CN100455536C - Luetcium aluminum garnet -base transparent ceramic and process for preparing same - Google Patents

Luetcium aluminum garnet -base transparent ceramic and process for preparing same Download PDF

Info

Publication number
CN100455536C
CN100455536C CNB2006100255364A CN200610025536A CN100455536C CN 100455536 C CN100455536 C CN 100455536C CN B2006100255364 A CNB2006100255364 A CN B2006100255364A CN 200610025536 A CN200610025536 A CN 200610025536A CN 100455536 C CN100455536 C CN 100455536C
Authority
CN
China
Prior art keywords
aluminum garnet
transparent ceramic
base transparent
luetcium aluminum
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2006100255364A
Other languages
Chinese (zh)
Other versions
CN1837142A (en
Inventor
刘学建
李会利
黄莉萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Institute Of Advanced Inorganic Materials
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CNB2006100255364A priority Critical patent/CN100455536C/en
Publication of CN1837142A publication Critical patent/CN1837142A/en
Application granted granted Critical
Publication of CN100455536C publication Critical patent/CN100455536C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The present invention relates to lutetium-aluminum garnet group transparent ceramics and a preparing method thereof, which belongs to the field of transparent ceramics. The lutetium-aluminum garnet group transparent ceramics are characterized in that the transparent ceramics have Lu<3-x>RExAl5O12, wherein x is more than 0 and less than or equal to 0.15, and RE is one kind of rare earth ions of Ce, Pr, Eu, Nd, Sm, Gd, Yb, Ho, Tm, Dy and Er; when x is 0, the transparent ceramics are pure lutetium-aluminum garnet; when x is more than 0.15, the relative luminous intensity of the transparent ceramics is lowered because of the concentration quenching effect of the rare earth ions. By adopting the raw materials selected by the present invention and the technological condition provided by the present invention, the materials can be prepared into the transparent ceramics with good light transmission. The transparent ceramics provided by the present invention have the characteristics of high density, fast absorption, high ray-absorbing capability, etc., and have potential application prospects in the fields of flickering radiation detection materials, up-conversion luminescence materials, laser materials, etc.

Description

A kind of Luetcium aluminum garnet-base transparent ceramic and preparation method thereof
Technical field
The present invention relates to a kind of Luetcium aluminum garnet-base transparent ceramic and preparation method thereof, belong to the technical field that contains the preparation of rare earth oxide transparent article fine ceramics.
Background technology
The new Application Areas of stupalith has been opened up in the successful preparation of translucent alumina ceramics (US Pat.3026210), the development of passing through decades can have been prepared the crystalline ceramics of various excellent performances, and the optical property of some crystalline ceramics has reached the level of monocrystalline.Crystalline ceramics has become a kind of important optical material and has been applied in fields such as high temperature form, radiation detection, laser mediums.
YAG is the abbreviation of yttrium aluminum garnet, and its chemical formula is Y 3Al 5O 12, be by Y 2O 3And Al 2O 3A kind of sosoloid that forms belongs to isometric system, has garnet structure, does not have birefringence effect, can be made into the crystalline ceramics with excellent optical property, has important application prospects as solid laser material or scintillation material.Rare earth neodymium (Nd) doped YAG wherein: the Nd transparent laser ceramic has developed into a kind of important laser medium material and has been used widely (A.Ikesue et al., J Am Ceram Soc, 78 (1995) 225,1033,2545; 79 (1996) 507,1921; 80 (1997) 1517; J.Lu et al., Appl Phy Lett, 77 (2000) 3707,78 (2001) 3586); By contrast, although rare earth cerium (Ce) doped YAG: the Ce transparent scintillating ceramic has also obtained tremendous development (E.Zych et al., J Lum, 75 (1997) 173; E.Zych et al., JAlloy ﹠amp; Comp, 300-301 (2000) 495), but because its inherent low density (4.55g/cm -3) restricted its actual application prospect in fields such as flash detections.
Luetcium aluminum garnet (chemical formula Lu 3Al 5O 12, be called for short LuAG) and have identical crystalline structure with YAG, therefore be expected to make the LuAG crystalline ceramics by suitable technology.Simultaneously because LuAG has high-density (6.68g/cm -3, be equivalent to BGO density 94%), high effective atomic number (Z EffCharacteristics, particularly RE such as=60) 3+Ionic 5d-4f transition can produce nanosecond (~ns) fast decay of luminescence, up-conversion luminescence or laser etc., so the adulterated LuAG:RE transparent ceramic material of rare earth RE has important potential application foreground in fields such as flash detection, up-conversion luminescence and Solid State Lasers.
Prepare a kind of rear-earth-doped Luetcium aluminum garnet-base transparent ceramic that can be used for fields such as flash detection, last conversion and Solid State Laser and just cause purpose of the present invention with excellent optical property.
Summary of the invention
The objective of the invention is to prepare a kind of Luetcium aluminum garnet-base transparent ceramic by sintering or hot pressed sintering in vacuum or hydrogen atmosphere.
The Luetcium aluminum garnet-base transparent ceramic of the present invention's preparation, its general formula can be expressed as: Lu 3-xRE xAl 5O 12Wherein: 0<x≤0.15, RE is Ce, Pr, Eu, Nd, Sm, Gd, Yb, Ho, Tm, a kind of rare earth ion among Dy and the Er is pure Luetcium aluminum garnet during x=0.This transparent ceramic material has high density and good optical property, has important application prospects in fields such as flash detection, up-conversion luminescence and Solid State Lasers, x>0.15 o'clock is because the concentration quenching effect of rare earth ion reduces the relative luminous intensity of crystalline ceramics.
Luetcium aluminum garnet-base transparent ceramic provided by the invention comprises preparation method, moulding, sintering and the annealing heat treatment process of powder.Be primarily characterized in that:
1, the selection of raw material:
(1) directly adopting particle diameter is the Lu of 10~500 nanometers 2O 3, RE 2O 3, Al 2O 3Deng oxide powder is raw material, and the adding weight ratio is 0.1~1.0% nano level SiO 2Or analytical pure tetraethoxy (TEOS) is as sinter additives.When the amount of not doping or additive less than 0.1% the time, in sintering latter stage, growing up unusually of crystal grain appears easily, stop the discharge of pore, cause a large amount of pores to be wrapped in intragranular, thereby reduce the transmitance of crystalline ceramics; When the amount of additive greater than 1% the time, a large amount of liquid phases produces, and forms second phase on crystal boundary, equally also reduces the transmitance of crystalline ceramics.
(2) or to adopt by co-precipitation or sol/gel combustion method synthetic particle diameter be the Lu of 10~500 nanometers 3-xRE xAl 5O 12Powder is a raw material, and the adding weight ratio is 0.1~1.0% SiO 2Or TEOS makes sinter additives;
2, moulding process: adopt in dry-pressing formed (10-100MPa), cold isostatic compaction (200-300MPa) or the colloidal formation technology any one;
3, sintering process: in vacuum or hydrogen atmosphere, by pressureless sintering or hot-pressing sintering technique 1700~1900 ℃ of heat preservation sinterings 5~50 hours;
4, annealing heat treatment process: in 1200~1500 ℃ of air atmospheres, be incubated annealing thermal treatment in 5~50 hours;
The characteristics of Luetcium aluminum garnet-base transparent ceramic provided by the invention are:
(1) Zhi Bei Luetcium aluminum garnet-base transparent ceramic has high relative density (〉=99.9%), low porosity (<0.1%) and high ray absorption capacity;
(2) Zhi Bei Luetcium aluminum garnet-base transparent ceramic has uniform microstructure, the crystal grain narrowly distributing, and crystal boundary is in conjunction with tight, and grain boundary size is in the 1-2 nanometer;
(3) Zhi Bei Luetcium aluminum garnet-base transparent ceramic at the transmittance of visible region more than 60%, at the transmittance of region of ultra-red more than 70%;
(4) Zhi Bei rare earth ion doped Luetcium aluminum garnet-base transparent ceramic has strong light emission under UV-light or visible light or X ray or gamma-ray exciting, and can satisfy the requirement that materials such as flash detection, up-conversion luminescence or Solid State Laser are used.
Description of drawings
Fig. 1: press the XRD figure spectrum of the powder of embodiment 1 preparation, show that through 1000 ℃ of calcining 2h after products be single LuAG phase at different calcining temperature insulation 2h.
Fig. 2: press the TEM photo of powder behind 1000 ℃ of calcining 2h of embodiment 1 preparation, show that powder is a nano level, epigranular.
Fig. 3: the diameter by embodiment 1 preparation is that 15mm, thickness are the LuAG:Ce crystalline ceramics of 1.5mm, shows that it is transparent at visible light wave range.
Fig. 4: the thickness by embodiment 1 preparation is the transmittance curve of the LuAG:Ce crystalline ceramics of 1.5mm, and X-coordinate is a wavelength, and ordinate zou is a transmitance.
Fig. 5: press the surface finish corrosion photo of the LuAG:Ce crystalline ceramics of embodiment 1 preparation, show that it has uniform crystal grain and distributes.
Fig. 6: the excitation spectrum (λ that presses the LuAG:Ce crystalline ceramics of embodiment 1 preparation Em=500nm) and emmission spectrum (λ Ex=450nm), X-coordinate is a wavelength, ordinate zou is a luminous intensity.
Fig. 7: press the excitation of X-rays emmission spectrum of the LuAG:Ce crystalline ceramics of embodiment 1 preparation, X-coordinate is a wavelength, and ordinate zou is a luminous intensity.
Fig. 8: press the decay of luminescence curve of the LuAG:Ce crystalline ceramics of embodiment 1 preparation, show that it has fast decay of luminescence.
Fig. 9: the thickness by embodiment 3 preparations is the transmittance curve of the LuAG:Ce crystalline ceramics of 0.8mm, and X-coordinate is a wavelength, and ordinate zou is a transmitance.
Figure 10: the thickness by embodiment 4 preparations is the transmittance curve of the LuAG:Ce crystalline ceramics of 0.5mm, and X-coordinate is a wavelength, and ordinate zou is a transmitance.
Embodiment
Further illustrate substantial characteristics of the present invention and obvious improvement below by embodiment, yet the present invention absolutely not only is confined to described embodiment.
Embodiment 1
With high-purity lutecium oxide (4N), cerium dioxide (4N) and analytical pure aluminum nitrate in atomic ratio Lu: Ce: Al=2.985: 0.015: 5 strict ratio batching, adopt the pure nitric acid of top grade and redistilled water dissolved oxygen lutetium, cerium dioxide and aluminum nitrate to prepare Al respectively 3+Concentration is the mixing salt solution of 0.1~0.3M, then an amount of analytically pure urea is dissolved in this mixing salt solution and obtains the aqueous solution of urea that concentration is 1~3M; Mixing solutions slowly heating while stirring with above-mentioned preparation, water temperature rises to 90~95 ℃ behind about 1h, stop heating behind insulated and stirred 2~3h, continue to stir 5~10h, filtering precipitate, adopt distilled water and absolute ethanol washing filter cake then successively 2~3 times,, place the retort furnace air atmosphere promptly to obtain yellowish green single-phase Lu then in 1000 ℃ of calcining 2h with filter cake dry 24h under 120 ℃ 2.97Ce 0.03Al 5O 12Powder, and the SiO of adding 1.0wt.% 2As sinter additives.Adopt high purity aluminium oxide ball, urethane ball grinder, anhydrous ethanol solvent to calcining powder ball milling, successively through 200 orders sieve, the 200MPa cold isostatic compaction, place vacuum tightness to be not less than 1 * 10 then -2In 1800 ℃ of heat preservation sintering 10h, 1450 ℃ of annealing thermal treatment 20h obtain relative density and reach 99.9% LuAG:Ce (the Ce doping content is 0.5at.%) crystalline ceramics in the retort furnace air atmosphere in the vacuum high temperature furnace of Pa.
Embodiment 2
With high-purity lutecium oxide (4N), Praseodymium trioxide (4N) and analytical pure aluminum nitrate in atomic ratio Lu: Pr: Al=2.976: 0.024: 5 strict ratio batching, according to the test method described in the embodiment 1, obtain relative density and reach 99.9% LuAG:Pr (the Pr doping content is 0.8at.%) crystalline ceramics then.1.0mm this thick crystalline ceramics in the transmitance of visible region near 70%.
Embodiment 3
With high-purity lutecium oxide (4N), cerium dioxide (4N) and analytical pure aluminum nitrate in atomic ratio Lu: Ce: Al=2.985: 0.015: 5 strict ratio batching, adopt the pure nitric acid of top grade and redistilled water dissolved oxygen lutetium, cerium dioxide and aluminum nitrate to prepare Al respectively 3+Concentration is the mixing salt solution of 0.2~0.3M.According to mole ratio nitrate: the ratio of glycine=3: 5 is dissolved in this mixing salt solution with an amount of analytically pure glycine, stirs and forms uniform solution.The beaker that fills this solution is placed on the magnetic stirring apparatus, be heated to 60 ℃ and do not stop to stir, form colloidal sol after a few hours.Be warming up to 80 ℃ and continuation stirring, form xanchromatic transparence gel.Gel put into be preheated to 150 ℃ box-type furnace, through the final loose precursor powder that forms oyster that burns.Precursor powder promptly obtains yellowish green single-phase Lu through 1000 ℃ of thermal treatment 2h in the retort furnace air atmosphere 2.97Ce 0.03Al 5O 12Powder.And add 0.2wt.% analytical pure TEOS as sinter additives, adopt high purity aluminium oxide ball, urethane ball grinder, anhydrous ethanol solvent to calcining powder ball milling then, successively through 200 orders sieve, the 200MPa cold isostatic compaction, place vacuum tightness to be not less than 1 * 10 then -2In 1850 ℃ of heat preservation sintering 10h, 1450 ℃ of annealing thermal treatment 20h obtain relative density and reach 99.9% LuAG:Ce crystalline ceramics in the retort furnace air atmosphere in the vacuum high temperature furnace of Pa.
Embodiment 4
Adopt pure nitric acid of top grade and the commercially available high-purity lutecium oxide of second distillation water dissolution (4N) preparation Lu 3+Concentration is the lutecium nitrate solution of 0.1~0.3M.With distilled water and analytical pure NH 4HCO 3Be mixed with the precipitant solution that concentration is 1~3M.Under agitation lutecium nitrate solution slowly is added drop-wise to NH 4HCO 3In the precipitant solution, dropwise the back and continue to stir 5~10h, filtering precipitate adopts distilled water and absolute ethanol washing filter cake 2~3 times then successively, with filter cake dry 24h under 120 ℃, place the retort furnace air atmosphere to obtain nano level lutecium oxide powder then in 800 ℃ of calcining 2h.
With NH 4HCO 3Lutecium oxide (4N), cerium dioxide (4N) and high-purity submicron order aluminum oxide (purity 4N of precipitation preparation, meta particle diameter 0.25 μ m) in atomic ratio Lu: Ce: Al=2.985: 0.015: 5 strict ratio batching, and the adding weight ratio is 0.5% analytical pure TEOS, adopt high purity aluminium oxide ball, urethane ball grinder, anhydrous ethanol solvent to calcining powder ball milling, successively through 200 orders sieve, the 200MPa cold isostatic compaction, place vacuum tightness to be not less than 1 * 10 then -2In 1750 ℃ of heat preservation sintering 10h, 1450 ℃ of annealing thermal treatment 20h obtain relative density and reach 99.9% LuAG:Ce (the Ce doping content is 0.5at.%) crystalline ceramics in the retort furnace air atmosphere in the vacuum high temperature furnace of Pa.
Embodiment 5
Adopt lutecium oxide (4N), ytterbium oxide (4N) and high-purity submicron order aluminum oxide (purity 4N of preparation among the embodiment 4, meta particle diameter 0.25 μ m) in atomic ratio Lu: Yb: Al=2.85: 0.15: 5 strict ratio batching, adopt test method same among the embodiment 4 then, prepared relative density and be 99.9% LuAG:Yb (the Yb doping content is 5at.%) crystalline ceramics.0.5mm this thick crystalline ceramics in the transmitance of visible region near 70%.

Claims (9)

1, a kind of Luetcium aluminum garnet-base transparent ceramic is characterized in that the Lu that consists of of described crystalline ceramics 2.985Ce 0.015Al 5O 12
2, a kind of Luetcium aluminum garnet-base transparent ceramic is characterized in that the Lu that consists of of described crystalline ceramics 2.976Pr 0.024Al 5O 12
3, a kind of Luetcium aluminum garnet-base transparent ceramic is characterized in that the Lu that consists of of described crystalline ceramics 2.85Yb 0.15Al 5O 12
4, by any described Luetcium aluminum garnet-base transparent ceramic of claim in the claim 1,2 or 3, it is characterized in that described crystalline ceramics grain boundary size is 1~2 nanometer.
5, preparation is characterized in that as the method for claim 1,2 or 3 described Luetcium aluminum garnet-base transparent ceramics concrete steps are:
(1) directly adopts Lu 2O 3, RE 2O 3And Al 2O 3Oxide powder is made raw material by Lu 3-XRE XAl 5O 12, carry out proportioning, or adopt by co-precipitation or the synthetic Lu of sol/gel combustion method 3-XRE XAl 5O 12, and the adding weight percent is 0.1~1.0% SiO 2Or tetraethoxy makes sinter additives, and ball milling is mixed and sieves; X=0.015 when RE is Ce in the formula, X=0.024 when RE is Pr, X=0.15 when RE is Yb;
(2) any one carries out moulding in employing dry-pressing, isostatic cool pressing and the colloidal formation technology;
(3) in vacuum or hydrogen atmosphere, in 1700~1900 ℃ of sintering;
(4) thermal treatment of under 1200~1500 ℃ of air atmospheres, annealing behind the sintering.
6, by the preparation method of the described Luetcium aluminum garnet-base transparent ceramic of claim 5, it is characterized in that directly adopting Lu 2O 3, RE 2O 3And Al 2O 3When oxide powder was made raw material, the purity of powder was 4N, and particle diameter is 10~500 nanometers; RE is Ce, Pr or Yb.
7, by the preparation method of the described Luetcium aluminum garnet-base transparent ceramic of claim 5, it is characterized in that by co-precipitation or sol/gel combustion method synthetic Lu 3-XRE XAl 5O 12The particle diameter of powder is 10~500 nanometers; X=0.015 when RE is Ce in the formula, X=0.024 when RE is Pr, X=0.15 when RE is Yb.
8, by the preparation method of the described Luetcium aluminum garnet-base transparent ceramic of claim 5, it is characterized in that the vacuum tightness of vacuum sintering is not less than 1 * 10 -2Pa, 5~50 hours sintered heat insulating time.
9,, it is characterized in that behind the sintering that the annealing soaking time is 5~50 hours in the air by the preparation method of the described Luetcium aluminum garnet-base transparent ceramic of claim 5.
CNB2006100255364A 2006-04-07 2006-04-07 Luetcium aluminum garnet -base transparent ceramic and process for preparing same Active CN100455536C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100255364A CN100455536C (en) 2006-04-07 2006-04-07 Luetcium aluminum garnet -base transparent ceramic and process for preparing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100255364A CN100455536C (en) 2006-04-07 2006-04-07 Luetcium aluminum garnet -base transparent ceramic and process for preparing same

Publications (2)

Publication Number Publication Date
CN1837142A CN1837142A (en) 2006-09-27
CN100455536C true CN100455536C (en) 2009-01-28

Family

ID=37014674

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100255364A Active CN100455536C (en) 2006-04-07 2006-04-07 Luetcium aluminum garnet -base transparent ceramic and process for preparing same

Country Status (1)

Country Link
CN (1) CN100455536C (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101333110B (en) * 2008-07-16 2011-05-04 上海大学 Method for preparing Nd<3+> -doped Lu2O3transparent laser ceramic
JP2011529111A (en) * 2008-07-23 2011-12-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Gd2O2S material for CT applications
JP5580777B2 (en) 2011-04-25 2014-08-27 浜松ホトニクス株式会社 Ultraviolet light generation target, electron beam excited ultraviolet light source, and method for producing ultraviolet light generation target
CN102690113A (en) * 2012-06-06 2012-09-26 上海大学 Method for preparing Ce:Lu3Al5O12 transparent ceramic scintillator by low-temperature vacuum sintering
CN103396121B (en) * 2013-08-13 2015-07-01 中国科学院宁波材料技术与工程研究所 Novel transparent glitter ceramic with garnet structure and preparation method thereof
CN104030693B (en) * 2014-06-16 2016-01-20 上海应用技术学院 A kind of preparation method of triple cationic Ce:LuAG ceramic fluorescent powder
CN105418063B (en) * 2014-09-22 2017-12-08 中国科学院上海硅酸盐研究所 A kind of non-stoichiometric Luetcium aluminum garnet scintillating ceramic and preparation method thereof
CN104451953B (en) * 2014-11-14 2016-05-11 中国科学院上海光学精密机械研究所 The preparation method of trivalent ytterbium ion doping Luetcium aluminum garnet crystalline ceramics optical fiber
CN106588014B (en) * 2016-12-19 2019-08-23 中国科学院长春光学精密机械与物理研究所 A kind of Tm of luminescence enhancement3+Adulterate lutecia based transparent ceramics and preparation method
CN108863340B (en) * 2017-05-16 2020-10-23 中国科学院上海硅酸盐研究所 Composite structure transparent scintillating ceramic and preparation method thereof
CN108503352B (en) * 2018-03-27 2021-03-16 中国科学院上海硅酸盐研究所 Garnet-based red fluorescent ceramic material and preparation method thereof
CN110550945B (en) * 2018-06-04 2022-08-12 航天特种材料及工艺技术研究所 Preparation method of LuAG Ce transparent ceramic and LuAG Ce transparent ceramic
CN111434641B (en) * 2019-01-12 2023-04-28 上海航空电器有限公司 Fluorescent ceramic for white light illumination, preparation method and white light source device
CN111620566B (en) * 2020-05-15 2021-10-22 华南理工大学 Multiphase transparent ceramic, multiphase transparent ceramic optical fiber, and preparation method and application thereof
CN112552038B (en) * 2020-11-13 2021-12-14 浙江大学 Green fluorescent composite ceramic and preparation method and application thereof
CN113405995A (en) * 2021-06-24 2021-09-17 上海洞舟实业有限公司 Preparation method of light conversion ultraviolet beam analyzer
CN113683420B (en) * 2021-07-27 2022-10-11 中国科学院金属研究所 Large-size Al 2 O 3 LuAG directional solidification eutectic ceramic and light suspension zone melting preparation method thereof
CN115178200A (en) * 2022-06-23 2022-10-14 之江实验室 Laser heating micro-reactor and heating method
CN115180940A (en) * 2022-07-06 2022-10-14 中国科学院上海硅酸盐研究所 Dy, tb and LuAG transparent ceramic for yellow laser and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030075706A1 (en) * 2001-10-11 2003-04-24 Shiang Joseph John Terbium- or lutetium - containing garnet phosphors and scintillators for detection of high-energy radiation
CN1513209A (en) * 2001-06-01 2004-07-14 Broad-spectrum terbium-containing garnet phosphors and white light source incorporating the same
JP2006016251A (en) * 2004-07-01 2006-01-19 Hokushin Ind Inc METHOD FOR MANUFACTURING Lu3Al5O12 CRYSTAL MATERIAL FOR DETECTING RADIATION

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1513209A (en) * 2001-06-01 2004-07-14 Broad-spectrum terbium-containing garnet phosphors and white light source incorporating the same
US20030075706A1 (en) * 2001-10-11 2003-04-24 Shiang Joseph John Terbium- or lutetium - containing garnet phosphors and scintillators for detection of high-energy radiation
JP2006016251A (en) * 2004-07-01 2006-01-19 Hokushin Ind Inc METHOD FOR MANUFACTURING Lu3Al5O12 CRYSTAL MATERIAL FOR DETECTING RADIATION

Also Published As

Publication number Publication date
CN1837142A (en) 2006-09-27

Similar Documents

Publication Publication Date Title
CN100455536C (en) Luetcium aluminum garnet -base transparent ceramic and process for preparing same
Yu et al. Fabrication of Nd: YAG transparent ceramics using powders synthesized by citrate sol-gel method
CN105418063B (en) A kind of non-stoichiometric Luetcium aluminum garnet scintillating ceramic and preparation method thereof
CN108218417A (en) A kind of LuAG of lower valency ion doping:Ce, Me scintillating ceramic and preparation method thereof
CN101514100A (en) Twinkling transparent ceramics system with garnet structure and preparation method thereof
Chen et al. The roles of cation additives on the color center and optical properties of Yb: YAG transparent ceramic
Chen et al. Fabrication and photoluminescence characteristics of Eu3+‐doped Lu2O3 transparent ceramics
Borlaf et al. Strong photoluminescence emission at low dopant amount in YAG: Ce and YAG: Eu phosphors
Lu et al. Effects of Gd substitution on sintering and optical properties of highly transparent (Y0. 95− xGdxEu0. 05) 2O3 ceramics
Fadlalla et al. YAG: Ce3+ nano-sized particles prepared by precipitation technique
CN114773048A (en) Preparation method and application of composite ceramic material
CN102815941B (en) Rare-earth-ion-doped lanthanum gadolinium zirconate transparent ceramic material and preparation method thereof
Zhang et al. Ultraviolet emission transparent Gd: YAG ceramics processed by solid‐state reaction spark plasma sintering
CN104364223B (en) Transparent rare-earth class Ga garnet pottery and manufacture method and Faraday polarization apparatus
Xie et al. Fabrication and spectral properties of Nd, La: CaF2 transparent ceramics
Fadlalla et al. Synthesis and characterization of single crystalline YAG: Eu nano-sized powder by sol–gel method
Alves et al. Persistent luminescence properties of SrBXAl2− XO4: Eu, Dy laser-sintered ceramics
Yang et al. Tb-doped YPO4 phosphors: Polyacrylamide gel synthesis and optical properties
Lu et al. Fabrication and characterization of transparent (Y0. 98− xTb0. 02Eux) 2O3 ceramics with color‐tailorable emission
Chen et al. Microstructure evolution in two-step-sintering process toward transparent Ce:(Y, Gd) 3 (Ga, Al) 5O12 scintillation ceramics
Dai et al. Effect of dopant concentration on the optical characteristics of Cr3+: ZnGa2O4 transparent ceramics exhibiting persistent luminescence
Liu et al. Fabrication and long persistent luminescence of Ce3+-Cr3+ co-doped yttrium aluminum gallium garnet transparent ceramics
Liu et al. Fabrication and characterizations of Cr3+‐doped ZnGa2O4 transparent ceramics with persistent luminescence
Zhang et al. Fabrication and spectral properties of Nd: S-FAP transparent ceramics by simple route of HP method
CN1256300C (en) Process for preparing yttrium oxide based transparent ceramic material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220701

Address after: 215400 No.6 Liangfu Road, Taicang City, Suzhou City, Jiangsu Province

Patentee after: Jiangsu Institute of advanced inorganic materials

Address before: 200050 No. 1295 Dingxi Road, Shanghai

Patentee before: SHANGHAI INSTITUTE OF CERAMICS, CHINESE ACADEMY OF SCIENCES