheets
DE69942936D1 (de) 1998-07-30 2010-12-23 Corning Inc Verfahren zur herstellung photonischen strukturen
US6197450B1 (en) * 1998-10-22 2001-03-06 Ramot University Authority For Applied Research & Industrial Development Ltd. Micro electrochemical energy storage cells
KR100296741B1 (ko) 1999-05-11 2001-07-12 박호군 트렌치 구조를 갖는 전지 및 그 제조방법
US6521149B1 (en) * 2000-06-06 2003-02-18 Gerald T. Mearini Solid chemical vapor deposition diamond microchannel plate
WO2004036668A2 (en) 2002-10-17 2004-04-29 Tel-Aviv University Future Technology Development L.P. Thin-film cathode for 3-dimensional microbattery and method for preparing such cathode
EP1769545A4 (en) * 2004-04-27 2010-04-07 Univ Tel Aviv Future Tech Dev 3D MICROBATTERIES BASED ON NESTED MICROCONTAINER STRUCTURES

Also Published As

Publication number Publication date
WO2005036711A2 (en) 2005-04-21
JP2007508675A (ja) 2007-04-05
US20070134549A1 (en) 2007-06-14
EP1678772A4 (en) 2010-06-02
JP5103016B2 (ja) 2012-12-19
WO2005036711A3 (en) 2005-09-01
CN1894812A (zh) 2007-01-10
EP1678772A2 (en) 2006-07-12
US7527897B2 (en) 2009-05-05

Similar Documents

Publication Publication Date Title
CN100508260C (zh) 电能储存器件及其制造方法
CN101401238B (zh) 三维微电池
US8187740B2 (en) 3-D microbatteries based on interlaced micro-container structures
US10256500B2 (en) Three-dimensional batteries and methods of manufacturing the same
US10403884B2 (en) Electrode structures
US7166384B2 (en) Microscopic batteries for MEMS systems
US9123954B2 (en) Three-dimensional microbattery having a porous silicon anode
CN101371381B (zh) 制造由硅或者基于硅的材料组成的纤维的方法及其在锂充电电池中的应用
CN102656728B (zh) 锂离子电池及这类电池的制造方法
WO2010007579A1 (en) Three-dimensional solid state battery
CN101507024A (zh) 电化学能源及制作该电化学能源的方法
CN101501903A (zh) 电化学能量源、电子设备和制造这种电化学能量源的方法
WO2004036668A2 (en) Thin-film cathode for 3-dimensional microbattery and method for preparing such cathode
JP2015028954A (ja) 改良されたバッテリーおよび組立方法
CN101427415A (zh) 基于交错的微容器结构的三维微电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090701

Termination date: 20161014