CN100436307C - 羟基磷灰石/碳纳米管纳米复合粉体及原位合成方法 - Google Patents

羟基磷灰石/碳纳米管纳米复合粉体及原位合成方法 Download PDF

Info

Publication number
CN100436307C
CN100436307C CNB200310108523XA CN200310108523A CN100436307C CN 100436307 C CN100436307 C CN 100436307C CN B200310108523X A CNB200310108523X A CN B200310108523XA CN 200310108523 A CN200310108523 A CN 200310108523A CN 100436307 C CN100436307 C CN 100436307C
Authority
CN
China
Prior art keywords
carbon nanotube
hydroxyapatite
synthetic method
nanotube composite
tube surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB200310108523XA
Other languages
English (en)
Other versions
CN1541935A (zh
Inventor
高濂
赵丽萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CNB200310108523XA priority Critical patent/CN100436307C/zh
Publication of CN1541935A publication Critical patent/CN1541935A/zh
Application granted granted Critical
Publication of CN100436307C publication Critical patent/CN100436307C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明提供了一种原位合成羟基磷灰石/碳纳米管纳米复合粉体的简单方法。主要特征是一聚乙烯亚胺或十二烷基硫酸钠分散剂在碳纳米管表面引入-NH2 +、-SO4 2-活性基团,而不改变碳纳米管的结构。再以磷酸氢二铵、硝酸钙为合成羟基磷灰石的原料,利用反应离子与活性基团的静电作用以及反应离子之间的离子键作用,无定形羟基磷灰石的原位沉积、密集地覆盖在碳纳米管表面。如将沉淀移至高压斧中进行水热处理,即可得到羟基磷灰石晶粒紧密覆盖的碳纳米管复合粉体,晶粒直径约为20-25nm。本方法简单有效,实现了基体颗粒与碳纳米管的紧密结合,是开发高性能碳纳米管复合材料的有效途径。

Description

羟基磷灰石/碳纳米管纳米复合粉体及原位合成方法
技术领域
本发明是关于一种具有紧密界面结合性能的羟基磷灰石/碳纳米管纳米复合粉体及制备方法,属于纳米复合材料领域。
技术背景
羟基磷灰石是人体骨组织和牙齿的主要矿物组成,与人体硬组织以及皮肤、肌肉组织等都有良好的生物相容性而成为近代生物医学工程领域公认的代骨材料。由于羟基磷灰石烧结体的力学性能较差,抗弯强度在100-160Mpa之间,断裂韧性仅0.5-1.0Mpa·m,这在很大程度上限制了羟基磷灰石陶瓷的应用。采用高强、高韧性的第二相材料与羟基磷灰石进行复合,是改善其力学性能最常用的方法之一。碳是一种生物惰性材料,在人体环境中化学稳定性好,无毒性,无排异反应,具有良好的生物相容性。碳虽然不能与人体正常组织形成直接化学键合,但却具有诱发和促进组织在其表面生长的作用。碳纳米管具有纳米级的管径,极高的强度和极大的韧性,其长径比很高,在复合时不会破坏基体的连续性,是作为复合材料强化相的理想材料(F.H.Gojny,J.Nastalczyk,Z.Roslaniec,K.Schulte.Chem Phys Lett,Vol.370(2003),pp.820)。
碳纳米管与基体的界面是纳米管复合材料研究中最重要的环节之一。在发展纳米管复合材料的过程中,这一研究可以在纳米管复合材料结构中确保纳米管跟基体间有一个良好的应力传输。混酸等氧化剂处理碳纳米管在管壁表面引入-COOH,-OH,-C=O等基团后,可以有效增强碳纳米管与基体的结合力。但是研究表明,氧化处理的碳纳米管杨氏模量会大大降低,制得的复合材料韧性也随之降低(M.J.Treacy,T.W.Ebbesen,J.M.Gibson,Nature,Vol.381(1996),pp.678.)。碳纳米管与基体界面有效结合却不会对碳纳米管的结构造成破坏,是制得优良险能碳纳米管复合材料的关键因素。碳纳米管是由单一碳原子组成,没有活性键和基团,又不溶于水和有机溶剂,所以对其进行化学修饰比较困难(T.Seeger,Th.Kohler,Th.Frauenheim,N.Grobert,M.Ruhle,M.Terrones,G.Seifert,Chem.Commun.(2002),pp.34)。如何通过表面修饰,提高羟基磷灰石与碳纳米管的界面结合强度,从而提高羟基磷灰石的综合力学性能,则是人们长期以来渴望解决的问题。通过离子分散剂在碳纳米管表面引入活性基团、原位沉积制备羟基磷灰石纳米复合粉体,是解决这一问题的有效途径。
发明内容
本发明的目的在于提供一种具有紧密界面结合性能的羟基磷灰石/碳纳米管纳米复合粉体及原位合成方法。本发明通过离子分散剂在碳纳米管表面引入活性基团而不会改变碳纳米管的结构,羟基磷灰石原位沉积、密集地覆盖在碳纳米管表面。所提供的方法简单,操作方便,聚乙烯亚胺或十二烷基硫酸钠分散剂吸附在碳纳米管表面后,引入活性基团-NH2 +、-SO4 2-,利用反应离子与活性基团的静电作用以及反应离子之间的离子键作用,羟基磷灰石原位沉积在碳纳米管表面。碳纳米管与羟基磷灰石基体有效结合。
本发明提供的羟基磷灰石/碳纳米管纳米复合粉体有二种:
(1)无定形羟基磷灰石原位沉积、密集地覆盖在碳纳米管表面;
(2)羟基磷灰石晶粒紧密覆盖在碳纳米管表面的纳米复合粉体,羟基磷灰石晶粒直径为20-25nm。
本发明的特点是:以分散剂在碳纳米管表面成功引入活性基团,以磷酸氢二铵、硝酸钙为原料,去离于水为溶剂,浓氨水调节溶液pH值。通过反应离子与活性基团的静电作用以及反应离子之间的离子键作用,无定形羟基磷灰石原位沉积、密集地覆盖在碳纳米管表面。将沉淀移至高压釜中进行水热处理,即可得到羟基磷灰石晶粒紧密覆盖的碳纳米管复合粉体。
具体步骤是:
(1)将碳纳米管加入到聚乙烯亚胺或者十二烷基硫酸钠稀溶液中,超声分散0.5-2小时,使碳纳米管表面引入-NH2 +、-SO4 2-活性基团进行表面修饰。
(2)将改性的碳纳米管悬浮液加入到磷酸氢二铵或者硝酸钙水溶液,超声5-15分钟。
(3)将硝酸钙或者磷酸氢二铵水溶液缓慢滴加到上述混合溶液,在搅拌器剧烈搅拌下生成沉淀。所述的搅拌转速400-1000转/分钟,反应温度0℃-25℃,反应时间1-10小时,pH值大于10。
(4)将部分沉淀水洗、醇洗数次,干燥、研磨得到碳纳米管/无定形经基磷灰石复合粉体。
(5)将剩余沉淀转入高压釜中至高压釜容积的50-90%,密封。
(6)将高压釜放入烘箱中在120-200℃保温8-20小时。
(7)高压釜自然冷却至室温后,取出产物,水洗、醇洗,干燥、研磨得到得到羟基磷灰石晶粒紧密覆盖的碳纳米管复合粉体。羟基磷灰石晶粒直径约为20-25nm。反应原理在于:(a)将聚乙烯亚胺改性的碳纳米管悬浮液加入到磷酸氢二铵水溶液中,PO4 3-通过静电作用与-NH2 +结合。将硝酸钙水溶液加入到该混合溶液中,在pH>10的碱性条件下,Ca2+与碳纳米管表面吸附的PO4 3-通过离子键结合形成无定形羟基磷灰石层;然后再将沉淀移至高压釜中进行水热处理,得到羟基磷灰石晶粒紧密包覆的碳纳米管复合粉体,羟基磷灰石晶粒直径约为25nm;(b)将十二烷基硫酸钠改性的碳纳米管悬浮液加入到硝酸钙水溶液中,Ca2+通过静电作用与-SO4 2-结合。将磷酸氢二铵水溶液加入到上述混合溶液中,在pH>10的碱性条件下,PO4 3-与碳纳米管表面吸附的Ca2+通过离子键结合形成无定形羟基磷灰石层;将沉淀移至高压釜中进行水热处理,得到羟基磷灰石晶粒紧密包覆的碳纳米管复合粉体,羟基磷灰石晶粒直径约为20nm。
本发明提供的经基磷灰石/碳纳米管纳米复合粉体制备方法的特点是:
(1)以分散剂在碳纳米管表面成功引入活性基团而不会改变碳纳米管的结构,制备的复合粉体羟基磷灰石基体晶粒与碳纳米管界面紧密结合。通过反应离子与活性基团的静电作用以及反应离子之间的离子键作用,无定形羟基磷灰石原位沉积、密集地覆盖在碳纳米管表面。在所述的水热反应温度在120-200℃水热反应8-20h内,羟基磷灰石结晶完全,晶粒直径约为20-25nm。
(2)制备方法简单有效,具有通用性。制备其它陶瓷基体原料的正、负反应离子取代制备羟基磷灰石原料的正、负反应离子,可以制备出其他陶瓷基体与碳纳米管的复合材料。
附图说明
图1碳纳米管/羟基磷灰石复合粉体的X射线衍射谱图
(a)未水热处理,(b)水热处理20小时
图2未水热处理的复合粉体中羟基磷灰石的电子能谱
图3水热处理20小时的复合粉体透射电镜照片
图4未水热处理的复合粉体透射电镜照片
专利实施
用下列非限定性实施例进一步说明实施方式及效果:
实施例1
将碳纳米管加入1wt%十二烷基硫酸钠溶液,超声分散1小时后加入到0.01M硝酸钙水溶液,超声10分钟。将0.02M磷酸氢二铵水溶液缓慢滴加到500转/分钟搅拌的上述混合溶液,冰水浴条件下反应2小时生成沉淀。将部分沉淀水洗、醇洗数次,干燥、研磨得到碳纳米管/无定型羟基磷灰石复合粉体。将剩余沉淀转入高压釜中至高压釜容积的80%,密封。将高压釜放入烘箱,在120℃保温20小时。高压釜自然冷却至室温后,取出产物,水洗、醇洗,干燥、研磨得到羟基磷灰石晶粒紧密覆盖的碳纳米管复合粉体。图1为本实施例制备的碳纳米管/羟基磷灰石复合粉体的X射线衍射谱图。未水热处理的复合粉体中只有碳纳米管的衍射峰,说明羟基磷灰石为无定形态,光电子能谱(图2)显示元素Ca、P、O的存在。水热处理20小时后,衍射峰对应于羟基磷灰石的晶面衍射,谱图中未发现任何杂质的衍射峰,说明羟基磷灰石为结晶态而且比较纯净;图3为水热处理20h的复合粉体电镜照片,羟基磷灰石晶粒紧密覆盖在碳纳米管表面,羟基磷灰石晶粒直径约为20nm。
实施例2
将碳纳米管加入1wt%聚乙烯亚胺稀溶液,超声分散1小时后加入到0.02M磷酸氢二铵水溶液,超声10分钟。将0.01M硝酸钙水溶液缓慢滴加到500转/分钟搅拌的上述混合溶液,冰水浴条件下反应2小时生成沉淀。将沉淀转入高压釜中至高压釜容积的80%,密封。将高压釜放入烘箱,在120℃保温8小时。高压釜自然冷却至室温后,取出产物,水洗、醇洗,干燥、研磨得到羟基磷灰石晶粒紧密覆盖的碳纳米管复合粉体。图4为本实施例制备的未水热处理的碳纳米管/羟基磷灰石复合粉体的透射电镜照片,羟基磷灰石层在电子光束照射下呈现透明膏状体分布在碳纳米管表面,说明羟基磷灰石为无定型态。

Claims (12)

1.一种羟基磷灰石/碳纳米管纳米复合粉体的原位合成方法,其特征在于采用阴离子分散剂或阳离子分散剂在碳纳米管表面引入活性基团,以磷酸氢二铵、硝酸钙为原料,去离子水为溶剂,浓氨水调节溶液pH值;通过反应离子与活性基团的静电作用以及反应离子之间的离子键作用,无定形羟基磷灰石原位沉积、密集地覆盖在碳纳米管的表面。
2.按权利要求1所述的羟基磷灰石/碳纳米管纳米复合粉体的原位合成方法,其特征在于采用阴离子分散剂为聚乙烯亚胺,碳纳米管在分散剂溶液中超声时间为0.5-2小时,在碳纳米管表面引入-NH2 +
3.按权利要求2所述的羟基磷灰石/碳纳米管纳米复合粉体的原位合成方法,其特征在于将聚乙烯亚胺改性的碳纳米管悬浮液加入到磷酸氢二铵水溶液中,PO4 3-通过静电作用与-NH2 +结合;将硝酸钙水溶液加入到该混合溶液中,在pH>10的碱性条件下,Ca2+与碳纳米管表面吸附的PO4 3-通过离子键结合形成无定形羟基磷灰石层。
4.按权利要求1所述的羟基磷灰石/碳纳米管纳米复合粉体的原位合成方法,其特征在于阳离子分散剂为十二烷基硫酸纳,碳纳米管在分散剂溶液中超声时间为0.5-2小时,在碳纳米管表面引入-SO4 2-活性基团。
5.按权利要求4所述的羟基磷灰石/碳纳米管纳米复合粉体的原位合成方法,其特征在于将十二烷基硫酸钠改性的碳纳米管悬浮液加入到硝酸钙水溶液中,Ca2+通过静电作用与-SO4 2-结合,将磷酸氢二铵水溶液加入到上述混合溶液中,在pH>10的碱性条件下,PO4 3-与碳纳米管表面吸附的Ca2+通过离子键结合形成无定形羟基磷灰石层。
6.按权利要求1、3或5所述的羟基磷灰石碳纳米管纳米复合粉体原位合成方法,其特征在于pH>10的条件下形成无定形羟基磷灰石的原位合成的条件是:反应在0℃冰水浴到25℃进行,反应时间为1-10小时。
7.一种羟基磷灰石/碳纳米管纳米复合粉体的原位合成方法,其特征在于采用阴离子分散剂或阳离子分散剂在碳纳米管表面引入活性基团,以磷酸氢二铵、硝酸钙为原料,去离子水为溶剂,浓氨水调节溶液pH值;通过反应离子与活性基团的静电作用以及反应离子之间的离子键作用,原位沉积合成无定形羟基磷灰石,然后水热反应生成结晶羟基磷灰石,密集地覆盖在碳纳米管表面。
8.按权利要求7所述的羟基磷灰石/碳纳米管纳米复合粉体的原位合成方法,其特征在于阴离子分散剂为聚乙烯亚胺,碳纳米管在分散剂溶液中超声时间为0.5-2小时,在碳纳米管表面引入-NH2 +
9.按权利要求8所述的羟基磷灰石/碳纳米管纳米复合粉体的原位合成方法,其特征在于将聚乙烯亚胺改性的碳纳米管悬浮液加入到磷酸氢二铵水溶液中,PO4 3-通过静电作用与-NH2 +结合;将硝酸钙水溶液加入到该混合溶液中,在pH>10的碱性条件下,Ca2+与碳纳米管表面吸附的PO4 3-通过离子键结合形成无定形羟基磷灰石层;然后再将沉淀移至高压釜中进行水热处理,得到羟基磷灰石晶粒紧密包覆的碳纳米管复合粉体,羟基磷灰石晶粒直径为25nm。
10.按权利要求7所述的羟基磷灰石/碳纳米管纳米复合粉体的原位合成方法,其特征在于阳离子分散剂溶液为十二烷基硫酸钠,碳纳米管在分散剂溶液中超声时间为0.5-2小时,在碳纳米管表面引入-SO4 2-活性基团
11.按权利要求10所述的羟基磷灰石/碳纳米管纳米复合粉体的原位合成方法,其特征在于将十二烷基硫酸钠改性的碳纳米管悬浮液加入到硝酸钙水溶液中,Ca2+通过静电作用与-SO4 2-结合,将磷酸氢二铵水溶液加入到上述混合液溶液中,在pH>10的碱性条件下,PO4 3-与碳纳米管表面吸附的Ca2+通过离子键结合形成无定形羟基磷灰石层;将沉淀移至高压斧中进行水热处理,得到羟基磷灰石晶粒紧密包覆的碳纳米管复合粉体。
12.按权利要求7、9或11所述羟基磷灰石/碳纳米管纳米复合粉体的原位合成方法,其特征在于pH>10的条件下形成无定形羟基磷灰石的原位合成的条件是:反应在0℃冰水浴到25℃进行,反应时间为1-10小时;水热反应温度为120-200℃,时间为8-20小时。
CNB200310108523XA 2003-11-07 2003-11-07 羟基磷灰石/碳纳米管纳米复合粉体及原位合成方法 Expired - Fee Related CN100436307C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB200310108523XA CN100436307C (zh) 2003-11-07 2003-11-07 羟基磷灰石/碳纳米管纳米复合粉体及原位合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB200310108523XA CN100436307C (zh) 2003-11-07 2003-11-07 羟基磷灰石/碳纳米管纳米复合粉体及原位合成方法

Publications (2)

Publication Number Publication Date
CN1541935A CN1541935A (zh) 2004-11-03
CN100436307C true CN100436307C (zh) 2008-11-26

Family

ID=34334726

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200310108523XA Expired - Fee Related CN100436307C (zh) 2003-11-07 2003-11-07 羟基磷灰石/碳纳米管纳米复合粉体及原位合成方法

Country Status (1)

Country Link
CN (1) CN100436307C (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100371243C (zh) * 2006-03-03 2008-02-27 中国科学院上海硅酸盐研究所 纳米二氧化锡颗粒原位包裹碳纳米管复合粉体的制备方法
CN100384782C (zh) * 2006-10-17 2008-04-30 山东大学 一种以羟基磷灰石包覆碳纳米管的方法
CN101491699B (zh) * 2009-03-03 2011-09-14 陕西科技大学 一种碳纳米管增强骨水泥生物复合材料的制备方法
CN101491696B (zh) * 2009-03-03 2011-09-14 陕西科技大学 一种碳纳米管增强羟基磷灰石复合材料的制备方法
KR101470524B1 (ko) * 2009-06-30 2014-12-08 한화케미칼 주식회사 혼화성이 증대된 복합탄소소재 및 이의 연속적인 제조 방법
CN102502556A (zh) * 2011-12-14 2012-06-20 江南大学 一种纳米羟基磷灰石的制备方法
CN104998301B (zh) * 2015-08-12 2017-05-24 河北工业大学 碳纳米管增强介孔羟基磷灰石复合材料的制备方法
CN106835847A (zh) * 2017-03-13 2017-06-13 南昌大学 一种生物兼容性碳纳米管/羟基磷灰石复合纸的制备方法
CN107012720A (zh) * 2017-03-13 2017-08-04 南昌大学 一种生物兼容的导电无纺布制备方法
CN108675281B (zh) * 2018-03-30 2020-10-09 西南交通大学 一种兼有导电性和磁性的碳纳米管基复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1381276A (zh) * 2002-05-10 2002-11-27 清华大学 碳纳米管增强的塑料/陶瓷基骨修复用复合材料
CN1425472A (zh) * 2002-12-30 2003-06-25 湖南大学 纳米管状磷灰石/Al2O3-Ti生物复合材料及其制备方法
CN1440948A (zh) * 2003-04-02 2003-09-10 山东大学 羟基磷灰石/碳纳米管复合材料及其制备工艺
US20030180344A1 (en) * 2002-02-05 2003-09-25 Cambridge Scientific, Inc. Bioresorbable osteoconductive compositions for bone regeneration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030180344A1 (en) * 2002-02-05 2003-09-25 Cambridge Scientific, Inc. Bioresorbable osteoconductive compositions for bone regeneration
CN1381276A (zh) * 2002-05-10 2002-11-27 清华大学 碳纳米管增强的塑料/陶瓷基骨修复用复合材料
CN1425472A (zh) * 2002-12-30 2003-06-25 湖南大学 纳米管状磷灰石/Al2O3-Ti生物复合材料及其制备方法
CN1440948A (zh) * 2003-04-02 2003-09-10 山东大学 羟基磷灰石/碳纳米管复合材料及其制备工艺

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Hot pressed hydroxyapatite-carbon fibre composites. Anna Slosarczyk,et al.Journal of the European Ceramic Society,Vol.20 . 2000 *
Preparation and characterization of nano-sized hydroxyapatiteparticles and hydroxyapatite/chitosan nano-composite for usein biomedical materials. Fei Chen,et al.Meterials Letters,Vol.57 . 2002 *
纳米技术在复合材料中的应用. 朱曾惠.化工新型材料,第27卷第10期. 1999 *
羟基磷灰石的电子显微分析及纳米碳管的规模制备技术. 孙沿林.浙江大学硕士学位论文. 2002 *

Also Published As

Publication number Publication date
CN1541935A (zh) 2004-11-03

Similar Documents

Publication Publication Date Title
CN100436307C (zh) 羟基磷灰石/碳纳米管纳米复合粉体及原位合成方法
CN103420364B (zh) 一种石墨烯/羟基磷灰石复合材料的制备方法
CN100384782C (zh) 一种以羟基磷灰石包覆碳纳米管的方法
CN101623514B (zh) 一种金属离子掺杂纳米羟基磷灰石的制备方法
Wang et al. Study of synthesis of nano-hydroxyapatite using a silk fibroin template
CN106868486B (zh) 一种镁合金用复合物化学转化膜的成膜处理剂及成膜工艺
Davies Bone mimetics: a composite of hydroxyapatite and calcium dodecylphosphate lamellar phase
Boroujeni et al. Development of multi-walled carbon nanotubes reinforced monetite bionanocomposite cements for orthopedic applications
Lin et al. A novel method to synthesize hydroxyapatite coating with hierarchical structure
CN105858632A (zh) 一种磷酸钴纳米管材料及其制法和其用于光解水制氧气
CN108379589A (zh) 一种羟基磷灰石/氧化石墨烯复合材料的制备方法
Mahabole et al. Effect of incubation in simulated body fluid on dielectric and photoluminescence properties of nano-hydroxyapatite ceramic doped with strontium ions
Ruan et al. Ultrasonic-irradiation-assisted oriented assembly of ordered monetite nanosheets stacking
CN101279108A (zh) 钛基/含硅羟基磷灰石生物涂层的制备方法
Yuan et al. Synthesis, characterization and biological performance study of Sr-doped hydroxyapatite/chitosan composite coatings
CN101949046B (zh) 一种碳酸根型羟基磷灰石/碳纳米管复合涂层材料的制备方法
CN108786713B (zh) 一种双亲吸附型巯基改性的纳米羟基磷灰石吸附剂及其制备方法和应用
CN108785106B (zh) 一种胶状含银磷酸钙纳米复合材料及其制备方法和应用
KR20210054405A (ko) 그래핀옥사이드-탄소나노튜브 복합체, 이의 제조방법 및 이를 포함하는 시멘트 페이스트
Bonou et al. Conversion of snail shells (Achatina achatina) acclimatized in Benin to calcium phosphate for medical and engineering use
Kalpana et al. Nano hydroxyapatite for biomedical applications derived from chemical and natural sources by simple precipitation method
Hu et al. Preparation of bone-like composite coating using a modified simulated body fluid with high Ca and P concentrations
CN105457090A (zh) 一种镁元素部分取代的羟基磷灰石纤维及其制备方法和应用
Prakash Parthiban et al. Preparation of thermally stable nanocrystalline hydroxyapatite by hydrothermal method
CN104987058A (zh) 一种原位反应制备羟基磷灰石基复合生物陶瓷材料的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081126

Termination date: 20121107