CN100447614C - 图像显示装置 - Google Patents

图像显示装置 Download PDF

Info

Publication number
CN100447614C
CN100447614C CNB038226979A CN03822697A CN100447614C CN 100447614 C CN100447614 C CN 100447614C CN B038226979 A CNB038226979 A CN B038226979A CN 03822697 A CN03822697 A CN 03822697A CN 100447614 C CN100447614 C CN 100447614C
Authority
CN
China
Prior art keywords
image
optical system
display device
picture
eyeball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB038226979A
Other languages
English (en)
Other versions
CN1685272A (zh
Inventor
西健尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN1685272A publication Critical patent/CN1685272A/zh
Application granted granted Critical
Publication of CN100447614C publication Critical patent/CN100447614C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0804Catadioptric systems using two curved mirrors
    • G02B17/0816Catadioptric systems using two curved mirrors off-axis or unobscured systems in which not all of the mirrors share a common axis of rotational symmetry, e.g. at least one of the mirrors is warped, tilted or decentered with respect to the other elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0605Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors
    • G02B17/0615Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors off-axis or unobscured systems in wich all of the mirrors share a common axis of rotational symmetry
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/16Housings; Caps; Mountings; Supports, e.g. with counterweight
    • G02B23/18Housings; Caps; Mountings; Supports, e.g. with counterweight for binocular arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/011Head-up displays characterised by optical features comprising device for correcting geometrical aberrations, distortion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • G02B2027/0136Head-up displays characterised by optical features comprising binocular systems with a single image source for both eyes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Lenses (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

LCD模组(142)的图像的中间像,通过变焦及自动对焦控制***(g)由反射镜(M1、M2)偏转,并通过中继透镜(b)、反射镜(M3、M4)在扩散玻璃(131)上成像。由扩散玻璃(131)按±20°大小扩散的光束通过目镜(132)在眼球视网膜上投影LCD像。目镜(132)中最为接近晶状体(2)的透镜其中一面具有圆锥面所形成的非眼球形状,该圆锥面的圆锥系数小于-1。由此可获得视野角度为60°以上、像差小的光学***。

Description

图像显示装置
技术领域
本发明涉及一种接近眼球使用的图像显示装置。
背景技术
图像显示装置存在电视机、个人计算机、投影仪、视频录像机、手机等许多种类,但上述现有图像显示的显示器在大小上都存在限制,实际上无法从显示器获得人眼所见到的宽视野图像。
此外,就可随身携带的显示器来说,已知道的有所谓佩戴式显示器的眼镜式显示器和头戴式显示器。
作为佩戴式显示器来说,已知有一种方法如图16(a)所示将小的半透射反射镜40配置于视野中的一部分,通过投影光学***38经过上述半透射反射镜40的偏转将等离子显示器、液晶等图像输出元件39所输出的图像投影到眼球的视网膜上。该方法是用半透射反射镜的,因而属于图像输出元件39所输出的图像浮现于视野中的一部分这种方式(第一类型)。但其视野角度,仅有数度大小,因而可使用于手机的图像信息提示等。
而作为获得再稍微大一些的图像信息的方法,则有图16(b)所示这种方法。这是将较大的光学元件41配置于眼球之前,通过多个反射面和投影光学***42将图像输出元件39所输出的图像投影到眼球视网膜上的方法。这种类型可获得相对较大的视野角度(15~30度大小),但提出的仅是完全遮住视野这种类型。因而,作为用法提出了可脱卸地设置于单只眼睛前面用于佩戴式个人计算机的显示器这种方式(第二类型)、或双眼独立设置相同图像显示装置用作电视机、投影仪的替代品这种方式(第三类型)。
基于上述现有技术的3种类型,可期待成为分别替代手机、笔记本电脑、电视机、投影仪的佩戴式显示器。但实际上,虽说具有可佩戴这种优点,但显示器的视野大小与现有显示器并没有太大差别,若考虑到安装佩戴时的麻烦、视野遮住所造成的眼睛疲劳、耳朵或头部所承载的重量等,具有缺陷明显这种缺点。
本发明正是针对这种情况,其目的在于,提供一种具有接近于人类所见视野大视野角度的可佩戴或可接近眼睛使用的图像显示装置。
发明的公开
用以达到上述目的的第一发明,为一种图像显示装置,为装在所述眼球眼前的图像显示装置,具有:配备与光束出射方向相正交的显示面的二维发光型光电元件;以及将所述光电元件所出射的光束投射到使用者眼球内、具有60度以上视角的鱼眼型光学***,该图像显示装置的一部分可与使用者面部接触,此外至少所述光电元件和所述鱼眼型光学***可由使用者以外的支持机构支持,且所述支持机构可随使用者面部动作移动支持包含所述光电元件和所述鱼眼型光学***在内的单元。
附图说明
图1是示出本发明实施方式中第一例的示意图。
图2是示出本发明实施方式中第二例的示意图。
图3是示出本发明实施方式中第三例的原理图。
图4是示出本发明实施方式中第三例的示意图。
图5示出的是眼球转动时所能够看见的图像信息范围。
图6是示出本发明第四实施方式的原理图。
图7是示出本发明实施方式中第五例的示意图。
图8是示出本发明实施方式中第六例的示意图。
图9是示出本发明实施方式中第七例的示意图。
图10是将第七实施方式的图像输入信息变换为图像输出信息时的说明图。图10(a)示出感光像,图10(b)示出24L液晶型二维输出装置6的输出像,图10(c)示出24R液晶型二维输出装置6的输出像。
图11是示出本发明实施方式中第八例的示意图。
图12是为了图像合成而对外部输入图像信息进行失真修正时的说明图。
图13是示出本发明实施方式中第九例的示意图。
图14是为了图像合成而对多个外部输入图像信息进行失真修正时的说明图。
图15示出的是可从图像信息输出装置脱卸图像信息输入装置、并且可交换色彩的本发明实施方式的第十例。
图16是两例现有技术的概念图。
图17示出的是从3个不同方向入射到晶状体A的平行光束在鱼眼光学***内收敛的位置。
图18示出的是在两椭圆反光镜的共同焦点位置附近***修正光学***、缓和其成像面非对称性的构成。
图19示出的是在眼球中设置逆向鱼眼透镜机构、减小视角的方法。
图20示出的是为了使眼球出射光中继至规定大小的液晶型二维输出装置而用fθ反光镜的构成。
图21示出的是左右眼睛分别配置图20所示构成的状态。
图22示出的是使用曲面反光镜对该成像面弯曲进行修正的方法例。
图23示出的是一例显示装置的实施方式。
图24示出的是摄像机的模式构成。箭头示出视场方向。
图25示出的是远距离形成图像时和近距离形成图像时的左右图像显示装置中的对焦位置和双眼的视线方向。
图26示出的是由半透射反射镜光学合成图像时的具体例。91是左眼视野对应VGA液晶元件输出图像,92是左眼视野对应XVGA液晶元件输出图像,93是左眼视野视网膜可看见的合成图像。
图27示出的是对所述变焦***进行调整时的图像合成。图27(a)示出电影观赏用场合,图27(b)示出全视场观察用场合,箭头示出从电影观赏用途变焦为全视场观察用途。
图28示出的是包含目镜的鱼眼型光学***中配置自动对焦控制机构的显示装置例。
图29示出的是包含目镜的鱼眼型光学***中配置自动对焦控制机构的摄像装置例。
图30示出的是防犯及防灾用途、动物鉴赏用途等所用的固定型摄像机构例。
图31是示出落地式图像显示装置的总体构成图。
图32示出的是平躺使用全视野角度显示装置时的状态。
图33是示出全视野角度显示装置的吸附式面部配合机构的示意图。
图34是从上面观察全视野角度显示装置时的俯视图。
图35是本发明实施方式中包含目镜的鱼眼型光学***的模式图,示出的是考虑人类眼转动动作使晶状体移动20mm时的±70°光束。
图36是本发明实施方式中包含目镜的鱼眼型光学***的模式图,示出的是将眼睛瞳孔大小设定为通常室内大小即3mm左右时的光束。
图37是本发明实施方式中包含目镜的鱼眼型光学***的模式图,示出的是故意具有根据距离视觉中心的视野角度进行离焦的成像面弯曲时的光束。
图38是本发明实施方式中包含目镜的鱼眼型光学***的模式图,示出的是眼转动状态下对焦位置也不怎么变化这种场合的光束。
图39是本发明实施方式中包含目镜的鱼眼型光学***的模式图,示出的是用眼睛观看前方50cm物体时的光束。
图40示出的是用机械手技术保持全视野型显示装置的例子。
图41示出的是用平衡负重来抵消全视野型显示装置荷重的例子。
图42示出的是用万向联轴节来使全视野型显示装置动作自由的例子。
图43示出的是用双曲面透镜来减小成像面处的成像面弯曲和远心倾斜的光学***的例子。图43(a)为无眼球横向移动(眼转动)的场合,图43(b)为眼球横向移动(眼转动)30°的场合,箭头示出图像输出。
图44示出的是图43所示光学***中每一视场角的光束状态。
图45示出的是图44所示特性相对应的各种像差,图45(a)、图45(b)、图45(c)均从左面依次示出球面像差、像散像差、失真。
图46示出的是光束从液晶输出面中继至扩散玻璃的光学***的例子,图46(b)示出像差,从左面依次示出球面像差、像散像差、失真。
图47示出的是光束从液晶输出面中继至扩散玻璃的光学***的例子,图47(b)示出像差,从左面依次示出球面像差、像散像差、失真。
图48是利用图44(a)和图47中光学***的本发明实施方式的装置的模式图。
图49示出的是现有成品和本发明实施方式的成品间的对比。
图50示出的是将平衡锤存放于支持部来保持全视野角度显示装置的状态。
图51示出的是将平衡锤存放于支持部来保持全视野角度显示装置的状态。
图52是示出本发明实施方式中一例光学***的模式图。
具体实施方式
下面用图说明本发明实施方式例。图1是示出本发明实施方式第一例的示意图。图1是从上方看到的人的头部的剖面图,示出头部左侧,图面右下方示出面部轮廓3、左眼眼球部1L、左眼晶状体2L以及横向鼻子4。图面上方则为宽广的视场部分,通过第一鱼眼型光学***10将宽广视场的宽域像通过图像形成于CCD二维阵列传感器9上。在此情况下,第一鱼眼型光学***10具有广角的视场角,将来自其视野中物体的光束改变为细光束,使上述物体的像成像于CCD二维阵列传感器9上。
另外,本说明书和权利要求书中所谓“鱼眼型光学***”一般是指可给出比人类可明确把握物体色彩或其细节部分的视野范围更为宽广的视场角的光学***,不仅包括通常被称为鱼眼透镜(相对于屏幕对角线具有180°视场角的透镜)的光学***,也包含广角透镜(相对于屏幕对角线具有60°至90°视场角的透镜)、超广角透镜(相对于屏幕对角线具有90°或以上视场角的透镜)、以及视场角为30°或以上的标准透镜。另外,就本发明实施方式来说,较好是相对于视场角尺寸的对角线具有90°以上视场角的光学***。
换言之,本说明书和权利要求书中所谓“鱼眼型光学***”是指与一般投影光学***相比能获取较宽广视野信息的广义光学***,通常的广角透镜、鱼眼透镜不用说,还包括包含非球面透镜、圆柱面透镜等具有像散像差的特殊光学***等。此外,对于椭圆反光镜还包含在纵横方向上具有曲率不同的像散像差的特殊椭圆反光镜或仅在单轴方向上的椭圆反光镜等,本说明书和权利要求书中的说明均以此为前提。
CCD二维阵列传感器9的图像,由图像处理装置8作为输出图像信息提供给液晶型二维输出装置6。液晶型二维输出装置6由背光照明,从与输出图像信息对应的像所相当的像素出射光。此光由第二鱼眼型光学***7再次作为在大角度范围内发散的光束从设想焦点处发散。这里,该发散光束由三维椭圆反光镜5偏转,因为将光学***配置为上述设想焦点位于三维椭圆反光镜5的第一焦点附近,该发散光束聚光于三维椭圆反光镜5的第二焦点附近。
第二焦点附近具有左眼眼球部1L的左眼晶状体2L,结果是宽域图像作为投影像成像在左眼眼球部1L内视网膜上。之所以使左眼晶状体2L位于第二焦点附近,是用以使光学***的光瞳位置和眼球的瞳孔位置基本一致,减少光线浪费。
具体来说,液晶型二维输出装置6的面上所形成的图像图案在视网膜上成像,成为遍及视网膜有效视野整个区域或与其接近区域的像。由此,可以形成具有覆盖视野整体或其大部分这种视野角度的像。
而且,由图1可知,通过三维椭圆反光镜5的两个焦点连线的中点并与该连线垂直的面,与三维椭圆反光镜5的反射面相交叉。由此,三维椭圆反光镜5的反射面取得较宽,可反射CCD二维阵列传感器9所发散的出射光的全部或大部分来聚光于第二焦点附近。
此外,“设想焦点位于三维椭圆反光镜5的第一焦点的附近”、“第二焦点附近具有左眼眼球部1L的左眼晶状体2L”这种记载中的“附近”含义是指,在是具有60度以上视野角的图像显示装置这种情况下,只要光浪费所造成的损耗为实质上不成问题的程度,也可以不必严格位于焦点位置,意味着第二焦点和晶状体的位置关系虽然随图像显示装置的加装而有偏移,但容许这种偏移。本说明书和权利要求书中,只要未专门提及,均将“焦点附近”这一用语用来表述上述含义。
图1中,为了便于说明该三维椭圆反光镜5的2个焦点,用虚线示出实际上并不存在的椭圆部分。下面的附图当中,示出反射镜时也使用这种表示方法。
图1所示的实施方式中,观察光束也可知道,左眼眼球部1L内的光束和第二鱼眼型光学***7所对应的光束其角度不同。具体来说,发生较大的失真。图像处理装置8,通过对此加以考虑,对CCD二维阵列传感器9的输入信息在液晶型二维输出装置6输出的图像上加上数字修正,可对左眼眼球部1L内视网膜上投影良好的图像。
但常规CCD二维阵列传感器和液晶型二维输出装置为有限感光元件和液晶元件的集合体,若加上数字修正,所压缩的失真部分便无法使信息合理解压缩,因而析像度变差,无法获得良好的图像。
图2概要示出避免这种情形的本发明第二实施方式。下面附图中,与先前附图所示组成部分相同的组成部分往往加上相同标号,省略其说明。但为了方便说明,对于相同组成部分也有加上不同标号这种情形。而且,为示出左眼用途,在数字以外字符后加L,为示出右眼用途则加R来表示,对于相同的且为左右眼睛共用的则用相同数字或字符省略L和R来表示。
本实施方式中,并非将第二鱼眼型光学***7直接置入三维椭圆反光镜5的第一焦点,在该焦点部分制作出虚拟的发散光源。由第一鱼眼型光学***10压缩来自宽广视野的广域像,使投影像通过图像形成成像于CCD二维阵列传感器9上。在此情况下,第一鱼眼型光学***10具有广角视野,使其视野中物体的光束变为细光束,从而使上述物体的像成像于CCD二维阵列传感器9上。
CCD二维阵列传感器9的图像可由图像处理装置8作为输出图像信息提供给液晶型二维输出装置6。液晶型二维输出装置6由背光照明,从与输出图像信息对应的像所对应的像素使光出射。此光通过包含fθ透镜的失真修正光学***13成为平行光束,再由fθ反光镜12反射而成为通过其焦点的光束。该fθ反光镜的焦点位置配置为与三维椭圆反光镜5的第二焦点相一致。
因而,液晶型二维输出装置6的出射光,成为从fθ反光镜12的焦点即三维椭圆反光镜5的第二焦点所发散的发散光,具有宽广发散角度并由三维椭圆反光镜5反射,聚光于该第一焦点附近配置的左眼眼球部1L的左眼晶状体2L附近,以宽广角度成像于左眼眼球部1L。所以,构成为通过让眼球受到来自液晶型二维输出装置6的光束,来接受CCD二维阵列传感器9的输出信息。失真修正光学***13是具有对三维椭圆反光镜5所发生的如上所述的失真进行修正这种功能的光学***。
在这种情况下,虽可以由失真修正光学***13来修正三维椭圆反光镜5产生的失真,但难以仅靠失真修正光学***130来修正第一鱼眼型光学***10所发生的失真,还是要通过由图像处理装置8进行数字失真修正,得到良好的图像。
本说明书和权利要求书中所谓的“fθ反光镜”,是指使点光源所出射的光束变为平行光束的反光镜这种广义含义,用作具有这种效果的反射镜总称。
图3示出本发明第三实施方式的原理。图3中,使fθ反光镜相对来替代图2所示的第一三维椭圆反光镜5,用第一fθ反光镜15和第二fθ反光镜14形成2个焦点。这里可知道,一旦将第一焦点(第一fθ反光镜15的焦点)置于设想眼球1’的晶状体2’附近,而将第二焦点(第二fθ反光镜14的焦点)置于左眼眼球部1L的左眼晶状体2L附近的话,虚拟眼球1’和左眼眼球部1L的内部光束相对于Y轴(与2个fθ反光镜焦点连线相垂直并通过这2个焦点的中点的轴)便为轴对称翻转的相同光束。另外,图3中是使第一fθ反光镜15的光轴和第二fθ反光镜14的光轴相一致的,但上述光轴平行即可,不一定需要相一致。
图4概要示出应用该原理的本发明第三实施方式。图4中上方为宽广视场部分,通过第一鱼眼型光学***10对宽广视场的宽域像进行压缩,使投影像通过图像形成成像于CCD二维阵列传感器9上。在这种情况下,第一鱼眼型光学***10具有广角视野,并使其视野中物体的光束变为细光束,从而使上述物体的像成像于CCD二维阵列传感器9上。
CCD二维阵列传感器9的图像,由图像处理装置8作为输出图像信息提供给液晶型二维输出装置6。液晶型二维输出装置6由背光照明,由与输出图像信息相对应的像所对应的像素使光出射。此光由第二鱼眼型光学***7再次作为在较大角度范围内发散的光束进行发散。而且,第二鱼眼型光学***7配置为该第二鱼眼型光学***7的设想焦点即光出射点与第一fθ反光镜15的焦点位置相一致。
因而,第二鱼眼型光学***7的出射光,按第一fθ反光镜15的宽范围反射,成为平行光束,入射到第二fθ反光镜14。由于第一fθ反光镜15的光轴和第二fθ反光镜14的光轴相一致,因而该入射光聚光于第二fθ反光镜14的焦点。左眼眼球部1L的左眼晶状体2L位于该焦点位置附近,所以经过聚光的光通过晶状体,在左眼眼球部1L内的视网膜上形成具有与设想焦点相同的宽广程度的倒像。因而,对于与有效视野角相同或与此接近的宽视野角,可获得良好的图像。该方法中,只发生制造误差、设置误差等所造成的失真,数字修正造成的像状态变差几乎没有。另外,第一fθ反光镜15的光轴和第二fθ反光镜14的光轴相一致是理想的,但平行即可获得同样效果。
但该第三实施方式中,如图4所示,不太能将第二fθ反光镜14延长至图4的左侧,因而与鼻子4相反方向的可感光视野有限制,加上眼球动作时便使人所能够看见的宽域像其中一部分浪费。
图5示出这种情形。图5(a)图示的是未加上眼球1动作的情况,只要考虑22所示范围的视野即可。以从正面入射的光束12为首,从斜向入射的光束11、13均充分覆盖晶状体2的范围。但加上眼球1动作的情况下,视野范围扩展到图5(b)中22所示范围。图5(b)图示的是眼球按顺时针方向转动的情况,这种情况下,视野中没有图中α所示方向的光束入射,这部分成为盲区,视野其中一部分欠缺。
图6示出可解决这种问题的本发明第四实施方式的原理。图6中为了示出最为理想的情形,由人工再现人类眼球结构的透镜21以及球面型CCD感光传感器20,靠球面内部CCD元件按原样对宽域图像进行感光。由球面型CCD感光传感器20的输出信息作为图像处理装置8的输出,由同样人工再现人类眼球结构的球面型液晶装置19,按原样通过与透镜21相同性能的透镜18使液晶图像作为扩散光束出射。
进入透镜21的光束,再现为与透镜18所出射的光束完全相同光路的光束。若可以在左眼眼球部1L的左眼晶状体2L上完全相同再现该扩散光束的话,结果是,进入透镜21的宽域视野信息和进入左眼晶状体2L内的图像信息完全等效,几乎没有失真发生。为了实现这种效果,第四实施方式中用的是2个椭圆反光镜17、16。
具体来说,使第一椭圆反光镜17的第一焦点配置于透镜18附近,使第一椭圆反光镜17的第二焦点和第二椭圆反光镜16的第一焦点相一致,而且将第二椭圆反光镜16的第二焦点配置于左眼晶状体2L附近。而且构成为,上述椭圆反光镜的焦点配置于一直线上,而且通过第一椭圆反光镜17的第一焦点和第二焦点两者连线的中心、并与该连线正交的平面和使第一椭圆反光镜17的光束偏转的反射面交叉。
因此,左眼眼球部1L内的光束和球面型液晶装置19内的光束等效,可在左眼球1L的左眼晶状体2L上完全相同地再现上述透镜18出射的扩散光束。不需要使上述条件完全符合,但失真以及其他像差的变差程度与偏离上述条件的程度相对应,因而因设计制约等而偏离最佳条件时,希望进行数字的失真修正。这里,采用椭圆反光镜,而且所采用的椭圆反光镜是通过第一椭圆反光镜17的第一焦点和第二焦点两者连线的中心、并与该连线正交的平面与使第一椭圆反光镜17的光束偏转的反射面相交叉这种具有宽反射面的椭圆反光镜。
由此,可将来自宽域视野的信息送入左眼晶状体2L。因此,最终可将进入透镜21的宽域视野的信息按原样通过左眼晶状体2L在左眼眼球部1L视网膜上再现,可遍及宽广视野角得到良好像。而且,将图4和图6对比可知道,图6情形在左眼眼球部1L的左侧也可确保足够宽的视野,左眼眼球部1L转动移动时也可以得到所需的视野角度。
但难以设计球面型CCD感光传感器20、球面型液晶装置19,可预料制造成本也增大。另一方面,图7作为本发明第一~第三实施方式的变形例示出本发明第五实施方式其概要。该方式为采用特性基本相同的鱼眼型光学***10、7,有效视野等特性同样接近的CCD二维阵列传感器9以及液晶型二维输出装置6这种方式。即便有效视野存在差异,也可以对鱼眼型光学***10和7的投影倍率进行调整来弥补差异,但希望尽可能符合失真特性。
具体来说,人类眼球内的视网膜其中心灵敏度、析像度高,而周边只要可观察到其形状、动作便在信息量方面起到充分的作用。利用这一情况,通过用第一鱼眼型光学***10来利用扩展中心信息但压缩周边信息这种特性,将宽域视野信息投影到平面上CCD二维阵列传感器9上加以存储,由平面状液晶型二维输出装置6出射相同信息,再由具有该特性的第二鱼眼型光学***7来还原,经过第一椭圆反光镜17和第二椭圆反光镜16,将图像信息送入晶状体2L。由此,可使无中央部分数据的丢失、失真小的宽域视野信息在左眼球1L内的视网膜上良好成像。
这里,作为鱼眼透镜来说,最为有效的是采用在人眼使用频度最高的视野角度60度以内失真变形小、对其周边左右30°大小的图像进行压缩的非线性鱼眼透镜。由于就上下方向来说,眼的有效视野角度最小,因而令长方形的较短方向为上下、较长方向为左右来设置CCD二维阵列传感器9和液晶型二维输出装置6的话,便可获得高析像度。
下面在图8所示的将第五实施方式经过变形后应用例中示出双眼对应的图像显示装置,但不用说,这种变形也可对上述第一实施方式至第四实施方式进行。
图8概要示出不仅左眼球1L、而且右眼球1R也设置第五实施方式的图像显示装置的、双眼镜式的本发明第六实施方式。用23L示出左眼球1L用的图像显示装置,用23R示出右眼球1R用的图像显示装置。人类当然在两眼球间隔方面具有差异,若无法对此修正,可看见的视场便变差而具有不舒适感。该实施方式中内部机构完全独立,因而可选择构成图像显示装置罩,使得图像显示装置23L和23R的间隔可如箭头所示作微调来符合以中心为界的两眼球间隔。
而且,该构成如此设置宽域视野感光部,使得第一鱼眼型光学***10之间间隔与双眼的中心间隔为相同间隔。具体来说,独立地由图像显示装置23L向左眼球1L提供图像信息,由图像显示装置23R向右眼球1R提供图像信息的话,人类所得到的信息就识别为立体信息。这里,若将图像显示装置23L、23R两者的第一鱼眼型光学***10和CCD二维阵列传感器9向分开方向调整的话,图像的立体感便增加,应用于游戏等场合其效果得到提高。是种上述间隔可这样根据用途来调整的结构。另外,第一鱼眼型光学***10、CCD二维阵列传感器9与第二椭圆反光镜16存在干扰这种情况下,其设置位置可以在第二椭圆反光镜16的上部,也可以在下部,根据需要将其取下也行。图像显示装置罩25设计为可实现此方式。
图8所示的第六实施方式为可提供立体图像的装置,但作为图像信息为观看报刊杂志等静止信息这种用途时,不需要为立体图像。这种场合,作为本发明第七实施方式,如图9所示将第一鱼眼型光学***10、CCD二维阵列传感器9用于图像显示装置24L、24R两者也行。因此,装置小型化的同时成本降低。但这时,如图10所示,作为CCD二维阵列传感器9所感光的图像信息中加入与双眼间隔和到物体的距离相符合的偏移这种图像信息,需要向图像显示装置24L、24R提供不同信息。
具体来说,即使由CCD二维阵列传感器9所摄取的图像如图10(a)所示,左眼用图像显示装置24L的图像也会往左偏移,使得与左眼眼球1L位置符合的点处于中心,右侧视野便缺失。反之,右眼用图像显示装置24R的图像则往右偏移,使得与右眼眼球1R位置符合的点处于中心,左侧视野便缺失。用这种办法用CCD二维阵列传感器9观察的像即便处于眼前这种场合,如过也配合进行与至上述物体的距离相符合的对焦控制,便可以鲜明地再现像,而能够形成错觉为如同远处物体一样,起到防止眼睛疲劳这种作用。
图11概要示出本发明第八实施方式。该实施方式为上述第七实施方式的应用例,这里图像显示装置罩26可固定仅由图像感光部分所构成的数字视频单元28。该装置的构成为,一边用左手操作变焦距开关29一边仅由头部和躯体的动作来追逐摄像对象物,由图像信息控制装置27将来自视频单元28的外部信息与由第一鱼眼型光学***10和CCD二维阵列传感器9所得到的宽域视野信息合成,将该信息提供给图像显示装置24L、24R。
该信息作为双方的共同图像信息存储于图像信息控制装置27,因而以后可通过替换图像大小、合成方法来作为视频数据重新观看。而且,本视频单元28也可根据需要从图像显示装置罩26上取下。
图12示出的是图像信息控制装置27中的图像合成方法。如上文所述,由第一鱼眼型光学***10投影、在CCD二维阵列传感器9上感光的(a)所示的图案200的投影像成为周边部分受到压缩的(c)这种图案200。另一方面,视频单元28所输入的(b)所示的外部信息201不具有这种变形,因而图像显示装置24将外部信息201输出得较大时,需要在修正为预先加上了第一鱼眼型光学***10的周边变形的信息的基础上(这时(c)中外部信息201的原图像被修正为线圈架状图像)进行图像合成,并由液晶型二维输出装置6输出。
采用这种方法便可以通过第二鱼眼型光学***7的失真获得最终(d)这种无失真的良好图像。另外,为了通俗易懂地示出失真,这里以四角部拉伸的图案示,但实际鱼眼透镜相反,四角的物体为桶这种形状。这些根据鱼眼透镜的特性,可有考虑各种形状。
图13概要示出本发明第九实施方式。该实施方式将第五实施方式的图像显示装置23L用于单个眼睛,将具有个人计算机功能的控制装置31与图像显示装置23L连接,而且在左手32L的指尖设置便携式键盘33L,而右手32R的指尖设置便携式键盘33R,图14示出此时的图像合成方法。
图13的便携式键盘33L、33R的各个指尖设置有对离开拇指的方向和位置进行检测的传感器和指压传感器,形成为作为该各个指尖动作与拇指的相对位置图像信息加以输出这种结构。
图14中,需要与由第一鱼眼型光学***10投影、由CCD二维阵列传感器9所感光的(b)所示的图案200一起,合成显示计算机所输出的需要高析像度的显示图案203((c)中图示),以及与计算机屏幕周边显示的工具条204((a)中图示)同样合成显示键盘输入信息的图案205((d)中图示)。
如上文所述,液晶型二维输出装置6输出的图像包含上述第一鱼眼型光学***所发生的失真信息,如(e)所示在周边部位压缩图像信息。因此,对于来自外部的图像信息即工具条204、键盘输入显示部205来说,如果如(e)所示,变换为对第二鱼眼型光学***7的失真进行反向修正这种图像信息来合成的话,便由于第二鱼眼型光学***7的失真,在眼球视网膜上如(f)图像所示还原为没有失真的投影像,因而可提供良好的图像信息。另外,对于计算机的需要高析像度的显示图像203来说,未进行失真修正,这是因为图14中该部分位于视野中央,不需要考虑失真的影响。
图15是说明第十实施方式的说明图,该实施方式可将由第一鱼眼型光学***10和CCD二维阵列传感器9所组成的图像信息输入装置从液晶型二维输出装置6、第二鱼眼型光学***7等图像信息输出装置当中脱卸,从而可进行各种调换。为常规宽域像图像的话,可以装配图像信息输入装置35,而为立体宽域像图像的话,可以装配与左右眼睛对应分别具有独立的第一鱼眼型光学***10和CCD二维阵列传感器9的立体图像输入装置36,而为放大图像的话,则可以装配具有长焦距的光学***和摄像元件的高倍率图像输入装置37。而且,该图中为了缩短图像显示装置的进深,在图像信息输出装置即图像输出装置34L、34R的第二鱼眼型光学***7中使用曲折反光镜,在横向设置液晶型二维输出装置6。本装置的图像析像度在很大程度上取决于液晶元件的大小,因而这部分希望设计为由第二鱼眼型光学***7形成为尽可能的放大像,对于图像的液晶元件相对较小。
作为放大像来说用非远心的光学***的话,可将鱼眼型光学***本身设计得较小,将液晶部分的屏幕取得较大。但该场合需要液晶部照明光也具有与鱼眼型光学***相对应的方向性。此外,对光束进行分割,采用投影仪中所用的G、B、R这3片液晶部的话,尺寸虽大,但也能够以宽广视野欣赏与投影仪同等的高析像图像。
此外,若用G、B、R这3片液晶部,对中继光学***所发生的倍率色像差尝试调整G、B、R各自倍率的话,还具有可以减少消色透镜片数这种优点。但如上文所述,图像输出装置本身较大,因而对于如头戴式显示器、眼镜式显示器那样加装到头部使用的装置来说,重量过重就不适合。为了对此加以改善,也有将图像输出装置固定于使用者以外部分这种方法,由于为固定的位置,所以存在无法适应使用者任意姿势、会带来拘束感这种问题。为了解决此问题,尽管后面将说明,但这里希望形成为上述图像显示装置其中至少一部分由使用者以外部分支持,也与使用者面部相接触,并随使用者面部动作可移动这种机构。
此外,还可以反过来将液晶型二维输出装置6置换为第一鱼眼型光学***所摄取的照相胶片这种材料。也可以按旋转或幻灯片方式移动该胶片,打上光照来欣赏幻灯相片似的像。这种构思可以用作玩具,也可以用作相片保存法,不论何种情形,均能够带来前所未有的临场感。
以上说明当中主要说明的是采用椭圆反光镜的实施方式,但上述构成情况下,对于Z方向的聚焦位置即成像面来说,即便用2片椭圆反光镜也并非完全对称。图17用○示出从3个不同方向入射到晶状体A的平行光束在采用2片椭圆反光镜的鱼眼光学***内收敛的位置。这样便可知道因光束方向而有较大的成像面非对称发生,需要使液晶型二维输出装置6所输出的图像在光瞳附近有相当的收紧来加深焦点深度,或对该成像面的非对称进行修正的修正光学***。
但这样无法获得覆盖眼睛转动动作的视野,所以需要缓和该成像面的非对称性。图18中为了解决这一问题,在椭圆反光镜16、17两者的共同焦点位置附近***修正光学***43,并缓和该成像面的非对称性。作为修正光学***43来说导入了使修正光学***43跟前的焦点再次成像的具有程度强的透镜作用、而其正交方向上则具有程度弱的透镜作用的非球面透镜。由此,能够任意改变各焦点位置,能够在缓和成像面非对称性的状态下得到宽广视角。
下面给出采用fθ反光镜的应用例。采用上述fθ反光镜的技术其缺点在于,无法获得比采用椭圆反光镜的方法更为宽广的视野。为了对此加以改善,先减小人眼的宽广视角,然后采用fθ反光镜这种方法较为有效。用图19、图20、图21说明其方法。
图19是对眼球44设置逆向鱼眼透镜机构(该机构起到目镜光学***的作用),形成与眼球44视网膜所反映的宽广视野像相对应的虚像这种方法。使眼球44的视网膜为成像点的光束,由眼球44一侧的面为平面的目镜45使之有较大偏转。目镜45在眼球44一侧的相反侧面,采用其面曲率中心为眼球44的大致中心这种曲率的透镜,并形成为至该曲面一侧的入射光束与该曲面切线基本正交。而且,下一透镜46同样也是眼球44一侧的面为平面,相反侧面所形成的曲面,通过采用规定曲率和透镜材质,使至该曲面一侧的入射光束与该曲面切线基本正交。通过满足该条件,可以获得在平面侧和曲面侧几乎没有彗差发生的良好图像。(这里未提及色像差,但需要对液晶部至目镜透镜45的整体加以考虑,这里不专门叙述)。
但这一时刻,来自眼球44的光束仍然处于扩散方向。因而,为了中继至规定尺寸的液晶型二维输出装置,希望采用上述fθ反光镜(另外,以上说明中为了简化,进行了光束来自眼球这种说明,但实际上是液晶型二维输出装置出射的光束到达眼球44内的视网膜。)。
用图20说明其光学***机构55。来自液晶型二维输出装置54的出射光束可由构成第二鱼眼型光学***的透镜53、52、51形成为扩散光束,由fθ反光镜50形成为平行光束,由相对配置为其光学***的光瞳位置处于fθ反光镜50和fθ反光镜40两者中心的线对称fθ反光镜49形成为聚光光束,由图19所说明这种目镜47、透镜48所组成的逆向鱼眼型光学***,以宽广视角入射到眼球44内,在视网膜上形成上述二维液晶输出部54的像。
按此办法,用透镜53、52、51加大光束扩展角,用fθ反光镜,由目镜47、透镜48组成的逆向鱼眼型光学***再次使光束扩展角还原,进入到眼球44内,因而可比先前图3、图4说明的fθ反光镜更为有效地取得宽广视角。图21是分别在左右眼睛分别设置这种机构55L、55R的图像显示装置,不会形成使用椭圆反光镜时的非对称成像面。
用这种办法时,虽然不是非对称成像面,但用鱼眼透镜时很容易产生的凸型的成像面弯曲未作过修正,会按原样留下来。该弯曲越是周边附近越大,因此仍会需要将光瞳收细。
因此,用图22说明使用曲面反光镜对该成像面弯曲进行修正的方法例。图22为了简化,示出的是使球面56的中心O所出射的发散光束用图19中的办法形成为主光线平行这种场合例,简单示出失真具有y=sinθ(θ为距离像中心的角度)这种形状的情形。具体来说,令没有成像面弯曲时的成像面为59,实际成像面如57所示,令没有成像面弯曲时的成像面59和实际成像面57两者间的距离为y,则如图22所示为y=sinθ。
另外,这种情况意味着,理想的应是平面的成像面59的出射光聚光于点O,但实际上由于成像面弯曲,因而是成像面57的出射光聚光于点O。
这里,若用平面反光镜反射该平行光束时,成像面弯曲条件完全不变。但若在该成像面57附近设置具有规定曲面的曲面反光镜58并反射,焦点位置便随该曲面变化。
例如在曲面反光镜58的中心位置,主光线e垂直入射到曲面反光镜58,在曲面反光镜58面状的点B成像,因而各光线d、f、e与由平面镜反射的相同,反射光的虚光源位置在B点不变。但在周边的点A处成像的光线a、b、c由曲面反光镜58反射至a’、b’、c’方向,该反射光的虚光源形成于A’位置。同样,在周边的点C处成像的光线g、h、i由曲面反光镜58反射至g’、h’、i’方向,该反射光的虚光源形成于C’位置。这样,如果形成曲面反光镜58的反射面时,使得A’、B’、C’形成在同一平面即成像面59上,便可通过使用曲面反光镜58的反射来消除球面56所形成的成像面弯曲。
反之,由曲面反光镜来反射在平面成像面59上成像的光束的话,实际成像面便为57,为具有成像面弯曲这种情形。而且,该光线通过经过曲面56来抵消该成像面弯曲,并成像于曲面56的中心。
该曲面反光镜可根据诸多条件任意调整虚拟焦点,但作为其代价发生远心倾斜,也就是说,从物面出射的主光线变得与光轴不平行,因而若进行大的修正,远心倾斜便变大,存在光束会跑出有效透镜直径范围这种可能。因此,最好使用选择的非球面:在NA小且周边焦点深度缓和的部分,使曲面与光束入射角基本正交,以使曲面反光镜的反射面在其焦点深度内,且避免远心光路有较大偏转,在NA大且焦点深度浅的中心附近,虚拟焦点处于平面的成像面59上。
因而,作为曲面反光镜58的非球面反射面的曲率,通过将其设计为在各位置处于成像面弯曲面和虚拟焦点面这样两曲面的两切面的倾斜之间的、中间倾斜,可获得上述理想的像面。
下面用图23说明一例采用该技术的显示装置75的实施方式。图中上方示出视野的正面方向。液晶屏74的出射光束通过透镜73、72后由偏振光束分光器65所反射,经λ/4波片66形成为圆偏振光,由透镜67、68在曲面反光镜76’的修正曲面70附近形成经过修正的成像面71。该经过修正的成像面71由于液晶屏面为平面,因而投影像也基本上为平面(相当于图22中平面的成像面59)。而且,通过由上述修正曲面70反射,如图22中说明所述,成像于规定的弯曲成像面69上。λ/4波片66和偏振光束分光器65是用以保存光量的器件,只要光量足够,也可用常规的半透射反射器来替代,省略λ/4波片。而且,用G、B、R这3片液晶部的情况下,由于预先具有特定的偏振方位,用λ/4波片时需要对形成为随机偏振等加以注意。
由修正曲面70反射、形成于弯曲成像面69的虚像所出射的光束,通过透镜68、67由λ/4波片66形成为线偏振光,而透射上述偏振光束分光器65后由鱼眼型光学***64经过晶状体61使液晶屏74上的像鲜明地投影到眼球62的视网膜60上。即,弯曲的成像面69,是将该成像面的出射光抵消第二鱼眼型光学***64的成像面弯曲后成像于视网膜60上的面,要使成像于经过修正的成像面71的液晶屏74的像,形成这种弯曲的虚像的成像面69,以此条件决定修正曲面70的形状。
该实施方式中,由于可修正鱼眼型光学***所产生的成像面弯曲,因而对于具有与本发明相同的失真特性的摄像机也可利用。图24为摄像机90的模式图,图面下方示出视场方向。来自外界的光束通过光阑SB,入射到构成具有140度大小视场角的鱼眼型光学***的透镜组89、88,透射偏振光束分光器82后经过λ/4波片81、透镜87、86到达修正曲面84。
构成鱼眼型光学***的透镜组89、88,具有较强的成像面弯曲,因而成像面如85所示形成为弯曲的成像面。但通过成像面弯曲修正反光镜90’的修正曲面84的反射,可如上文所述成像面弯曲被修正,所反射光的成像面形成为平面状的经过修正的成像面83。而且,经过修正的成像面83所出射的光,经过透镜86、87、λ/4波片81由偏振光束分光器82所反射,由透镜80导入孔径可变光阑79。由孔径可变光阑79收紧至规定大小的光束,便受到透镜78、77的作用而将外界的像投影到CCD二维阵列传感器76上。
这里,CCD二维阵列传感器76附近的成像面弯曲,实际上存在于以上述透镜89至CCD二维阵列传感器76的距离为半径R的规定半径R的位置。所以,对除此以外的半径位置所存在的像来说,是发散的。这里,将上述孔径可变光阑79缩小的话,NA便减小,焦点深度变深,因而可聚焦于处于规定宽范围半径的物体。
用图23所示这种显示装置75再现CCD感光元件76的输出信息时,需要鲜明像时,扩大上述孔径可变光阑79,将对焦机构设置于摄像机90的话,与焦点位置以外的像为模糊像相反,可以在焦点位置再现鲜明像。另一方面,要了解与鲜明像相比更为全面的信息时,将上述孔径可变光阑79缩小的话,由上述显示装置75再现时可欣赏到具有较深焦点深度的像。
如上所述采用图23、图24所示的显示装置75、摄像机90的话,可实现前所未有的可观察宽广视野像的机构。但仅此不能说已充分发挥本发明效果,进一步努力可发现高价值。因此,再稍稍说明使得有效利用本发明的成品像明确,并实现该目标用的机构。
首先,明确可用显示器输出宽广视野的装置所要实现的目标的话,可考虑以下方面:
①避免眼睛感觉疲劳;
②获得超过投影仪的电影院临场感;
③获得高于投影仪的图像质量;
④得到没有不适感的3D图像;以及
⑤获得超越人类眼睛的附加值高的新功能。
对于①来说,通过考虑对眼睛疲劳的分析和改善,来明确所需的机理。首先,定位于“眼睛疲劳是现代人的病症”,考虑排除该原因的机理。
(1)对电视机、计算机的长时间使用
(a)显示器处于较近距离进行凝视。→其他的物品,远观。
(b)疲劳程度按电视机、投影仪、电影院依次由大至小。→远观的情形不疲劳。
(2)对市场销售的佩戴式显示器的使用
(a)视场角窄(30°),焦距也固定(2m前)。无法获得除此以外的信息。→在电视游戏中使眼睛横移(眼转动)(广角),以宽广视野观看屏幕以外内容(广角、变焦)。
(b)眼睛聚焦时便加上若干负担。图像质量比常规电视差。
(3)跟踪运动速度快的物体
在电车和游乐场中的车厢中观看运动激烈的近物。→摆动头部使视线固定,或看不动物体,或看远处。
若考虑到上述结果的话,为避免眼睛疲劳所必需的可能性高的条件,是指有效确保视野宽广、图像质量提高、可使眼睛横向移动(眼转动)、能看无限远像、具有多点不同的聚焦点,视野内是非运动像这些手段。
下面讨论②获得超过投影仪的电影院临场感。人类通过使双眼形成为“比邻目(对眼)”来感觉远近。用“比邻目(对眼)”程度随意确定焦点位置。即使是十分出色的投影仪,也存在下文所述的投影距离,而无法在家庭室内空间体验象电影院那种远距离图像。
图25是对此作简单易懂说明的说明图,例如在表示投影到人类视场的液晶元件输出图像为无限远像的情况下,如(b)所示,投影为如同可在平行光束上aL位置、aR位置分别看见像一样。但该物体存在于近距离时,使眼睛形成为“比邻目(对眼)”,眼睛的焦点也会任意设定为如同近距离观察一样,因而使液晶元件输出图像投影为如同在接近内侧的bL位置、bR位置分别看见像一样,晶状体2L、2R和至液晶型二维显示装置的元件输出图像的投影光学***的聚焦也需要与之配合。
这时,也可考虑尝试使液晶元件输出图像以电子和软件方式移动,但也可以用光学方式等分。用光学方式等分的话,由于不至于失去周边数据,因而与电子和软件方式视差相比具有可保持更为宽广的视场像这种优点。具体来说,通过装配对焦机构并向双眼投影像提供横向移动,形成如图25(a)中点c、d、e、f所示在近摄像~无限远像位置任意制作假想成像面这种构成的话,便可得到如同空中浮现屏幕这种超过电影院的临场感。
接下来,讨论③获得高于投影仪的图像质量。现行的投影仪有多种,从称为QVGA的析像度纵横320×240的投影仪,到称为SXGA的析像度纵横1280×1024的投影仪,后者用3片GRB液晶元件分别形成彩色像并合成、使其析像度为3倍。
将析像度低的投影仪用于本发明实施方式的话,对于电影院级别尺寸的画面来说,其液晶元件可用眼睛看见,会丧失临场感。因而,获得高于投影仪的图像质量时,导入称为SXGA的用析像度纵横为1280×1024的3片GRB液晶元件分别形成彩色像并合成、使其析像度为3倍的这种技术,是不可欠缺的,若无论如何也要以此为优先的话,则眼镜式显示器、头戴式显示器在尺寸、重量方面均不允许。
因此,作为一例本发明实施方式采用的是如图31所示这种具有全视野角度的落地式显示器。也可以固定到椅子、床上,但考虑到可轻易在家庭内移动场所,认为该落地式样为最好。这种机构,可与DVD、视频播放机、TV图像输出机114等连接,与现有投影仪相同还可与个人计算机、TV游戏机113等连接。而且,设计为通过图像合成及变换机121使上述现有内容像在显示器上没有变形,并可同时在显示器上显示多个像。
该数据可通过全视野角度显示装置118显示其变换像,该全视野角度显示装置通过可伸缩的伸缩棒所组成的支持部115、由具有多个关节部的防振动型关节棒116所支持。这里,该装置装配有用以抵消防振动型关节棒116和全视野角度显示装置118重量的平衡锤部(自由重量平衡体)117,将关节机构加工为人感觉不到其重量,并跟随面部动作。
基本上,人所感觉的仅是防振动型关节棒116和全视野角度显示装置118活动时的惯性力,采用该机构可得到高图像质量。此外,通过采用落地式显示器,可对双眼分别设置上述高图像质量液晶元件,因而以左右像错开液晶元件间距的一半来设定的话,可获得加倍的高图像质量,从而可获得高于投影仪的图像质量。
此外,本实施方式中装配有电影欣赏、DVD欣赏用的头戴式受话器120,较好将本装置与面部配合的吸引式面部配合机构119,个人计算机和电子邮件用的声音输入用话筒127等,并形成为可将图13所示的虚拟键盘122、操作按钮信息输出至显示图像周边部位这种构成。
下面讨论④没有不适感的3D图像。图24中对摄像机90进行了说明,图30所示的双眼摄像机(102L、102R或102L’、102R’)基本上以与双眼间隔相同的间隔为双眼设有2台摄像机90。若将其图象输出给以与双眼间隔相同的间隔为双眼设有2台图23所示的显示装置75的全视野角度显示装置118,便可作为3D图像观察。另外,图中摄像装置(102L、102R)设置于摄像部转动机构111和摄像部倾斜机构112上。
而图30(b)所示的双眼摄像机中设有在面部一侧显示摄像装置102L’、102R’的像的显示装置94L、94R。也就是说,为一种带显示器的佩戴式摄像装置。
但这样显示的3D图像与电影院用偏振眼镜的图像相同,较近的物体即便看去是立体的也还是模糊像,与实际人看见的较近物体的像不同。这是因为,如图25所说明,人观察较近物体时使眼睛形成为比邻目(对眼),会随意使焦点对焦于该部分,因而即便通过在远处屏幕上使双眼图像往内侧移动来成功地形成为虚拟地处于较近场所的像这种错觉,但像本身存在于屏幕上,而屏幕像和视网膜上的像均处于散焦状态。
作为其应对措施,要将它再现为人所看见的3D图像那样,若在图23所示的显示装置75中设置自动对焦机构,根据上述双眼摄像机(102L、102R或102L’、102R’)的焦点及视差信息进行自动对焦控制的话,对任何位置的像均可获得无不自然、鲜明的立体像。
这里,双眼摄像机(102L、102R或102L’、102R’)的焦点信息,是对该摄像机的中心图像加上自动对焦的信息,将该信息与图像信息一起提供给全视野角度显示装置118、显示装置94L、94R即可。提供方法可以是写入存储装置中一部分的形式。图24中,如对摄像机90所说明的那样,孔径可变光阑79扩大时,便可提供双眼摄像机(94L、94R或102L、102R)所观察到的中央像过渡为鲜明、除此以外部位模糊的、如同人所见到的像那样的图像。
另一方面,将上述孔径可变光阑79收紧的话,便可在一定程度上清楚看见整个像,因而在投影到瞳孔的显示装置上故意使双目图像偏移,根据其偏移量设定焦点的话,可形成远处物体在近处缩小、近处物体在远处放大这种错觉像。而且,对焦机构可对双眼提供分别不同的偏置,若进行符合观察者视力的设定,则不需要戴眼镜或隐形眼睛。
最后,讨论⑤超越人类眼睛的附加值高的新功能。可利用上文所述功能在远处位置放大个人计算机屏幕,可防止小孩连续看近物所造成的视力障碍。此外,对连续观看个人计算机所感觉的“眼睛疲劳”,也可由本发明效果来改善。
用图28、图29说明用以实现如上所述的所有功能,即:①避免眼睛感觉疲劳;②超过投影仪的电影院临场感;③高于投影仪的图像质量;④没有不适感的3D图像;以及⑤超越人类眼睛的附加值高的新功能这些方面的本发明实施方式例。图28是用于说明显示装置94的说明图,图29是用于说明摄像装置102的说明图。
图28中,与图23中装置共同的部分多,因而省略共同部分的说明,以不同之处为中心加以说明。此外,以下说明仅对左眼部分进行,右眼部分也具有相同构成,当然也具有相同作用效果。
首先,为了与人以比邻目(对眼)状态随意设定焦点想对应,将鱼眼型光学***64替换为在包含目镜的鱼眼型光学***中配置有自动对焦控制机构的鱼眼自动对焦光学***95。可通过该机构的设置进行对焦控制以符合人类比邻目(对眼)状态,同时使得成像面弯曲修正反光镜104的成像位置几乎不变。
图28的图像显示装置中,将全视野对应VGA液晶元件作为液晶屏74。下面液晶屏74称为全视野对应VGA液晶元件74加以说明。全视野对应VGA液晶元件74的出射光通过AF(自动对焦)***96后经过半透射反射器HM,导入与图23中所说明的装置同等的光学***,使全视野对应VGA液晶元件74的像在眼球62的视网膜60上成像。
另一方面,高析像度3片SXGA液晶元件101的出射光通过AF(自动对焦)***99导入变焦***98。变焦***98通过使凹透镜位置前后移动,使倍率变化。然后,此光通过双眼用位置移动等分镜97,然后由半透射反射器HM反射,导入与图23中所说明的装置同等的光学***,使高析像度3片SXGA液晶元件101的像在眼球62的视网膜60上成像。
通过采取这种构成,可得到上述①~⑤全部效果,同时还可产生如图26所示的新效果。图26更具体地示出了用上述半透射反射器进行光学合成时、图12所示的图像信息控制装置27的合成方法,以左眼一侧图像为例示出。
图26在平面上示出了本实施方式中的现实情况所需的纵向-50度~+40度、横向-75度~65度的视野角度。当然,因而是用鱼眼型光学***投影到眼球62的,因而产生较大的失真,但就其应对措施来说,应用与图12所示概念相同的概念即可。较为理想的是,可通过上述半透射反射器的液晶元件侧的光学***,提供与投影到眼球的光学***所具有的失真相反特性的失真。另外,图26(a)示出的是左眼用全视野对应VGA液晶元件74的输出图像91,形成为可通过全视野确认像这种构成。中央的空白部分为由半透射反射器HM合成图像的部分,为合成左眼视野对应的高析像度3片SXGA液晶元件101的输出图像92的部分。
而左眼视野对应高析像度3片SXGA液晶元件101的输出图像92如(b)所示,通过用上述变焦***98成为比纵向-50度~+40度、横向-75度~65度这种视野角度小的视场角。就像来说,属于从±15度视场角(相当于2m前的52英寸图像)至全视场角可变的构成,左眼视野对应高析像度3片SXGA液晶元件101的输出图像92为可获得纵横析像度1280×760高图像质量的结构。
这里,将可识别的图像分开形成为左眼用全视野对应的VGA液晶元件74的输出图像91和左眼视野对应的高析像度3片SXGA液晶元件101的输出图像92,再将它们合成的理由是,现有的DVD、电视、BS图像等内容决定了视场角,希望的不是宽广视场而是与其图像质量相对应的屏幕尺寸。具体来说,一味扩大视场角的话,便会由眼睛观察到像素的粗糙程度,获得大屏幕的好处不及图像质量会恶化这种坏处。因而,本实施方式中用变焦机构设定为针对上述内容的最佳视场角,其中高析像度3片SXGA液晶元件101的输出图像92始终可获得纵横析像度1280×760的高图像质量。
由上述半透射反射器HM合成输出图像91和92的话,可获得图26(c)所示的合成图像93并投影到视网膜上。对此以电子及软件方式处理的话,就会与最大屏幕相对应根据视场角分割纵横析像度1280×760,规定视场角内的析像度便会变差。用光学变焦在这方面有很大优点,从而可提供高图像质量的显示器。
这里,进一步具体说明全视野对应的VGA液晶元件74的输出图像91的作用。输出图像91形成为覆盖人类的基本上全视野这种构成,可通过对自动对焦光学***96的控制来如上所述设定任意的焦点位置。即便是高析像度3片SXGA液晶元件101的输出图像92通过对自动对焦光学***99的控制设定为看近处像的像,全视野对应的VGA液晶元件74的输出图像91也能通过自动对焦光学***96的控制设定于无限远位置,因而可与用以避免眼睛疲劳的人类“活动眼珠的眼转动动作”相对应来提供多个焦点像。
合成多个焦点像的话,在一个图像显示激烈运动的情况下,可形成不同焦点位置的固定像作为另一图像。具体来说,使人眼聚焦于固定像的话,运动激烈的另一像便处散焦状态,可根据人的意识使激烈像的显示信息缓和。由此,可以使跟随激烈运动像所产生的“眩晕”减少缓和,总体上具有缓和眼睛疲劳的效果。
此外,为了防止小孩连续凝视电视图像所产生的“失神”等事故、观看与自然获取不同的3D图像所产生的视力障碍,“佩戴式显示器”等常规商品大多是“禁止16岁以下小孩使用”的。但本发明,提供多个焦点像,3D图像等也可再现为用眼睛自然观看的状态,此外还附加了“将像设定为无限远”的功能以避免凝视近距离像、还附加了对准眼睛间隔的调整功能,因而具有可提供给眼睛好于常规个人计算机、电视观赏的优质图像这种效果。
而且,还可以通过对全视野对应的VGA液晶元件74的输出图像91定期推出字符图像,将视听者的注意力有意导向这一图像,来避免凝视高析像度3片SXGA液晶元件101的输出图像92,这种用法可以对眼睛有更好的效果。
如上所述用变焦机构将输出图像92改变为任意尺寸这种情况下,当然需要进行控制,使输出图像91的范围限制为避免与该图像相重叠。基本上控制为两者图像仅在边框部分稍许相重叠,将输出图像91的重叠部分设定为透明边框图像的话,看上去便如同屏幕或电视边框那样,就不会有对合成图像的不适感。
而且,使用VGA液晶元件以对应全视野,但这里图像的外观变差的话,便造成临场感降低。周边图像原本就是为了避免“失神”、“疲劳”的图像,不需要对变化激烈的活动影像采取应对措施。因而也可以用数字相机等所采用的响应慢、高析像度的静止图像用液晶元件。
此前对全视野对应的VGA液晶元件74的输出图像91和SXGA液晶元件101的输出图像92了说明合成方法,但将此分别应用于双眼的话,需要共计4个液晶元件。从尺寸、成本方面考虑,这并不理想。另一方面,还有在不具有双眼独立的液晶元件的情况下,将上述全视野对应的VGA液晶元件74的输出图像91和SXGA液晶元件101的输出图像92进行光学分离并对双眼分别提供图像这种方法,但这种情况下,无法向双眼送出不同的图像,从而无法分别显示具有视差、意识到立体图像的图像信息。因此,图52给出一种机构,该机构使用2个SXGA液晶元件,并设置对各个光束进行合成和分离的光束分束器,通过将该光束分束器切换为半透射反射型和全反射(或全透射)型,就可实现上述画面合成和立体图像提示两者。
图52中,图52(a)为合成尺寸不同的图像x、y,在左右眼睛显示为相同图像的例子(c),x相当于上述SXGA液晶元件101的输出图像92,y相当于上述VGA液晶元件100的输出图像91。另一方面,(b)为将尺寸相同的不同图像x、y,在左右眼睛显示为另一图像的例子(d),如对图8说明所述,可通过使x、y图像为具有视差的不同图像来欣赏立体图像。图52(a)和图52(b)分别示出对合成高析像度3片SXGA液晶元件150X的出射光束x和高析像度3片SXGA液晶元件150Y的出射光束y用的半透射反射棱镜153设计为和光路与该半透射反射棱镜153相等的光学部件154进行切换时的光束x、y的光路。
图52(a)中,高析像度3片SXGA液晶元件150Y的出射光束y由光学变焦机构151Y缩像变焦至与内容输出图像析像度相对应的尺寸。而高析像度3片SXGA液晶元件150X的出射光束x则由光学变焦机构151X扩像变焦至全视野图像。上述光束y和光束x分别由半透射反射棱镜153分离,将分离后的其中一种同类光束和另一种同类光束分别合成,作为光束x、y,由中继光学***152y、中继光学***x,分别作为相同图像(c)投影到左眼球2L视网膜上和右眼球2R视网膜上。
另一方面,图52(b)中,高析像度3片SXGA液晶元件150Y的出射光束y由光学变焦机构151Y变焦至规定图像尺寸。而高析像度3片SXGA液晶元件150X的出射光束x则由光学变焦机构151X变焦至与光束y相同的尺寸。上述光束y和光束x分别由光学部件154在未分离和合成的情况下透射,作为分别独立的图像(d),分别投影到左眼球2L视网膜上和右眼球2R视网膜上。
该实施方式中,两者图像为采用SXGA液晶元件的高图像质量的图像,即便是(c)这种周边图像部分,也可得到鲜明图像。这时,令例如(c)光束y为电影院屏幕图像的话,对周边图像来说可以提供包含电影院观众在内的周边图像。周边图像的图像质量好,因而可有真的在电影院里似的临场感觉,因此具有可作为具有进深的图像来欣赏这种效果。不仅如此,而且当然仅用2个SXGA液晶元件,就能获得与上述具有共计4个液晶元件的机构相同的性能,因而在降低成本、减小尺寸方面具有很大效果。
下面对VE眩晕进行说明。VE眩晕与眼睛疲劳有所不同,是看本发明这种宽广视野图像时所感觉的现象。VE眩晕不仅在显示激烈运动时,而且对于视频摄像机因手晃动所造成的输出图像微小抖动,视频摄像机因变焦动作使图像放大、缩小(尤其是图像变小的缩小动作,是人高速后退时能够观察到的像,作为过往记忆不存在。在车中观察后面景观时容易眩晕的现象)所造成的景观变化,使视频摄像机横向移动的宽广景观的观察像等,尽管自己没有动,对景观活动的图像大脑往往有不适感觉,甚至有的观察者会发生VE眩晕而情绪变差。尤其当风景在观察者的视线上流动时,对此有明显感觉,在图像析像度提高、视野越宽越有临场感和立体感的同时,会有这种感觉,无法彻底避免。
本发明提出了用光学变焦以确保规定图像析像度这种方案,对于有运动的图像来说,减小画面尺寸即可,但要获得宽广视野画面所带来的现场感则无法说有效。对于电影图像不太感觉到VE眩晕的理由,基本上是因为大多运用考虑到上述VE眩晕的摄像机固定的图像、或者以中心物体为基准的主人公视点图像的缘故。不过,并非以普通电影放映为前提的DVD图像、高清晰图像、卫星广播、地面广播,是并非以宽广视野画面播映为前提所制作的图像,如果勉强地将其作为宽广视野图像的话,便会发生VE眩晕。
因此,作为保持宽广视野图像但避免发生VE眩晕的方法,可考虑将图像信息暂时读取到内存设备,按照图像动作对图像信息进行加工再存储,让观察者观看该再次存储的信息该方法。此方法首先将DVD、卫星广播、高清晰广播、地面广播等图像数据读取到内部缓冲区,将内部缓冲区输出的图像划分为周边图像区和中心图像区,对各区包含的像算出规定时间中的横向移动量,当该周边图像所包含的像和该中心图像所包含的像向相同方向移动时,判断为手晃动或画面横向移动,使图像像素整体向像运动方向相反方向上移动与运动量相同的移动量,以使图像在规定时间内不横向移动,加工成看上去如同画面整体静止的图像。
当然,周边图像会因图像相对移动而有丢失,因而用该控制方法时,必须保存显示图像信息中的周边图像部分,以确保用于像移动修正。在该相对移动量变得大于周边修正用图像部分的时刻,将图像切换为不作相对移动的下一屏幕,采取这种方法。具体来说,手晃动这种小动作可完全修正,风景在观察者视线上流动似地移动的图像变为将相机的摄像位置依次稍许移动一点的图像。这与人看宽域景观时,在景观在视线上移动期间眨眼是相同的,没必要按原样观看图像的快速流动,可减轻发生VE眩晕的情况。
这在将本发明装置用于游戏者视点的3D游戏的情况下也相同,以往由于移动可改变视线角度的操纵杆移动而使景观流动,看该景观流动导致VE眩晕,而利用本装置,做成将整个画面依次切换的内容,在游戏者的视线上,就仿佛在景物移动期间眨眼了一样。由此,可减轻宽广视野图像中的VE眩晕。当然该VE眩晕是由于没有过往经历这种经验,头脑混乱所发生的,所以习惯后会改善。
因而,这种软件修正方式可用表示是否使用的启动/关闭机构自由选择。小孩、老年人、病人、或需要放松者用上述控制软件防止VE眩晕是有效的,而对要凭VE眩晕吸引人的节目和游戏,则最好提供无加工图像。宽广视野图像的输出原本是需要进行失真修正的,因而理想的是用同一控制机构来进行失真修正和上述防VE眩晕加工。
此外,VE眩晕以外使人感觉不到疲劳也很重要,为此需要对左右眼睛提供符合各个人眼睛的图像。人类眼睛间隔为6.5~7.5cm左右,可通过在某种程度上修正左右图像间隔来提供无不适感、无疲劳的图像。
提供无限远像时,需要按照观察者眼睛间隔的距离设定左右图像,因此观察者加装本发明产品时需要校准。所谓校准,是指对左右眼睛交替提示十字像,并从该十字像看上去为双重的状态调整为重叠的状态的方法。两者图像可借助于等分机构或数字图像的软件调整来改变两图像间隔,通过输入装置用观察者视线输入到十字像重叠,对观察者眼睛间隔进行校准。
这里,十字像必须以分离方向为默认,向缩小其间隔的方向进行调整。这是因为,观察者在观察近处图像状态时容易将十字像看作重叠合一,但十字像分离为无限远像即与双眼间隔相等的左右图像的间隔以上时,人类眼睛无法将它看作重叠。因而,通过使十字像分离的方向为默认,可很容易对无限远像而非对近处景观像来测量眼睛间隔。
接下来用图29说明摄像装置102的实施方式例。图29中,大多为与图24中装置共同的部分,因而省略共同部分的说明,以不同之处为中心说明。
首先,用CCD二维阵列传感器110跟前的自动对焦光学***109的对焦控制机构聚焦时,成像面弯曲修正反光镜90’的成像位置会变化。为了对此进行修正,置换成特性与物体侧设置的图24中透镜88、89相同的透镜、且配置有自动对焦控制机构的鱼眼自动对焦光学***103。
图29中,由反光镜105使光束偏转后,通过变焦***107、孔径可变光阑***108、AF(自动对焦)***109,将外界像投影到CCD二维阵列传感器110上。
此外,通过存储变焦条件、对焦条件,将该信息送至上述全视野角度显示装置94,再现全部相同条件,可使失真特性相同,可不需由图像合成及变换机进行电子及软件方式的失真修正,来获得良好的图像。
图27(a)示出根据上述现有内容输出图像的状况,图27(b)示出的是使得可在全视野屏幕看见本摄取装置102的信息这种场合。这是通过使上述变焦***107满足对全视野图像的适应,使全视野角度显示装置94内的变焦***98也符合相同条件来实现的。
这里,若驱动本摄像装置102的变焦***,并设定为投影像大于CCD二维阵列传感器的有效视场角的话,本摄取装置102就成为具有变焦机构的鱼眼型光学***,可放大外界像的中心部位。若用全视野角度显示装置94在保持变焦***固定的状态下观察该输出图像信息的话,可观察全视野图像中心部经过放大的像。在此情况下,彼此失真条件有所不同,因而需要进行电子及软件方式的失真修正,但与将现有鱼眼型光学***所得到图像的一部分切出进行放大的方法相比,可得到高析像度的放大像。因而,对于保安及防灾用途、动物观赏用途等需要从宽广区域监视当中放大一部分像的用途来说,发挥很大效果。
也可以将图30(a)所示的固定型摄像装置102L、102R用于上述保安及防灾用途、动物观赏用途等。而且,如图30(b)所示,通过用显示装置(94L、94R),或感知身上装配有全视野角度显示装置的观察者其上下、左右的摆头动作,并通过远距离动作向摄像装置(102L、102R)与指令人的摆头相同的动作,可在任何场所体验到与在摄像装置(102L、102R)的设置场所观看上下90度、左右360度方向的景物时有相同的现场感觉。
但要通过无线、互联网发送上述信息的话,便发生图像信息容量多、花费发送时间这种制约。因此,也可以设法不是以活动影像而是以分帧发送的静止图像这种方式传送图像,以即时了解现场状况。
而图30(b)是附带显示器的佩戴式摄像装置(102L’、102R’、94L、94R),作为显示器来说只要能够对所摄取的活动影像的显示状况进行监视即可,因而也可以使用图24所示这种成本低且重量轻的液晶元件,并进行便于携带这种设计。可由该摄像装置(102L、102R)在任意场所得到全视野图像、3D图像,可期待作为新内容市场的拓展和各种业务产生新机遇这种效果。
图32示出躺着使用图31所示的全视野角度显示装置118时的情形。向活动受到限制的病人、卧床老人提供充满现场感的图像,在具有很大的放松效果、带来康复活力或生命活力各方面来说,均具有很大市场。
图33是从侧面观察图31中全视野角度显示装置118时的示意性剖面图。如图所示,铅垂方向上所需视野角度比水平方向窄,因而可通过使偏振光束分光器65的偏转方向为方向,将偏振光束分光器65设计得较小。另外,各光学***为了有效利用空间,最好将不通过光束的部分沿铅垂方向切除。
如图33所示,全视野角度显示装置118具有吸附型面部配合机构。全视野角度显示装置118主体和面部之间由密接材料124T大面积密封,通过由吸附机构123在内部设定较弱的负压,以使得不至于由眼镜带来鼻子部位的不适感或加装头戴式受话器时所带来的耳朵部位的紧迫感。最近对负离子发生机构、熏香发生机构有较多研发,将上述机构组装到本装置中,便会产生进一步的放松效果。而且,因为密接材料124T只是完全密封的,故内部空气不会被密闭在内部而能感觉到某种程度的风,从而使得能避免带来不适感觉。此外,密接材料124T具有使眼睛和目镜之间间隔避免缩小至规定间隔的功能,实施有安全设计。
此外,密接材料124T的下侧密接材料124B,在整个眼睛下方设置有可观察外界的透过材料125,能在装载有全视野角度显示装置118主体的同时可从饮料水杯128等当中饮用饮料等。该透过材料125用限制入射光量的减光滤光器所构成,以避免外界光进入内部显示图像使图像质量变差。
图34是从上面观察图31中全视野角度显示装置118时的俯视图。防振动型关节棒116通过关节机构126来支持全视野角度显示装置118主体,该位置设置于包含头戴式受话器部分120L、120R在内的整体的重心部位。由此,全视野角度显示装置118主体被设计为能够维持其姿势,不论是坐着状态还是卧躺状态,均成为可以没有不适感地加装此主体的结构。这是因为,使抗衡部117取得平衡以避免观察者感觉主体重量。
头戴式受话器部分120L、120R也由密接材料124T与头部密接,不至于感觉到现有头戴式受话器这种紧迫感、耳朵疼痛感。从头部取下全视野角度显示装置118主体时,通过上如图示虚线所示向左右拉开该头戴式受话器部分120L、120R,让内部负压回到大气压,便可简单取下。
上面对本发明实施方式加以了说明,下面给出用本发明的简单的光学设计例。图35、图36是相同光学设计,图35示出的是考虑人眼的眼转动动作,当晶状体移动20mm时的±70°光束。光学***a部是包含圆锥面的目镜透镜组a,这里,最初目镜使用抑制彗差用的双曲面。该曲面Z(r)可用下式表示。
Z ( r ) = cxr 2 1 + { 1 - ( 1 + k ) xc 2 xr 2 }
其中,c:曲率,r2=x2+y2,k为圆锥系数,采用k<-1。
彗差虽可得到改善,但由于双曲面的使用而产生大的成像面弯曲,各光束的远心性在目镜透镜组a的出射成像位置(与视网膜处于共轭位置)处于较大变形状态。使该像由中继透镜组b中继至曲面反光镜部分c的话,当然再现的是较大的成像面弯曲和变形的远心性状态。但该曲面反光镜部分c具有使所反射光束所形成的像产生的成像面弯曲的弯曲方向翻转这种效果,该曲面反光镜部分c为了由光瞳附近设置的半透射反射器HM偏转后,在对物方透镜组d投影的最终成像面f上得到基本平的成像面,是不可或缺的。
图35中感觉球面像差较大,但这是用以确认光束被剔除的,实际像对于瞳孔大小而言(以室内观察像时人的瞳孔大小为3mm作为前提),这里可以确认的球面像差、彗差可视为几乎可以忽略。
此外,在成像面附近设置本曲面反光镜的话,可减少反光镜反射所造成的彗差、球面像差影响。而且,在稍偏离成像面的位置配置曲面反光镜部分c的话,可有意识地产生彗差、球面像差,也能够抵消由透镜组a、b、d所产生的彗差、球面像差,进行修正。
而且,曲面反光镜部分c如图所示,远心性的倾斜(各主光线相对反射面的入射方向的差异)随目镜部分的入射角度而有很大不同。为了对此进行修正,需要将曲面反光镜部分c形成为非球面反光镜,来强制性改变远心性倾斜。
这里,将非球面反光镜其曲面Z(r)形成为旋转对称二次曲面,c:曲率,r2=x2+y2,将A、B、C、D、E、F、G、H、J作为非球面系数(偶数次),可由下式表示,
Z ( r ) = cxr 2 1 + { 1 - ( 1 + k ) xc 2 xr 2 } + A × r 4 + B × r 6 + C × r 8 + D × r 10 + E × r 12 + F × r 11 + G × r 16 + H ×
r 18 + J × r 20
其中,k为圆锥系数,采用k=-1、a>1.0*10-7的皿型曲面反光镜(其中反射镜为凹面。凸面场合a<-1.0*10-7)。
这样,如图35所示,可确认所有光束不被剔除地被投影。图36示出在能确认可以在所有光线不被剔除的情况下进行投影的基础上,将眼睛瞳孔大小设定为通常室内大小即3mm左右,且瞳孔朝向光轴方向时的光束。图36中示出直至0、10、20、30、40、50、60、70°的光束,可确认在平的成像面形成像差小的像。此外,在该部分还对远心性倾斜进行线性修正,是一种这之后加入上述例中示出的变焦***、自动对焦***、或等分***很容易的结构。
说明另一光学设计例。上述实施方式以这样一种情形为前提,即焦点位置随人类眼转动而有某种程度的变化,使人类眼睛跟随此变化加以对焦。图37、图38、图39为同一设计例,图38为做转眼动作(眼睛的横向移动)时的光线图。图37所示的例子,利用是人类眼睛并非同时高精度地观察看广范围,而是只清楚看见与眼所朝向的中心距离±数度的范围这一点,故意使与其所见到的中心起的视野角对应的发生散焦的成像面弯曲的例子。此外,目镜光学***a等为了减少片数,以及为了优化周边远心性,在与视网膜的第一共轭面附近使用非球面透镜a1。
这里,光学***a部分为包含圆锥面在内的目镜透镜组a,这里第一目镜a2的与瞳孔相反侧的面使用用以抑制彗差的双曲面。其曲面Z(r)由下式表示。
Z ( r ) = cxr 2 1 + { 1 - ( 1 + k ) xc 2 xr 2 }
其中,c:曲率,r2=x2+y2,k为圆锥系数,采用k<-1。
而且,其中一个面配置于所述视网膜的第一共轭面附近的非球面透镜a1,该一个面的曲面Z(r)形成为旋转对称二次曲面,c:曲率,r2=x2+y2,将A、B、C、D、E、F、G、H、J作为非球面系数(偶数次),可由下式表示,
Z ( r ) = cxr 2 1 + { 1 - ( 1 + k ) xc 2 xr 2 } + A × r 4 + B × r 6 + C × r 8 + D × r 10 + E × r 12 + F × r 11 + G × r 16 + H ×
r 18 + J × r 20
其中,k为圆锥系数,采用k=-1、a<-1.0*10-7的皿型曲面透镜。
这时,远心性的倾斜用至少2片非球面进行了修正,以避免因目镜部的入射角度而有很大不同,因而曲面反光镜c采用常规球面反光镜。这是为了强制性改变远心性倾斜,并使光瞳位置(光束聚光的位置)位于物方透镜组d的入射位置附近z1。此外,还可有意使光瞳位置处于物方方向,因而获得很容易设计缩小光学***这种效果。
使光瞳位置(光束聚光的位置)位于物方透镜组d的入射位置附近z1的理由,是为了进行针对眼转动的对焦修正,如图38所示,使得即使眼转动时焦点位置也不太有变化。具体来说,在物方透镜组d的入射部分***非球面透镜d1,在光瞳位置随眼转动时远心性偏移而产生的位置偏移(如图38所示光束通过瞳孔面的周边)条件下,设法使通过对于中心曲率平缓的透镜面,以延长焦点位置。目镜透镜组a原本具有焦点随眼转动靠近眼睛方向这种特性,因而可通过用非球面透镜d1使对焦位置接近物方位置,来抑制焦面有很大变化。
这里,所用的非球面透镜d1在瞳孔一侧面为双曲面,其曲面Z(r)由下式表示。
Z ( r ) = cxr 2 1 + { 1 - ( 1 + k ) xc 2 xr 2 }
其中,c:曲率,r2=x2+y2,k为圆锥系数,采用k<-1。
其中已知,眼转动动作如图38中所明确的那样,具有成像面倾斜。因而,该非球面透镜d1仅凭双曲面不能完全修正,因而其曲面Z(r)形成为旋转对称二次曲面,c:曲率,r2=x2+y2,将A、B、C、D、E、F、G、H、J作为非球面系数(偶数次),
Z ( r ) = cxr 2 1 + { 1 - ( 1 + k ) xc 2 xr 2 } + A × r 4 + B × r 6 + C × r 8 + D × r 10 + E × r 12 + F × r 11 + G × r 16 + H × r 18 + J
× r 20
希望形成为对成像面倾斜进行修正的非球面。
图39示出的是用眼睛观察50cm前方物体时的光束。可以确认,仅是物方对焦位置发生改变,失真特性、像差不太有变化。因而,对焦修正可通过调整该物方透镜组d的透镜间隔或最终成像面f与该物方透镜组d的间隔,很容易进行50cm~无限远的对焦调整。
而且,该光学设计中,曲面反光镜c是为了强制性改变远心性倾斜,并使光瞳位置(光束聚光的位置)位于物方透镜组d的入射位置附近所用的,但若在目镜透镜组a、中继透镜组b的设计中,将双曲面透镜用于目镜透镜组的第一目镜透镜、将上述旋转对称二次曲面透镜用于第一共轭面附近的透镜的话,则也能在上述曲面反光镜c位置得到良好的第二共轭面。这种情况下,也可以将液晶直接设置于上述反光镜c位置,也可以将第一液晶设置于该部分,使本光学***的分割反光镜部分翻转,将光束直接导向物方透镜组d,通过变焦组(未图示)等设置第二液晶(它们实际上液晶部分的发光在光瞳位置聚束,但为了便于看懂光束,示出的是从光瞳位置发出无限远光束,并在液晶表面成像)。
而且,这里尚未涉及对色像差的修正,但基本上,可以加入组合多个凹凸透镜、折射率不同的透镜进行修正的***,在视频摄像机的场合、感光***显示器的场合,也可以将感光***的液晶分离为红、蓝、绿三色,在此分离后对倍率色像差、Z轴上色像差进行修正。
另外,反光镜的曲折方向原本就是所需视野角度较窄的上下方向,实际上光学***b和d并非如图所示接触。此外,上面所示例中形成为双曲面和凸透镜和非球面皿型凹反光镜的组合,或者双曲面和凸透镜和非球面皿型凹透镜的组合,但不限于此,可考虑多种组合。
接下来用图40~图42对先前说明过的图31、图32中说明的装置作更为具体的说明。将装置形成为落地型的目的在于,以便视听者感觉不到显示光学***的重量,由传感器等感知面部动作、并由致动器控制进行与面部相同的动作即可,但成本会提高。因此,下面实施方式中用的是尽可能不用致动器的方法。
为了使视听者基本上感觉不到显示器的重量,需要机构应对以便面部动作的全部6个自由度没有负重发生。因而,图40所示的是采用机械手技术(以面部动作进行x、y、Θz驱动),图41所示的是采用天平(升降机)技术(进行Z、Θz驱动),图42所示的是采用重心保持技术(进行Θx、Θy驱动)。
图40示出如机械手那样交叉部CR可转动连接、形成为可伸缩构成的机构。机械手部分(防振动型关节棒)116的支持部115至抗衡部的距离与支持支持部115至全视野角度显示器118的距离之比为m∶n,其为相同重量时的力矩比为m∶n。包含吊棒的抗衡部117与包含吊棒的全视野角度显示装置118的重量比为n∶m,因而与机械手部分116的伸缩无关,支持手115上的实际力矩按m×n=n×m这种关系保持不变。因此,上述各交叉部CR的联接和支持部115的轴旋转以滚珠轴承或空气轴承等平滑进行的话,便可几乎感觉不到负重地进行x、y、Θz驱动。而且,利用该平衡机构,也不需要将支持部的刚性提高到那么高,也可以抑制振动。是一种很容易避免主体翻倒等危险的构成。
图41中,是一种如升降机那样,当抗衡部117与全视野角度显示装置118的重量比为n∶m时,通过用滑轮PU来取得平衡这种结构。例如n∶m=2∶1时,用图41所示这种类型的滑轮PU即可。支持部可通过手动上下移动,可根据卧躺、坐姿、站立姿势粗略设定高度。另一方面,在规定状态下,一旦视听者使面部上下动作的话,全视野角度显示装置118便上下2~30cm左右。此时,上述滑轮部PU的轴转动用滚珠轴承或空气轴承等是车滑动的话,便可几乎感觉不到负重地进行z驱动。
图42所示例为在全视野角度显示装置118的重心处设置有旋转轴AX,不论面部如何动作,对于Θx、Θy、Θz驱动均具有自由度的结构。(a)为从显示部前方(眼睛一侧方向)的右上方向看去的立体图。(b)为从后面看去的立面图,形成为以万向联轴节UZ为中心可转动、可自动转动量为向左右摆动头部动作所需角度的构成。(c)示出向左右方向上摆头时的状况。此外,(d)是侧视图,示出头前后摆动时方向联轴节UZ的自由度。尤其是,(d)示出使用者卧躺时的状态,在此方向上形成有90°、使用者俯身时所需角度的槽。
上述图40、图41、图42是分别独立记载的,但为了发挥各自的特征,在绳的张拉方法(沿机械手张拉方法)中,对各关节部的绳弯曲用滑轮(未图示)采取了措施以使进行伸缩的力与张拉绳的力取得平衡。此外,利用系绳的下吊部分在上述吊棒中受到导向机构的约束而仅在上下方向上驱动,从而防止显示器、平衡锤部分如同振子那样晃动。
上述实施方式中,对于全视野角度显示装置118的重量与对应平衡117的重量两者的比例,是用离支持部115的各个距离来取得平衡的。但此构成中该抗衡部117本身是离开旋转中心的,因而若以支持部115为旋转中心使全视野角度显示装置118在水平面上移动的话,便产生惯性力,对使用者产生异样的佩戴感觉。此外,抗衡部117的吊绳如振子那样起作用,还留有低频振动。
作为对此的解决方法,以图50所示的构成保持全视野角度显示装置118。图50(a)为侧视图,图50(b)为从上面观察的俯视图。另外,与图40、图41相同的标号为同一部件,故这里省略说明。而且,该机构将吊绳116由机械手部分116上固定的滑轮116b可送出地支撑,吊绳116a对全视野角度显示装置118和对应平衡117两者进行保持。
在该构成中,在旋转中心即支持部115的内部设置有对应平衡117。因而,即便以支持部115为中心使全视野角度显示装置118旋转移动,也不会产生对应平衡117所造成的惯性力。由此,可以避免对应平衡117产生全视野角度显示装置118移动至静止时的惯性力,抑制异样的佩戴感觉。
另外,图50所示构成中,还设置重量比对应平衡117轻的第二对应平衡117a,其重心位于支持部115的中心附近,避免负荷加在支持部115与机械手部分116之间设置的各种轴承。由于其重量为比图40所示的对应平衡117小的重量,因而全视野角度显示装置118移动时所产生的惯性力小。
而且,在图51所示的构成中,为了进一步增加稳定性,增加支持部115的设置面积,并且设置延伸到重心正下方的脚部115a。由于脚部115a延伸至重心正下方,因而设置于地面时也可以维持稳定性。另外,图51(a)为侧视图,图51(b)为从上方观察的俯视图。另外,与图50相同标号为相同部件。
该情况下,对支持部115的作用力为非对称的,因而对作为支持部115的旋转机构加上有负荷。为此,将轴承部分设置面形成为2段等,提高刚性,将上述设置部分拉到佩戴者所在的椅子、床位的下方来固定的话,主体的相反方向上便没有驱动物体,产生空间方面、安全方面的便利。
此外,图50和图51所示的落地式全视野角度显示装置中,吊绳116a由机械手部分116的交叉部分CR附近所固定的滑轮116b来保持全视野角度显示装置118。因而,即便机械手部分116有伸缩,吊绳116a也始终与机械手部分116相平行,没有机械手伸缩所造成的力发生,可以作到绳的存在对机械手部分116的水平移动没有什么影响(没有负荷加上),可以降低佩戴感觉。
如上文所述,虽然通过机械设计来设法降低佩戴感觉,但全视野角度显示装置118的重量为1kg以上时,由于随重量而产生的摩擦在全视野角度显示装置118移动时总会产生稍许负荷。为了抑制这种负荷,希望对吊绳116的张力和机械手116的交叉部CR的相对角度进行监测,并设置致动器在最初启动时对交叉部CR、吊绳116a提供驱动力。尤其使静止物体活动时,由于最大静止摩擦力比动摩擦力大,因而根据上述绳张力和交叉部CR的相对角度进行反馈控制来控制力为宜。
对落地式的全视野角度显示装置118就其具体保持方法进行了说明,本机构中虽按规定条件跟随使用者的面部动作,但对于外力(例如地震或地面设置部分发生倾斜)很可能受到影响。具体来说,因发生地震而造成支持部115本身振动时,有可能因机械手部分116、全视野角度显示装置118主体的惯性力而大幅度来回振动,给周围带来危险。
对此,有必要设置这样的转动方向锁定解除机构,其能通过在主体上设置地震感知传感器,对机械手部分116的异常动作进行锁定,而对面部的接触部分,可顺畅地取下全视野角度显示装置118。此外,地面设置部分的倾斜相对于规定方向动成为负荷,对使用者带来佩戴时的不适感。为了防止这些,通过加装用以调节本装置水平的水平测量装置和用以使装置水平设置的水平调整装置,使得使用者可顺畅进行全方位的移动。
此外,头戴式显示器、眼镜式显示器会瞬时跟随面部的微小动作,因而容易发生VE眩晕。本发明中,图像显示装置主体由地面支持,一部分由面部(包含头部、耳朵等在内)支持,相对来说主体较重,因而对使用者的微小动作因惯性力不会跟随,而仅对较大动作跟随,在这方面很有效,因而有不容易发生VE眩晕这种效果。为了更为有效地对此加以利用,希望设置有当使用者以规定姿势安顿时,对机械手部分116、吊绳116c的滑轮116b等动作部件的动作予以限制的制动器等。
显示器可由该制动器固定于所需位置,因此,对于棉部接触虽小却因有接触部分而会有佩戴感觉,的人,可提供完全不接触的状态,可对更具现场感作出贡献。尤其对于后面说明的图48所示实施例,不仅可提供晶状体随眼球转动而移动的视网膜的图像检测范围,而且即使在面部和显示器相对横向移动的情况下也可提供图像质量高的图像,可提供宽广图像显示范围,因而更具效果。
这样,落地式全视野角度显示装置118与头戴式显示器、眼镜式显示器相比具有很大的好处,而且对于睡觉前横躺下来使用的人来说,则具有更好的效果。本发明中,与面部配合使显示器动作,因而可在睡觉前保持卧躺姿势欣赏显示器图像,或对失眠者提供睡眠效果好的图像和音乐,形成容易入眠的环境。
但入睡后对于翻身等动作,该显示器很可能成为妨碍物。因此,本发明不仅对该显示装置118设置定时器,在入睡后切断开关,还加装有自动卷扬吊绳116a、使显示器部分从面部提升的自动提升机构,以避免妨碍入睡者。此外,还具有提升该显示器后使机械手部分116伸缩驱动到避免起床时会碍事的位置的功能。
由此,可在睡觉前轻松地使用本装置,确保睡觉时的舒适性和安全性。当然,假定显示部分无法从面部一部分上拉和提升时,作为此时的安全装置可通过对提升力进行限制来应对。
上面说明的方法是采用鱼眼型光学***将LCD输出像投影到眼球内的视网膜上的,而应对眼转动的光学***由前面的例子可知,通过曲面反光镜和非球面透镜的组合,可在不被瞳孔剔除的情况下进行投影。虽然眼转动中所见到的中心位置焦点和像差很小,但其附近像差和对焦明显变差。
因此,以下实施方式中,如图20、图23、图28、图35~图39所示各实施方式说明中所示,利用在液晶型二维显示装置侧(眼球的相反侧)形成中间像这一点,在该位置***扩散玻璃,从而形成即便眼转动也可应对的机构。图43是举例对此加以说明的,其中列举的是用双曲面透镜、减小成像面的像面弯曲和扩散玻璃附近的远心性倾斜的光学***例。图像输出经过扩散玻璃131、目镜透镜组132聚光于眼球1的晶状体。(a)是无眼转动情形,(b)是30°眼转动情形。该例子中,以与眼球1最近的透镜为双曲面透镜132a。所谓双曲面透镜是指透镜单面为双曲面的透镜,图中与眼球1相距较远的面为双曲面。
图44示出该光学***特性。图44(a)示出的是瞳孔往中心看时的例,图45(a)示出此时各像差。目镜透视***132是使远心性几乎为直线的鱼眼型光学***。具体来说,目镜透视***132是设计为在插有扩散玻璃131的位置的各光束其主光线基本上平行(考虑±10°左右的倾斜)、并与扩散玻璃131的入射面的法线基本平行的光学***,因而会产生与鱼眼型光学***相同的那种畸变。因而,±60°视野角发生50%左右的。图44(b)示出的是瞳孔朝向30°方向时的例子,图45(b)示出的是此时的各个像差。
与图44(a)中的远心性相比可知,具有10°左右的远心性倾斜。具体来说,与晶状体朝向0°方向的(a)情形相比,各光束的主光线具有10°左右的倾斜。接下来图44(c)示出人观察的不是无限远而是前方50cm的物体的情形,图45(c)示出其各个像差。这种场合也对目镜透视部分132设计为避免在目镜透视132中产生对焦位置。但观察图45(b)、图45(c)可知,与图45(a)相比变动小,将屏幕之类设置于成像位置的话,便可在±60°的全视野获得良好图像。
接下来说明使用该目镜光学***时使用上述扩散玻璃131的使用方法。图43(a)示出瞳孔往中心看的场合例,图43(b)示出的是瞳孔朝向30°方向的情形。将(a)、(b)对比可知道,畸变变动虽小,但如上文所述具有最大±10°左右的远心性倾斜。可知在制作适应该眼睛横向移动(眼转动)的鱼眼型光学***时,如上述实施方式所述能不被瞳孔剔除地进行投影的光学***,会产生稍许像差。
因此,作为其改善措施采用如下方法:从液晶型二维输出装置至扩散玻璃131的光学***,用使像获得充分析像度的NA进行设计、并用扩散玻璃131使光束扩散,将与上述远心性倾斜变化相对应的光束送入瞳孔。具体来说,为了使得即使晶状体2的倾斜发生变化,也存在入射到晶状体2中的光线,由扩散玻璃131使光线如同图43中箭头133所示的发散角那样扩散。
这样,由从二维型光电元件所形成的像向晶状体方向传播的光束所形成的中间像,由于如上所述的扩散玻璃的作用,使得从该中间像发出的各位置光束的发散角有充分大的角度。
如上所述,随晶状体的横向移动、(眼转动动作),瞳孔位置发生变化,因此瞳孔中心的全部主光线与中间像之间形成的角度发生变化,因此,使中间像所发出的光束的发散角与该变化量相等,或大于该变化量。
这样的话,能获得即便发生晶状体横向移动,也能够将中间像的光束稳定地提供给瞳孔,即便晶状体进行横向移动(眼转动动作),使用者也能够观察良好图像的二维显示装置。
这里,可以使用视野为±30°,具有±10°左右的扩散角,而且即便由人类眼睛观看也看不,即就毛玻璃而言相当于粗糙度为#700以上扩散角A类型的物体。
当然,人类眼转动角度据称为±50°,所以希望使用在±20°范围光强度分布没有较大变化的器件。另外,扩散玻璃131象这样设置于成像位置,起到使成像光线扩散这种作用,因而只要具有这种光线扩散作用的话,即便是树脂制成的,也可以用以替代扩散玻璃131。
此外,如下文所述制造的扩散玻璃也发挥较为理想的性能。该扩散玻璃的制造方法,在厚度均匀、表面平滑的聚酯片上涂覆粘接剂,然后在净化室中涂盖粒径严格按微米量级管理的磨粒。另外,作为磨粒来说,以碳化硅、氧化铬、氧化锡、氧化钛、氧化镁、氧化铝等碳化物、氧化物为最佳,可在0.3~40微米左右的均匀的超精细精加工基础上制造扩散玻璃131,次品发生率也低。
这些原材料,若加工为球状则不透明,但可使均匀的磨粒随机迭层为规定厚度,从而可扩大发散角度,即便为DVD图像、高清晰图像也完全感觉不出颗粒状,可确保60度以上的视野角。而且,该扩散玻璃131可低成本制造这方面也较为理想。另外,该磨粒层最好形成为投影像的焦点深度以内的厚度。
另外,磨粒的大小可选择为筛网号#320~#15000,采用韧性聚酯片,因而耐久性提高。另外,碳化硅、氧化铬、氧化锡、氧化钛、氧化镁、氧化铝等采用微米量级磨粒的话,会表现为不透明。这时,需要提高对扩散玻璃131的投影照度。但如上所述形成为落地式的话,可以采用功率高的光源,因而可根据扩散玻璃131的透明度使用所需功率的光源。
此外,由于光源本身明亮,投影像的明亮度也相当明亮,即便目镜和双眼间未加装遮光装置(护目镜等),也可减轻迷光、热斑等影响,从而可防止有损于佩戴感觉。但光源本身为大热源,需要在主体上设置对此进行冷却的风机等。风机的排出部分对准使用者的话会有不适感觉,因而风机的排出方向需要设计为不直接对准使用者的方向。此外,该风机的振动使主体振动的话,这也同样给使用者不适感。这种情况下,也可以使光源与本体分离,设置于地面支持部一侧,由光纤等将光束导入至主体。
下面用图46、图47说明将光束从液晶型二维输出装置中继至扩散玻璃131的光学***。图46示出的光学***使高析像度3片SXGA液晶元件101所在面或其共轭面f输出的光束,经过变焦及自动对焦控制***g和物方透镜组d后透射半透射反射器HM,通过由曲面反光镜部分c反射对目镜透镜***的失真进行修正后,由半透射反射器HM反射,通过中继透镜组b,成像于LCD共轭面141(该位置设有扩散玻璃131)。图上示出本光学***的像差特性,但与图45(a)相比可知道,失真在相反方向上产生50%。这是由光学***对上述失真实现反向修正,通过由本光学***的桶型失真来修正目镜透视***所产生的枕型失真,不进行软件修正即在视网膜上正确再现格子像。
图47如先前说明所述,是以软件方式对失真进行修正为前提所设计的放大光学***例,没有图46所示的曲面反光镜部分。是一种使高析像度3片SXGA液晶元件101所在面或其共轭面f输出的光束,经过变焦及自动对焦控制***g和消色透镜h后,由反射镜M1、M2反射后,通过中继透镜组b,由反射镜M3、M4 2次反射,然后成像于LCD共轭面141(该位置设有扩散玻璃131)的光学***。以减少透镜片数而且减轻成像面弯曲为目的,如上所述将双曲透镜(透镜单面为双曲面的透镜)用于目镜透视***(未图示)和中继透镜组b。该光学***像差小,可实现良好的投影像。另外,消色透镜h不一定需要。
这样,本实施例中,通过将扩散玻璃***目镜透视附近的成像面,取得可应对眼转动的光学***,可以使之后的放大光学***的结构简化。
图48是示出了利用图44(a)和图47的光学***作为液晶型二维输出装置的本发明实施方式装置的示意图。
图48使用GRB 3片LCD模块142,将G用LCD、R用LCD、B用LCD通过二向色镜形成为同一光束(上述在图中形成为LCD共轭面f),该光束通过凸1凹1凹2凸2共计4片透镜所构成的变焦及自动对焦控制***g,由反射镜M1、M2偏转,通过中继透镜b、反射镜M3、M4,放大投影到上述扩散玻璃131上。这里,通过将兼用作目镜透镜的凸1透镜面形成为双曲透镜,物方透镜面也形成为双曲透镜,来减少透镜片数,对成像面弯曲进行修正。
由上述扩散玻璃131扩散为±20°大小的光束,通过上述目镜透镜132将LCD像投影到眼球视网膜上。这里,观察无限远的状况中,扩散玻璃131处于远离目镜透镜的位置,通过移动上述变焦及自动对焦控制***g的2片凹透镜,可控制使LCD共轭面f和扩散玻璃131面两者共轭。而在观察前方50cm像的状态下,对扩散玻璃本身进行驱动使得扩散玻璃131接近目镜透镜,通过在该位置移动上述变焦及自动对焦控制***g的2片凹透镜,进行控制使LCD共轭面f和扩散玻璃131面两者共轭。
另一方面,该状态下LCD图像扩展为±60°的视场,如果再现来自实际上可感光±60°视场的上述宽域图像的视频的图像是没有问题的。但如果是输出常规视频信号、计算机画面的话,扩大到如此宽的宽广图像决非是容易看的。具体来说,最好输出的是人可用眼转动轻松地看的视野±30°以下的像。因此,本发明中可通过移动上述变焦及自动对焦控制***g的2片凹透镜,将视野缩小到视野±30°以下。此外,内容对应像素数为760×400左右(电视、DVD)将图像缩小至±15°左右视野,为1280×800左右(BS、高像素对应输出活动影像)将图像缩小至±30°左右视野的话,便可以在看不见其像素的情况下获得鲜明像。
这样,可通过用变焦机构进行放大缩小来任意选择与像素匹配的画面大小,与所有内容相对应。
此外,变焦机构在VE眩晕的改善方面也是有帮助。通常内容并非设想按宽广视野图像输出,因而没有将摄取图像的视频摄像机设置于固定位置,为了图像效果,大多是从各个方向摄取图像或滥用变焦的。对于常规的与10~50英寸电视图像相当的显示器完全没有问题,但本发明的60°以上(与100英寸相当)的画面很可能引起“自己运动知觉”症状(即产生本身正在运动似的错觉,影响到平衡感。在宽广范围视野提供信息的活动图像,有时会影响到平衡感觉,图像的视觉信息与身体感觉信息两者不匹配而产生不适和眩晕)。
但固定的摄像机摄取的景观、远方的60°以上(与100英寸相当)的无限远宽广视野图像为近似实际的图像,充满现场感,可获得无视差的自然立体感,因而在放松、消除眼睛疲劳方面很有效。因而,作为图像显示装置来说,不仅是内容的析像度,还根据图像的内容,用变焦机构来调整,可获得舒适的图像信息。因此,作为变焦机构来说,希望所具有的是从很可能发生自己运动知觉的60°以上(与100英寸相当)的无限远宽广视野图像至难以发生自己运动知觉的30°以下(与50英寸相当)的图像的2倍以上的变焦机构。
另外,不用说,可采取设置2对本光学***作为先前说明的双眼光学***的机构等应用。
而用双眼光学***的情况下,也可以在各个光学***中分别配置GRB的3片LCD模组142,但也可以对右眼、左眼使用共同的GRB的3片LCD模组142。
这种情况下,可通过利用半透射反射器、偏振光束分光器等分束光学元件将GRB的3片LCD模组142的出射光束分割为多个光束,分配给左眼和右眼各自光学***来达到。另外,由半透射反射器、偏振光束分光器所反射的像会左右翻转,此时,可以在光路中配置反射光学元件,对反射后的光束进行再一次反射,并使该光束入射到双眼光学***其中之一光学***。另外,光束分束后,为了将GRB的3片LCD模组142的像中继至图48所示的光学***,希望将光学***构成为在上述LCD共轭面f处形成中间像。
如上文所述,本发明实施方式中的图像显示装置,具有输出图像数据的光电元件,通过至少2个曲面形状的反射面将该光电元件的输出像投影到眼球内视网膜上,其中,在入射到眼球之前偏转光束的第一曲面形状的反射面为第一椭圆反光镜,并在限球晶状体附近具有该第一椭圆反光镜的第一焦点、该第一椭圆反光镜的第二焦点位于所述第一椭圆反光镜与第二曲面形状的反射面之间,由于是这种构成,因而可高效率地将具有宽广视野的像传达到眼球。
此外,若将上述第二曲面形状的反射面作为第二椭圆反光镜,利用包含所述第二椭圆反光镜的修正光学***使上述光电元件上的像投影到眼球内视网膜上的话,可对大失真进行修正,并看见良好的显示像。
将反射面作为第二椭圆反光镜,使上述第一椭圆反光镜的第二焦点与上述第二椭圆反光镜的第一焦点基本一致,同时将该第一椭圆反光镜的第一焦点和第二焦点、上述第二椭圆反光镜的第一焦点和第二焦点配置为基本上在一直线上排列。由此,从上述第二椭圆反光镜的第二焦点投影到第一焦点的具有宽广视野的图像信息,从上述第一椭圆反光镜的第二焦点投影到第一焦点,可以使上述第二椭圆反光镜的第二焦点像在上述第一椭圆反光镜的第一焦点部分得到完全还原。此外,上述第一椭圆反光镜与上述第二椭圆反光镜两者的曲率基本上相同的话,可得到更加近乎完整的投影像。
进一步,理想的构成为,经过上述第一椭圆反光镜的第一焦点和第二焦点两者连线的中心的正交平面与该第一椭圆反光镜的使光束偏转的反射面相交叉,经过上述第二椭圆反光镜的第一焦点和第二焦点两者连线的中心的正交平面与该第二椭圆反光镜的使光束偏转的反射面也相交叉,并将鱼眼型光学***配置在上述第二椭圆反光镜和上述该光电元件之间,使上述光电元件上的像投影到眼球内视网膜上。由此,与鱼眼型光学***将宽域像投影到平面上感光装置的效果相反,可将上述光电元件上的平面像由鱼眼型光学***变换为宽域像,此外通过采用其反射面与经过各焦点的中心的正交平面相交叉这种具有宽广反射面的椭圆反光镜,可没有失真地使宽域广像信息成像于眼球内视网膜。为了得到固定视野角60°、眼睛眼转动动作所对应的视野角左右30°共计120°作为宽域像,使经过上述第一焦点和第二焦点两者连线的中心的正交平面与各椭圆反光镜的使光束偏转的反射面相交叉的构成不可或缺。
另一方面,上述鱼眼型光学***通过对晶状体随眼球转动而移动在视网膜上形成的图像检测范围提供包含图像数据的光束,使得上述光电元件上的像在不会被大幅度被剔除图像的情况下,投影在眼球内视网膜上,因而即使在如图5所示,眼睛为了让扩展视场而作眼转动动作时,也能够提供充分视场。这是人类眼睛回避因连续进行一种动作、眼睛功能渐渐无法跟随而感觉“疲劳”这一现象而进行的重要动作,在进行这种“骨碌碌转动”的回避动作时提供视场的本发明实施方式对于避免感觉“疲劳”承担着重要作用。
作为该方法来说,上述第一鱼眼型光学***为了减小球面像差所形成的模糊,减小瞳孔附近的开口,由小NA将像投影到上述第一感光元件。另一方面,对上述第二鱼眼型光学***而言,其失真特性虽是采用接近于上述第一鱼眼型光学***的失真特性,但瞳孔附近的开口与上述第一鱼眼型光学***的开口相比较大。由此,即使在眼睛为了扩展视场而作眼转动动作时也提供了充分视场。这是因为,人类眼睛的晶状体起到了上述小开口的作用,因而形成为眼转动动作时可让光束到达上述晶状体这种构成。
而本发明实施方式,可提供使上述显示装置对左右眼球配置于至少一处的结构,或将上述显示装置对左右眼球分别配置,并可根据眼球间隔进行位置调整那样的所有结构,因而可以有适合用途的宽范围运用方法。
此外,上述光电元件引入与光束方向正交的二维发光型液晶显示装置,可以提供精细的析像度、低电力功耗、接近原来视场的图像信息。当然,本发明的光电元件不仅仅限于此,只要属于二维发光型元件可应用所有元件。
与上述方式不同的实施方式中,具有用以将规定宽域像投影到与光束方向正交的二维感光型的第一光电元件上的第一鱼眼型光学***,从与光束方向正交的二维发光型的第二光电元件输出上述感光型的第一光电元件感光的图像数据,通过第二鱼眼型光学***和曲面形状的反射面将该第二光电元件的输出像投影到眼球内视网膜上。
该例中,鱼眼型光学***将宽域像投影到平面上的感光装置,因而首先由上述感光型第一光电元件对此读取作为图像信息,由发光型的第二光电元件输出该图像信息,然后通过反向利用具有相同特性的鱼眼型光学***来进行反向修正,将上述光电元件上的平面像变换为宽域像。具体来说,上述鱼眼型光学***也可以产生大的失真来形成平面图像,在第二鱼眼型光学***的出射部平面图像的失真被完全修正,可形成为良好的宽域像。
当然,第一光电元件和第二光电元件之间、还有第一鱼眼型光学***和第二鱼眼型光学***之间存在制造误差,或用不同性能的元件时,便存在多多少少的失真。这种情况下,根据这些失真误差对第一光电元件的感光图像信息进行数字方式的修正,进行第二光电元件输出的控制,可得到更好的图像信息。
此外理想的是,由至少2面椭圆型反光镜形成上述曲面形状的反射面,该2面椭圆型反光镜各自2个焦点其中之一配置于基本相同位置,且全部焦点基本上配置于一直线上。这是因为,即使按上述方法,第二鱼眼型光学***的出射图像信息完全还原了宽域像信息,但从此处直到将像投影到眼球视网膜也要设法避免像变形。从上述第二椭圆反光镜的第二焦点投影到第一焦点的图像信息所具有的失真,通过反向经历与从上述第一椭圆反光镜的第二焦点投影到第一焦点的相同的光路,可完全还原。因而,可在上述第一椭圆反光镜的第一焦点部分完全还原上述第二椭圆反光镜的第二焦点像。此外,设法使上述第一椭圆反光镜和上述第二椭圆反光镜两者曲率基本上相同的话,可更加完整地获得接近的投影像。
上述图像显示装置的佩戴,较为理想的是具有一对用于左右眼睛,1对第一鱼眼型光学***的间隔和眼球的间隔配置为相等,可按照左右眼睛间隔来调整两图像显示装置的间隔。这样,通过使图像信息输入部分的间隔与双眼的间隔相吻合,形成相同视场,获得接近实际的立体图像,因而很有效。而且,可通过有意识改变该间隔,来得到更逼真的立体图像。这种情形在本装置用于电视游戏等场合下很有效。
作为另一方法,由至少2面fθ型反光镜形成上述曲面形状的反射面,将其中之一的fθ型反光镜的焦点配置于眼球晶状体附近,而另一焦点则配置于第二鱼眼型光学***附近。这是因为用上述椭圆反光镜的方法,上述第二鱼眼型光学***和第二光电元件会往前方突出,为了防止出现该情况下形成为向耳朵侧延伸的结构。但采用该方法,外侧视场可能被剔除,较好是根据用途分开使用。
此外理想的是,上述第二鱼眼型光学***通过对晶状体随眼球转动而移动在视网膜上形成的图像检测范围提供包含图像数据的光束,使得上述光电元件上的像在不会被大幅度被剔除图像的情况下被投影在眼球内视网膜上。由此,如上文所述(参照图5),即使在眼睛为了扩展视场页作眼转动动作时,也能够提供充分视场。人类眼睛连续进行一种动作、眼睛功能渐渐无法跟随而会感觉“疲劳”,而转动眼睛是回避这一现象重要动作,在进行这种“骨碌碌转动”的回避动作警方提供视场的实施方式对于避免感觉“疲劳”承担着重要作用。
而且,所以将形成为使上述显示装置做成对左右眼球配置于至少一处的结构,或对左右眼球分别配置,并可根据眼球间隔进行位置调整的结构,是因为考虑到了适合用途的广范围运用方法。
此外,之所以对上述第二光电元件导入与光束方向正交的二维发光型液晶显示装置,而对上述第一光电元件导入与光束方向正交的二维感光型的CCD二维阵列传感器,是因为可以提供精细的析像度、低电力功耗、且更接近原来视场的图像信息,当然,本发明不仅仅限于此,只要属于二维发光型元件和二维感光型元件,可应用所有元件。本说明书和权利要求书中,所谓“发光型”,包含即便其本身不发光但用卤素灯、LED作为背光照明的器件(LCD),将扩散玻璃等设置于液晶背面、利用自然光发光的器件,也包含反射型液晶元件(LCOS)等的全部作为发光型。
此外,与上述实施方式不同的实施方式中,将规定的宽域像投影到与光束方向相正交的二维球面感光型的第一光电元件上,从与光束方向相正交的二维球面发光型的第二光电元件输出由上述感光型的第一光电元件所感光的图像数据,通过曲面形状的反射面投影到眼球内视网膜上。此外,若该上述第一光电元件在球面具有开口,并在该开口部设置有凸透镜,球面内壁上设置有多个CCD二维阵列传感器,第二光电元件在球面具有开口,并在该开口部设置有凸透镜,球面内壁上设置有多个液晶装置的话,则不用变换为平面图像信息,就能直接将宽域像图像信息送至眼球内视网膜。
此外,与上述实施方式不同的实施方式中,具有用以将规定宽域像投影到与光束方向相正交的二维感光型的第一光电元件上的第一鱼眼型光学***,从与光束方向相正交的二维发光型的第二光电元件输出上述感光型的第一光电元件所感光的图像数据,并通过第二鱼眼型光学***将该第二光电元件的输出像投影到眼球内视网膜上,还具有在此时进行所需控制的控制机构。由此,通过按数字方式观察宽域像楞确保视场,而没有以往那样双眼的佩戴完全遮住视场这种问题。
此外,其他实施方式中,当将上述规定的宽域像投影到眼球内视网膜上时进行所需控制的控制机构,包含用以对所述规定宽域像进行聚焦的对焦调整机构、任意控制宽域像输出范围的机构其中至少之一。因此,对于佩戴普通眼镜的人便可在不用佩戴该普通眼镜的情况下利用本发明观察图像信息。此外,宽域图像信息中可通过仅对所需部分以数字方式放大来观察宽域像,对于视力差的人还起到放大镜作用。此外,对于作为眼疾而所见到的普通图像存在变形的人,也可通过根据其失真对输出图像加以修正来提供正常图像。
而且,如果使上述控制机构具有图像合成功能,将该图像显示装置以外的外部所输入的第一图像信息与上述第一光电元件所输入的第二图像信息相合成,并从该第二光电元件输出的话,便可边观察宽域像,边根据需要在任意场所显示具有宽广画面的高清晰画面、视频图像、DVD图像、个人计算机显示图像等。此外,能够进行宽广图像显示,因而合成报纸张尺寸的画面、杂志尺寸的画面的话,可在确认周围状况的同时阅读空中浮现的虚拟报刊、杂志。
该上述第一图像信息,根据上述第一鱼眼型光学***所产生的失真信息被进行修正,使得图像发生同样变形,并与上述第二图像信息合成后输出。这样的话,在如图12所示,使任意宽域像200为(a),来自外部的图像信息201为(b)时,从第二光电元件输出的图像包含上述第一鱼眼型光学***所产生的失真信息,如(c)所示在周边部位图像信息被压缩。因此,通过使来自外部的图像信息201如(c)所示,以上述第一鱼眼型光学***呈现的条件加以反向修正后进进合成,在眼球的视网膜上如(d)的图像所示还原为无失真的投影像,从而提供良好的图像信息。
此外,该上述第一图像信息其中之一为视频图像输出信息,提供该上述视频图像输出信息的视频图像输入装置固定于上述图像显示装置,并根据需要可脱卸,做成该种结构,可用本发明产品来替代现有的视频摄像机。现有的视频摄像机只能够通过视频摄像机的显示器、目视光学***等观察对象物、对象者。因此,难以事先预料到扩大视频摄像机倍率的过程中其目标会找不到,或目标被障碍物所遮挡。
但本发明实施方式中,通过如图11所示将视频摄像机加装到本发明装置的横向一侧,就可在观察包含目标的宽域像图像的同时,将部分的视频摄像机的图像信息合成为宽域像图像的一部分,在同一画面观察该两者。此外,通过宽域像图像信息确认障碍物等,将视频摄像机取下以免遮挡,在没有障碍物的位置摄取放大像,或在人太多时,可用手仅提起视频摄像机,正确取入任意场所的图像。当然,可用上述控制装置任意改变宽域像图像和视频摄像机图像的配比,也可通过将两者图像信息记录为数据,在播放时任意改变其配比。
而且,上述第一图像信息其中之一为计算机图像输出信息,其他为计算机的键盘输入信息。这可按图13所示形式使用,但对于图像信息的合成用图14进行说明。图14中在(b)中所示的宽域像图像200中,需要合成并显示(c)所示计算机的需要高析像度的处理部分203、(a)所示计算机画面周边所显示的工具条部分204、以及(d)所示显示键盘输入信息的部分205。
如上文所述,第二光电元件输出的图像包含上述第一鱼眼型光学***所发生的失真信息,如(e)所示在周边部位图像信息被压缩。因此,对来自外部的图像信息204、205来说,通过如(e)所示,按对上述第二鱼眼型光学***所具有的失真进行逆向修正的条件变换图像信息,并与宽域像图像200合成,在眼球视网膜上便如(f)图像所示,提供还原为无失真的投影像的良好图像信息。
此外,上述第一图像信息设定为手上佩戴的便携式键盘输入信息,上述便携式键盘输入信息,可用其他手指设置的电磁检测传感器检测拇指所设置的电磁元件信息,并变换为该拇指与其他手指的距离及方向信息,来作为图像信息,可以按原样在图14(d)部分中显示手动作。该(d)部分中显示有虚拟键盘的图像,将拇指固定于任意位置并使其他手指在任意位置动作的话,便根据其距离及方向变换为包含上下、左右方向在内的二维位置信息,各指在上述虚拟键盘上移动来形成为图像信息,使键盘上的键点亮。由此,可由图像进行确认的同时正确选择键盘上的键。
此外,上述便携式键盘输入信息,由各手指设置的压力检测传感器检测对物体的各指压信息,将各手指的指压信息变换为可作为图像识别的信息,形成为图像信息,因而可通过例如改变点亮灯亮色等判断是否按过上述点亮的键确认是否已进行正确的数据输入作为图像信息。这里,作为例子示出基于键点亮、变色的显示方法,但本发明不拘泥此,可应用广泛范围的方法。
此外,上述第一图像信息其中之一为将从话筒或头戴式受话器所输入的有声或无声变换为文字,形成为图像信息。控制装置保持有将声音变换为文字信息的功能。尤其在用头戴式受话器塞住双耳的情况下,噪声影响小,即便无声,也能使头戴式受话器的振动纸振动,变换为有声,因而按讲悄悄话的要领进行信息输入的话,可将此通话作为文字信息,变换为图像信息。此外,所连接的个人计算机存在电子邮件功能及电话功能的话,可高速输入该文字信息和发送邮件。
此外,作为其他结构,上述第二光电元件和第二鱼眼型光学***对左右眼球分别配置,第一光电元件和第一鱼眼型光学***为共用,输入至该上述第一光电元件的输入信息随双眼宽度进行位置变换,输出与上述左右眼睛的第二光学元件相对应的各自的信息。如图10所示,双眼可见的视场,其视场区域随眼睛彼此分离的距离而异。若共用的第一光电元件9的信息未经修正提供给左右第二光电元件(液晶型二维输出装置)6L、6R的话,会出现双重像。为了使之按一个像出现,通过用如上所述方法可获得良好的投影图像。
如上所述,本发明可读取宽域像作为图像信息,通过利用这来考虑种种组合,可提供超过佩戴式显示器、佩戴式计算机的真正的佩戴信息输入输出装置。此外,可提供销售有效利用该宽域像图像的新感觉的游戏软件、宽域像高清晰图像、宽域像DVD、或宽域像视频像带,甚至是逼真的虚拟实境的***。
此外,通过而且,可从本图像显示装置当中分离或替换用以提供上述功能的图15所示的图像信息输入装置35、立体图像输入装置36、高倍率图像输入装置37等,可使运用用途多样化,将该取入装置作为红外线、紫外线、放射线检测装置,还可发展到夜间活动、危险区域的应用。
本发明当然保持方法、头部保持式显示器保持方法,此外可以应用于眼镜式显示器也可通过直接设置于电影院、飞机座椅、休闲用座椅、或卧床老人看护用床位等,提供不会因重量、佩戴带来不适感的机构。作为使重量、佩戴所带来的不适感解决的具体方法,除此以外还设置独立保持该显示机构的支持台,将显示器设置于具有在三维方向上可移动的关节机构的臂部件的顶端。臂部件以该支持台为中心在该显示器的相反方向上具有平衡负重,只要抵消该显示器重量即可。此外,通过在显示器主体设置遮住外界漏光的布状光罩,并抽吸其中空气使其成为较弱的负压(相对于外压较弱的压力),就能提供跟随面部动作,但感受不到重量、与面部整体轻轻贴合因而使佩戴感消除的舒适的机构。
采用这种机构还可进行佩戴部分的内部空气循环,防止内部湿热。但对整个外部遮光的话,本装置使用过程中准于进行饮食动作等,希望设法可从显示器的下方获得外部信息。但底部敞开的话,很可能因此处漏光而失去像的鲜明度。因此,通过在该部分设置不至于给显示器鲜明度带来影响的滤光片,抑制来自外部的漏光量,同时保持内部负压,使得可得到外部信息,从而可提供更加舒适的***。
此外,作为本发明的外部信息输入装置,不论是有线的还是无线的,均可用于全部用途。
而且,本发明实施方式中,曲面形状的反射面设定为金属膜层所形成的反射面这种结构。可以将透明玻璃部件或塑料部件的内面用作为反射面,但具有光学折射率的部件用于曲面形状的反射面的话,由于从空间入射的入射位置、出射位置发生色散因而不理想。但在按线对称或点对称使用2片具有相同曲面形状的反射面的情况下,将从空间入射的入射位置、出射位置配置于对称位置的话,可修正色散。透明的玻璃部件、塑料部件其折射率比大气内高,因而以较大角度入射的光束是以更小角度到达曲面形状的反射面的。因而,具有曲面形状制造容易的好处。使用该技术的情况下,用一体化的透明玻璃部件、塑料部件制造2片相同曲面形状的反射面的话,将具有更为简化的结构。
而且,本发明实施方式使用了2片相同曲面形状的反射面,但为了中继也可以将2片以上片数组合。上述可在完全的设计自由度上加以考虑。
此外,将具有图22、图23所提出的曲面反射面的鱼眼型光学***的光束提供给具有图1、图2所示2片反射面的光学***,使光束传播至使用者的瞳孔,在排除变形像差等的影响的同时,有效地将光束提供至瞳孔,很显然也属于本发明保护范围,此外,也可在具有2片反射面的光学***的出射侧还设置其他光学***,提高设计自由度,很显然也属于本发明保护范围。
而且,另一方面,采用由粘接剂将上述金属氧化物、金属碳化物保持于聚酯片上的扩散玻璃,同时来自液晶型二维输出装置的图像进行投影的鱼眼型光学***对该扩散玻璃进行投影,也可提供适应眼转动的富有现场感的头戴式显示装置。
此外,本发明实施方式的图像显示装置可提供如下一种图像显示装置,具有对与光束出射方向正交的二维发光型的第一光电光学元件的输出像进行控制的控制机构,上述第一光电光学元件的输出像是通过第一鱼眼型光学***和中继光学***将第一光电元件所出射的出射光投影到眼球内视网膜上成像来形成的,该控制机构包含用以对规定宽域像进行聚焦的对焦调整机构、任意控制该宽域像的输出范围的机构其中至少之一,上述宽域像的视野角由于为60°以上因而富于现场感,还可根据图像内容由较佳显示方法投影图像。由此,佩戴普通眼镜的人不佩戴该普通眼镜也可由本发明观察图像信息。此外,通过仅对宽域图像信息中的所需部分以数字方式放大,就能观察宽域像,对于视力差的人还起到放大镜作用。
而且,这种图像显示装置中还具有图像合成装置,该合成装置将第一图像信息同与上述第一图像信息不同的第二图像信息相合成,并从上述第一光电元件输出,由于具有该合成装置,故可边观看宽域像,边根据需要在任意部位显示高清晰图像、视频图像、DVD图像、个人计算机显示图像等。
此外,能够进行宽广图像显示,因而合成报纸尺寸的画面、杂志尺寸的画面的话,可在确认周围状况的同时阅读空中浮现的虚拟报刊、杂志。
而且,由于上述图像显示装置的控制机构具有光学合成上述第一光电元件输出的第一图像信息和上述第二光电元件输出的第二图像信息、并投影到上述眼球内视网膜上成像的功能,因而可降低向第一光电元件输出图像信息的图像处理装置的图像处理负担。此外,为了降低第一鱼眼型光学***所产生的失真,通过由第二光电元件和控制机构两者间的光学***加上反向失真,来降低失真修正所造成的图像变差。
另外,上述控制机构,与图像处理部一起设置于固定场所,以无线(红外线、电磁波)方式对图像显示部提供信息的话,可提高图像显示装置的佩戴性。而对于上述第一图像信息和上述第二图像信息其中至少之一,显示于光电元件时由光电元件显示对第一鱼眼型光学***所产生的失真进行了反向变形的显示像,此时可减少光学零部件,可减轻重量。
另外,上述第一图像信息和上述第二图像信息其中至少之一为视频图像或DVD输出信息,或者是计算机的图像输出信息、计算机键盘输入信息,可根据起居方式投影所需信息。
作为信息,是手上佩戴的便携式键盘输入信息,并采用便携式键盘作为本实施方式中图像显示装置所设置的键盘,从而不论何种使用状况均可进行信息输入。
另外,该便携式键盘理想的是,由其他手指设置的电磁检测传感器检测拇指所设置的电磁元件信息,变换为其拇指与其他手指间的距离及方向信息可以用这样的方法输入种种信息。而且,作为其他输入方法,也可以由各手指设置的压力检测传感器检测对物体的各指压信息,将各手指的指压信息变换为作为图像可识别的信息。
而且,上述第一图像信息和上述第二图像信息其中至少之一,也可以将话筒或头戴式耳机所输入的有声或无声变换为文字,形成为图像信息。
用以上输入装置的方法如先前所记载的那样,故而这里省略说明。
上述图像显示装置由2个所构成,该2个图像显示装置也可以对左右眼睛分别配置,可按照左右眼睛的间隔对上述2个图像显示装置的间隔进行调整,以便上述2个图像显示装置的上述第一鱼眼型光学***彼此间隔与眼球间隔相等。这时,各个图像显示装置组装到一个壳体中时,可在壳体内移动,可按与左右眼睛间隔基本上相同的间隔对第一光电元件所发出的图像进行投影。
1个图像显示装置本身也可以仅为1个,也可以分别对左右眼球将第一光电元件输出的光束由光学部件分割,并可按照左右眼睛的间隔对第一鱼眼型光学***的投影像间隔进行调整,以使为分割后的光束分别设置的上述第一鱼眼型光学***彼此间的间隔与和眼球间隔相等。通过用半透射反射器、偏振光束分光器将来自第一光电元件的光束分割为多束光束,使光电元件为一个,能将具有宽广视野角的图像投影至左右双眼。
而且,也可以在输出上述图像数据的光电元件和晶状体的光路中所设置的成像面配置有进行光扩散的光扩散体,上述第一鱼眼型光学***的至少一部分光学***使扩散后的透射光聚光于晶状体附近,使物方的像成像于视网膜上。通过将中间像一度投影到光扩散体,再次用由光学***使已投影到光扩散体上的像成像于使用者视网膜,可排除直到投影到光扩散体为止的光学***的射光瞳的影响,从而可提供适应眼转动的图像显示装置。
对此光进行扩散的光扩散体较好是在透射片上覆盖了金属氧化物、金属碳化物其粒径严格按微米量级管理的磨粒这种透射型扩散片,作为磨粒来说,为碳化硅、氧化铬、氧化锡、氧化钛、氧化镁、氧化铝其中至少之一,上述透射片最好为聚酯片。
作为这种透射型扩散片的特征,散射角相当大,通过采用鱼眼型目镜透镜将透射型扩散片的像导入使用者眼睛中的晶状体,可投影得到宽广视野而且清晰的像。
另外,若上述图像显示装置的至少一部分由使用者以外部分支持,还与使用者面部接触并可随使用者面部动作而移动的话,可降低给使用者带来的不适的佩戴感觉。尤其,如图40、图41、图42所示,通过采用可在将安装面为XY平面的X方向、Y方向、Z方向、ΘX方向、ΘY方向、ΘZ方向这6轴方向上任意移动图像显示装置的支持机构,可自然跟随使用者的面部移动。
另外,为了可在6轴方向上任意驱动,在上述图像显示装置主体的重心或其附近进行支持,可以减小使图像显示装置移动时所产生的惯性力,即便使用者面部移动也可带来自然的佩戴感觉。作为其具体装置来说,可以设置与上述图像显示装置主体平衡的重锤,上述图像显示装置主体和上述重锤两者由软性部件连接。另外,该软性部件因使图像显示装置移动而会移动,因而理想的是将滑轮应用于软性部件的滑动部位,来降低滑动部位的阻力。
而且,任意控制宽域像的输出范围的机构,为可变倍率是2倍以上的光学变焦机构,可通过根据变焦状态控制为第一图像信息和第二图像信息所合成的合成图像避免重叠规定宽度以上,来降低VE眩晕。
而且,除此以外也任意控制宽域像的输出范围的机构,具有在观察者视线上对景观移动如流的图像进行检测的检测装置;以及将该图像加工为规定时间内避免图像横向移动并予以存储的存储装置,这在降低VE眩晕方面很有效,而且给观察者带来的现场感觉未变差。
另外,任意控制宽域像的输出范围的机构,通过具有选择装置来任意选择使用、不使用检测装置和加工存储装置,可根据观察者意思提供图像,可提供合乎意愿使用的图像显示装置。
另外,具体来说,检测装置和存储装置中,将图像数据读取到内部缓冲区,将从内部缓冲区输出的图像分为周边图像区和中心图像区,算出区内规定时间中的横向偏移动量,在该周边图像和该中心图像向相同方向偏移时判断是手抖动或画面横向移动,使图像像素整体向像移动方向的相反方向上偏移与移动量相同的量,以避免规定时间内图像横向移动,加工为画面整体显现为静止这种图像,来降低VE眩晕。
整理以上内容的话,利用本发明的情况下,可分别期待如下文所述的市场属性。
《附带显示器的佩戴式(图30中94R、94L、102R’、102L’)》
可以视线摄取视频的、无失败的家用录像:向不在现场的人发送带来充满现场感觉的图像;使用红外线的夜间警备;3D图像读取机;大屏幕便携式个人计算机;便携式游戏机(具有加密性能);宽屏幕便携式数字新闻;虚拟实境显示器。
《固定、远程操作式(图30中102R、102L)》
保安保安、防灾用广角监视;关注部位放大功能;安全成问题的动物观赏;活动影像摄像;设置于景观佳场的休闲动画发送;人无法到达空间的广角监视;图像提供;娱乐场所拥挤状况等的广角图像提供。
《落地式(图31)》
使人感觉不到重量、疲劳感的大屏幕个人计算机、CAD;替代电影院、投影仪的大屏幕显示器;充满现场感的3D大屏幕图像提供;对上述视频机构的图像进行互联网接收;对卧床老人、病人提供具有现场感觉的图像;休闲图像显示器;提供新感觉的TV游戏图像;在狭窄空间提供大屏幕图像;面向个人的高保密信息显示***;虚拟实境显示器;可远程操作的大屏幕显示器;宽屏幕数字新闻接收***、航班头等舱中的娱乐服务
最后图49中将现有产品和本发明实施方式产品进行对比。显然,本发明产品除了共同性限制以外在所有方面均能够发挥优异性能。
另外,以上本发明实施方式中,例举了本发明组成部分及其特定组合,但可适当任意组合上述组成,为本发明保护范围所包含的内容,当然,怎样的组合包含在本发明保护范围中,发根据权利要求书所示事项进行判断。

Claims (14)

1.一种装在使用者眼球之前的图像显示装置,其特征在于,具有:配备与光束出射方向相正交的显示面的二维发光型光电元件;以及将所述光电元件所出射的光束投射到所述眼球内、具有60度以上视野角的鱼眼型光学***;
其中,所述鱼眼型光学***形成中间像,在从形成所述中间像的位置起配置于所述眼球一侧的光学元件当中,最接近所述眼球的光学元件为单透镜所形成的非球面光学元件,该非球面光学元件距离所述眼球较远的面其面形状具有圆锥面所形成的非球面形状,该圆锥面为使得入射所述眼球瞳孔的所述光束相对于该非球面光学元件距离所述眼球较远的面基本垂直入射,而且该圆锥面的圆锥系数小于-1;
其中,所述图像显示装置其中一部分可与使用者面部触碰,至少所述光电元件和所述鱼眼型光学***由使用者以外的支持机构支持,且所述支持机构可随使用者面部动作移动支持包含所述光电元件和所述鱼眼型光学***在内的单元;其中,所述鱼眼型光学***形成所述中间像的位置至所述眼球的传播光束从所述中间像开始的发散角,与当所述眼球瞳孔位置随所述眼球的横移变化时,通过所述眼球瞳孔中心的全部主光线至所述中间像成像面的入射角度的变化范围相比,具有大的角度。
2.如权利要求1所述的图像显示装置,其特征在于,所述图像显示装置对左右眼球分别配置,还附加有可根据所述使用者的眼球间隔调整各自所述鱼眼型光学***间隔的调整机构,使所述图像显示装置对应于双眼。
3.如权利要求1所述的图像显示装置,其特征在于,进一步具有地震检测传感器、水平测量调整装置、制动器其中至少之一。
4.如权利要求1所述的图像显示装置,其特征在于,所述图像显示装置附带有定时装置和根据该定时装置的输出移动图像显示装置的移动装置。
5.如权利要求1所述的图像显示装置,其特征在于,在所述中间像的成像位置或其附近具有使光扩散的光扩散体。
6.如权利要求5所述的图像显示装置,其特征在于,所述光扩散体,为透射片上覆盖了粒径按微米量级计的金属氧化物或金属碳化物粉体的透射型扩散片。
7.如权利要求6所述的图像显示装置,其特征在于,所述粉体为碳化硅、氧化铬、氧化锡、氧化钛、氧化镁、氧化铝其中至少之一,所述透射型扩散片为聚酯片。
8.如权利要求1所述的图像显示装置,其特征在于,所述支持机构可在6轴方向上任意变位。
9.如权利要求1所述的图像显示装置,其特征在于,由所述支持机构支持包含所述光电元件和所述鱼眼型光学***在内的单元的重心位置或其附近位置。
10.如权利要求1所述的图像显示装置,其特征在于,所述支持机构具有:多个关节部;锤部;使包含所述鱼眼型光学***和所述光电元件在内的所述单元与所述锤部两者结合的富有柔软性的连接部件;以及设置于所述关节部、保持所述连接部件的保持部件,所述保持部件对于所述连接部件的移动所产生的阻力少。
11.如权利要求1所述的图像显示装置,其特征在于,进一步包括对场景移动如流的图像进行检测,并加工为可静止显现该图像规定时间的VE眩晕减小装置。
12.如权利要求11所述的图像显示装置,其特征在于,进一步具有对所述VE眩晕减小装置的使用、不使用进行选择的VE眩晕功能选择装置。
13.如权利要求11或12所述的图像显示装置,其特征在于,所述VE眩晕减小装置将所述图像分为周边图像区和中心图像区,算出位于各区内的像在规定时间内的横移量,所述周边图像区的像和所述中心图像区的像在相同方向上移动时便判断为手抖动或画面横向移动,使所述图像整体在像动作方向的相反方向移动与动作量相同的移动量,来避免图像在规定时间内横向移动,加工成可显现为画面整体静止的图像。
14.如权利要求1所述的图像显示装置,其特征在于,进一步包括对所述二维发光型光电元件进行照明用的光源,所述光源与包含所述光电元件和所述鱼眼型光学***在内的单元分离,通过光纤引导光束。
CNB038226979A 2002-09-24 2003-09-18 图像显示装置 Expired - Fee Related CN100447614C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002313466 2002-09-24
JP313466/2002 2002-09-24
JP109720/2003 2003-04-15
JP2003109720 2003-04-15

Publications (2)

Publication Number Publication Date
CN1685272A CN1685272A (zh) 2005-10-19
CN100447614C true CN100447614C (zh) 2008-12-31

Family

ID=32044703

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038226979A Expired - Fee Related CN100447614C (zh) 2002-09-24 2003-09-18 图像显示装置

Country Status (7)

Country Link
US (1) US7068444B2 (zh)
EP (1) EP1544666A4 (zh)
JP (1) JP4287375B2 (zh)
CN (1) CN100447614C (zh)
AU (1) AU2003264481A1 (zh)
TW (1) TW200416413A (zh)
WO (1) WO2004029693A1 (zh)

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10131720B4 (de) * 2001-06-30 2017-02-23 Robert Bosch Gmbh Head-Up Display System und Verfahren
BR0315384A (pt) * 2002-10-15 2005-09-06 Volvo Technology Corp Método e disposição para interpretar a atividade da cabeça e ocular de indivìduos
US7336290B2 (en) * 2004-01-07 2008-02-26 Texas Instruments Incorporated Method and apparatus for increasing a perceived resolution of a display
US7432917B2 (en) * 2004-06-16 2008-10-07 Microsoft Corporation Calibration of an interactive display system
JP2006284877A (ja) * 2005-03-31 2006-10-19 Olympus Medical Systems Corp 医療用立体画像表示制御装置
JP4635702B2 (ja) * 2005-04-28 2011-02-23 凸版印刷株式会社 画像表示装置
US7925995B2 (en) 2005-06-30 2011-04-12 Microsoft Corporation Integration of location logs, GPS signals, and spatial resources for identifying user activities, goals, and context
JP2007053183A (ja) * 2005-08-17 2007-03-01 Fujifilm Corp 固体撮像素子
FR2909189B1 (fr) * 2006-11-23 2009-01-30 Essilor Int Agencement d'affichage opto-electronique
JP2008160300A (ja) * 2006-12-21 2008-07-10 Canon Inc 画像処理装置及び撮像装置
US7802883B2 (en) 2007-12-20 2010-09-28 Johnson & Johnson Vision Care, Inc. Cosmetic contact lenses having a sparkle effect
US20110122051A1 (en) * 2008-08-13 2011-05-26 Postech Academy Industry Foundation Head-mounted display
US8786520B2 (en) * 2008-09-04 2014-07-22 Innovega, Inc. System and apparatus for display panels
NL2002343C2 (nl) * 2008-12-18 2010-06-21 Apad Octrooi B V Inrichting voor het lokaliseren van een structuur in het inwendige van een lichaam.
CN103763472B (zh) * 2009-02-19 2017-03-01 奥林巴斯株式会社 照相机、佩戴型图像显示装置、摄影***以及摄影方法
JP5353393B2 (ja) * 2009-04-07 2013-11-27 大日本印刷株式会社 画像処理装置及び画像処理方法等
JP2011028633A (ja) * 2009-07-28 2011-02-10 Sony Corp 情報処理装置及び方法、並びに、プログラム
EP2462745B1 (en) 2009-08-05 2015-04-01 Thomson Licensing Optical compensation for ghosting in stereoscopic displays
GB0913911D0 (en) 2009-08-10 2009-09-16 Optos Plc Improvements in or relating to laser scanning systems
US8564534B2 (en) 2009-10-07 2013-10-22 Microsoft Corporation Human tracking system
US8963829B2 (en) 2009-10-07 2015-02-24 Microsoft Corporation Methods and systems for determining and tracking extremities of a target
CN101923179B (zh) * 2009-11-06 2013-04-24 中国科学院空间科学与应用研究中心 一种全天空大气重力波成像仪
CN101706588B (zh) * 2009-11-10 2013-04-24 中国科学院空间科学与应用研究中心 一种采用鱼眼镜头和远心光路的全天空大气重力波成像仪
TWI401524B (zh) * 2010-02-01 2013-07-11 Compal Communications Inc 投影裝置
CA2696925A1 (en) * 2010-03-19 2011-09-19 Bertrand Nepveu Integrated field-configurable headset and system
GB201011096D0 (en) * 2010-07-01 2010-08-18 Optos Plc Improvements in or relating to ophthalmology
US9632315B2 (en) 2010-10-21 2017-04-25 Lockheed Martin Corporation Head-mounted display apparatus employing one or more fresnel lenses
US10359545B2 (en) 2010-10-21 2019-07-23 Lockheed Martin Corporation Fresnel lens with reduced draft facet visibility
TWI426244B (zh) * 2010-11-12 2014-02-11 Ind Tech Res Inst 靜法碼機
KR101883221B1 (ko) 2010-12-16 2018-08-30 록히드 마틴 코포레이션 픽셀 렌즈를 갖춘 콜리메이팅 디스플레이
JP2012141461A (ja) * 2010-12-29 2012-07-26 Sony Corp ヘッド・マウント・ディスプレイ
GB201100555D0 (en) * 2011-01-13 2011-03-02 Optos Plc Improvements in or relating to Ophthalmology
DE102011004563B4 (de) * 2011-02-23 2014-02-20 Osram Gmbh Optikelement und Leuchtvorrichtung
TWI490628B (zh) * 2011-09-23 2015-07-01 Nat Inst Chung Shan Science & Technology Virtual reality video control method
JP5620354B2 (ja) * 2011-09-29 2014-11-05 株式会社東芝 表示装置
US9076368B2 (en) 2012-02-06 2015-07-07 Battelle Memorial Institute Image generation systems and image generation methods
US8982014B2 (en) 2012-02-06 2015-03-17 Battelle Memorial Institute Image generation systems and image generation methods
CN104115491A (zh) * 2012-02-22 2014-10-22 索尼公司 显示装置、图像处理装置和图像处理方法、以及计算机程序
GB201204511D0 (en) * 2012-03-14 2012-04-25 Ben Jedi Karl Y Scrying device
WO2013140697A1 (ja) * 2012-03-22 2013-09-26 ソニー株式会社 表示装置、画像処理装置及び画像処理方法、並びにコンピューター・プログラム
US20130300635A1 (en) * 2012-05-09 2013-11-14 Nokia Corporation Method and apparatus for providing focus correction of displayed information
US10178372B2 (en) 2012-05-25 2019-01-08 The Charles Stark Draper Laboratory, Inc. Long focal length monocular 3D imager
EP2876483B1 (en) * 2012-07-20 2017-10-18 JVC KENWOOD Corporation Image display apparatus
TWI470272B (zh) * 2012-07-24 2015-01-21 Univ Nat Chiao Tung 影像顯示裝置
CN102928980B (zh) * 2012-11-14 2016-02-10 中航华东光电有限公司 防毒面具头盔显示器的二元光学***
JP2014102419A (ja) * 2012-11-21 2014-06-05 Mitaka Koki Co Ltd 電子映像表示装置
FR2999302B1 (fr) * 2012-12-10 2017-12-22 Yahiatene Daniel Ait Dispositif permettant d'ameliorer la vision d'un etre humain
CN103634680B (zh) * 2013-11-27 2017-09-15 青岛海信电器股份有限公司 一种智能电视的播放控制方法及装置
JP6224251B2 (ja) 2013-12-19 2017-11-01 インテル コーポレイション ボウル形状イメージングシステム
GB2521831A (en) * 2014-01-02 2015-07-08 Nokia Technologies Oy An apparatus or method for projecting light internally towards and away from an eye of a user
US9274340B2 (en) 2014-02-18 2016-03-01 Merge Labs, Inc. Soft head mounted display goggles for use with mobile computing devices
CN103995355B (zh) * 2014-05-23 2016-06-01 北京理工大学 一种用于头盔显示器的可调节视度的光学***
US10339544B2 (en) * 2014-07-02 2019-07-02 WaitTime, LLC Techniques for automatic real-time calculation of user wait times
US10442355B2 (en) * 2014-09-17 2019-10-15 Intel Corporation Object visualization in bowl-shaped imaging systems
JP6402991B2 (ja) * 2014-10-02 2018-10-10 セイコーエプソン株式会社 画像表示装置
US10684476B2 (en) * 2014-10-17 2020-06-16 Lockheed Martin Corporation Head-wearable ultra-wide field of view display device
FR3028325B1 (fr) * 2014-11-06 2016-12-02 Thales Sa Systeme de visualisation de tete a optiques croisees
GB201420352D0 (en) 2014-11-17 2014-12-31 Vision Eng Stereoscopic viewing apparatus
US9438779B2 (en) * 2015-02-09 2016-09-06 Omnivision Technologies, Inc. Wide-angle camera using achromatic doublet prism array and method of manufacturing the same
WO2016141054A1 (en) 2015-03-02 2016-09-09 Lockheed Martin Corporation Wearable display system
JP2016192122A (ja) * 2015-03-31 2016-11-10 ソニー株式会社 情報処理装置、情報処理方法、およびプログラム
US10271042B2 (en) * 2015-05-29 2019-04-23 Seeing Machines Limited Calibration of a head mounted eye tracking system
CN108028901B (zh) * 2015-09-16 2020-04-21 富士胶片株式会社 投影型显示装置及投影控制方法
US10754156B2 (en) 2015-10-20 2020-08-25 Lockheed Martin Corporation Multiple-eye, single-display, ultrawide-field-of-view optical see-through augmented reality system
US10139217B1 (en) * 2016-02-16 2018-11-27 Google Llc Array based patterned illumination projector
US10010247B2 (en) 2016-04-26 2018-07-03 Optos Plc Retinal image processing
US9978140B2 (en) 2016-04-26 2018-05-22 Optos Plc Retinal image processing
US9995936B1 (en) 2016-04-29 2018-06-12 Lockheed Martin Corporation Augmented reality systems having a virtual image overlaying an infrared portion of a live scene
CN110199517B (zh) * 2016-06-21 2021-07-20 瑞德微视有限责任公司 在单个对准处具有自动剪辑的宽视野眼底相机
JP6209662B1 (ja) 2016-10-13 2017-10-04 株式会社Qdレーザ 画像投影装置
CN110114710B (zh) * 2016-10-31 2020-11-27 德遁公司 毫微微投影仪光学***
US10559085B2 (en) * 2016-12-12 2020-02-11 Canon Kabushiki Kaisha Devices, systems, and methods for reconstructing the three-dimensional shapes of objects
WO2018182734A1 (en) * 2017-03-31 2018-10-04 Greget Mark System for using augmented reality for vision
KR20200018494A (ko) 2017-05-29 2020-02-19 아이웨이 비전 엘티디. 이미지 투사 시스템
JP6612812B2 (ja) * 2017-06-06 2019-11-27 株式会社Qdレーザ 画像投影装置
WO2018236335A1 (en) * 2017-06-19 2018-12-27 Hewlett-Packard Development Company, L.P. RADIO FREQUENCY (RF) OUTPUT CONTROL OF PORTABLE DEVICES
JP7099460B2 (ja) * 2017-07-10 2022-07-12 ソニーグループ株式会社 画像表示装置及び投射光学系
CN107493409B (zh) * 2017-07-18 2020-05-19 宇龙计算机通信科技(深圳)有限公司 一种光学变焦的摄像模组和移动终端
US10578869B2 (en) 2017-07-24 2020-03-03 Mentor Acquisition One, Llc See-through computer display systems with adjustable zoom cameras
CN110753876B (zh) * 2017-09-29 2022-04-15 Qd激光公司 图像投影装置
US11846773B2 (en) 2017-10-27 2023-12-19 3M Innovative Properties Company Optical system
JP6793372B2 (ja) * 2017-10-30 2020-12-02 ピクシーダストテクノロジーズ株式会社 網膜投影装置、網膜投影システム
CN108111761B (zh) * 2017-12-27 2020-07-07 努比亚技术有限公司 一种防抖处理方法、终端和计算机可读存储介质
JP7050292B2 (ja) * 2018-03-28 2022-04-08 株式会社Qdレーザ 画像投影装置
DE102018209886B4 (de) * 2018-06-19 2020-02-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Einrichtung zur Projektion eines Laserstrahls zur Erzeugung eines Bildes auf der Netzhaut eines Auges und Brilleneinrichtung mit zwei derartigen Einrichtungen
US11685303B2 (en) 2018-08-31 2023-06-27 Daniel R. Brettschneider Berth apparatus and methods using physiological parameters for controlling berth motion to promote relaxation and to induce sleep
JP7043375B2 (ja) * 2018-09-18 2022-03-29 株式会社日立製作所 ステレオカメラ、車載灯具ユニット、及びステレオカメラシステム
WO2020121814A1 (ja) * 2018-12-11 2020-06-18 株式会社Qdレーザ 画像表示装置および中継光学系
CN110262038B (zh) * 2019-06-06 2022-06-21 歌尔光学科技有限公司 光学***及具有其的虚拟现实设备
TWI783749B (zh) * 2020-10-26 2022-11-11 英濟股份有限公司 投影眼鏡、投影式鏡腳結構、及投影眼鏡的模組化光機
US11820275B2 (en) 2020-10-30 2023-11-21 Daniel R. Brettschneider Carrier platform with suspension mechanism for supporting a vibration-sensitive load on a vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162945A (en) * 1989-06-27 1992-11-10 Asahi Kogaku Kogyo K.K. Ocular lens system
JPH06194598A (ja) * 1992-12-25 1994-07-15 Olympus Optical Co Ltd 頭部装着型ディスプレイ装置
CN1161087A (zh) * 1994-08-10 1997-10-01 实质(Ip)有限公司 安置在头上的光学***
CN1255980A (zh) * 1998-01-28 2000-06-07 皇家菲利浦电子有限公司 头戴式显示器
JP2000352691A (ja) * 2000-01-01 2000-12-19 Olympus Optical Co Ltd 視覚表示装置
CN1315008A (zh) * 1999-06-22 2001-09-26 皇家菲利浦电子有限公司 头戴式显示器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387709A (ja) * 1989-06-27 1991-04-12 Asahi Optical Co Ltd 接眼レンズ
JPH08122642A (ja) * 1994-10-26 1996-05-17 Olympus Optical Co Ltd 光学系
JP3672951B2 (ja) * 1994-12-13 2005-07-20 オリンパス株式会社 画像表示装置
JP3454296B2 (ja) * 1995-08-10 2003-10-06 株式会社ニコン 接眼レンズ
JPH09179062A (ja) 1995-12-25 1997-07-11 Canon Inc コンピュータシステム
JP3961598B2 (ja) * 1996-11-25 2007-08-22 ソニー株式会社 表示装置および表示方法
JP3387338B2 (ja) * 1996-12-24 2003-03-17 三菱電機株式会社 接眼光学系、及び接眼映像表示装置
JP3571501B2 (ja) * 1997-07-28 2004-09-29 コニカミノルタホールディングス株式会社 映像観察装置
JPH11133315A (ja) * 1997-10-29 1999-05-21 Sony Corp 接眼レンズおよび虚像提供装置
JPH11174345A (ja) * 1997-12-08 1999-07-02 Fuji Photo Optical Co Ltd 広視野接眼レンズ
JPH11174368A (ja) * 1997-12-17 1999-07-02 Olympus Optical Co Ltd 画像表示装置
JP2001330795A (ja) * 2000-05-22 2001-11-30 Olympus Optical Co Ltd 3次元偏心光路を備えた画像表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162945A (en) * 1989-06-27 1992-11-10 Asahi Kogaku Kogyo K.K. Ocular lens system
JPH06194598A (ja) * 1992-12-25 1994-07-15 Olympus Optical Co Ltd 頭部装着型ディスプレイ装置
CN1161087A (zh) * 1994-08-10 1997-10-01 实质(Ip)有限公司 安置在头上的光学***
CN1255980A (zh) * 1998-01-28 2000-06-07 皇家菲利浦电子有限公司 头戴式显示器
CN1315008A (zh) * 1999-06-22 2001-09-26 皇家菲利浦电子有限公司 头戴式显示器
JP2000352691A (ja) * 2000-01-01 2000-12-19 Olympus Optical Co Ltd 視覚表示装置

Also Published As

Publication number Publication date
WO2004029693A1 (ja) 2004-04-08
US20060072215A1 (en) 2006-04-06
TWI301209B (zh) 2008-09-21
JPWO2004029693A1 (ja) 2006-01-26
TW200416413A (en) 2004-09-01
AU2003264481A1 (en) 2004-04-19
EP1544666A1 (en) 2005-06-22
US7068444B2 (en) 2006-06-27
CN1685272A (zh) 2005-10-19
JP4287375B2 (ja) 2009-07-01
EP1544666A4 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
CN100447614C (zh) 图像显示装置
JP3676472B2 (ja) 接眼光学系
JP5417660B2 (ja) 立体プロジェクション・システム
JP2003050374A (ja) ヘッドマウント式表示装置
TW201921029A (zh) 寬視場個人顯示裝置
US20170108702A1 (en) Near-eye display system
TW200528751A (en) Image display unit
JPH11142783A (ja) 画像表示装置
JPH09503594A (ja) 双眼鏡用ヘッド装着ディスプレーシステム
JP2003035869A (ja) 光学系及びそれを用いた装置
JP2003279883A (ja) 表示装置付き帽子
JP2002311377A (ja) 表示装置
CN212808904U (zh) 优化显示配置的反射式几何全息显示***
JP2009014962A (ja) 画像表示装置
JPH10206790A (ja) 表示装置
CN207557586U (zh) 一种头戴式显示装置
CN214335377U (zh) 全彩色高清晰(5k~8k)高亮度双竖屏观立体像装置
TW594051B (en) Double refraction type single image display apparatus with telescopic elements
JP4225856B2 (ja) 立体観察装置
TW584739B (en) Refraction type single image display apparatus with telescopic elements
CN112731679A (zh) 全彩色高清晰(5k~8k)高亮度双竖屏观立体像装置
US20230176357A1 (en) Optical viewfinder for costume heads
JPH0566361A (ja) 各種映像の臨場感を増強する光学系並びにテレビジヨンを組み込んだ光学系
WO2022247001A1 (zh) 一种裸眼三维显示装置
JP2001318337A (ja) 電子眼鏡システム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081231

Termination date: 20140918

EXPY Termination of patent right or utility model