CN100389166C - 一种热界面材料及其制造方法 - Google Patents

一种热界面材料及其制造方法 Download PDF

Info

Publication number
CN100389166C
CN100389166C CNB2004100271033A CN200410027103A CN100389166C CN 100389166 C CN100389166 C CN 100389166C CN B2004100271033 A CNB2004100271033 A CN B2004100271033A CN 200410027103 A CN200410027103 A CN 200410027103A CN 100389166 C CN100389166 C CN 100389166C
Authority
CN
China
Prior art keywords
heat
shape memory
interfacial material
memory alloy
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100271033A
Other languages
English (en)
Other versions
CN1690160A (zh
Inventor
陈杰良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Original Assignee
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hongfujin Precision Industry Shenzhen Co Ltd, Hon Hai Precision Industry Co Ltd filed Critical Hongfujin Precision Industry Shenzhen Co Ltd
Priority to CNB2004100271033A priority Critical patent/CN100389166C/zh
Priority to US10/991,022 priority patent/US20050245659A1/en
Publication of CN1690160A publication Critical patent/CN1690160A/zh
Application granted granted Critical
Publication of CN100389166C publication Critical patent/CN100389166C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本发明提供一种热界面材料,其包括一导热胶基体,该基体包括一第一表面及相对于第一表面的第二表面。其中,至少一形状记忆合金分散在该基体内,该形状记忆合金可包括纳米CuNiTi合金。另外,本发明还提供上述热界面材料的制造方法。本发明所提供的热界面材料包含具有形状记忆功能、大表面积的纳米合金,在热源工作温度下能恢复到其与工作元件紧密扣合时的形状,以增加其与工作元件之间接触面积,从而使该热界面材料具有优良热传导性能及高导热效率。

Description

一种热界面材料及其制造方法
【技术领域】
本发明是关于一种热界面材料,特别涉及一种改善热源与散热装置之间接触面以提高散热性能的热界面材料及其制造方法。
【背景技术】
随着集成电路的密集化及微型化程度越来越高,电子元件变得更小并且以更高速度运行,使其对散热的要求越来越高。因此,为尽快将热量从热源散发出去,在电子元件表面安装一散热装置成为业内普遍的做法,其利用散热装置材料的高热传导性能,将热量迅速向外部散发,但是,散热装置与热源表面的接触经常存在一定间隙,使散热装置与热源表面未能紧密接触,成为散热装置散热的一大缺陷。针对散热装置与热源表面的接触问题,业内应对办法一般是在电子元件与散热装置之间添加一热界面材料,通常即导热胶,利用导热胶的可压缩性及高导热性能使电子元件产生的热量迅速传到散热装置,然后再通过散热装置把热量散发出去。该方法还可在导热胶内添加高导热性材料以增加导热效果。但是,当电子元件产生热量而达到高温时,导热胶与电子组件表面所发生热变形并不一致,这将直接导致导热胶与电子元件的接触面积降低,从而妨碍其散热效果。
由于传统导热胶不能满足当前快速散热要求,因而业内多转向能改善电子元件与散热装置的接触,减小此接触界面间距的热界面材料,以提高整体热传导效率。如美国专利第6,294,408号专利提供了一种控制传热接触界面间距的方法,该专利认为热传导过程中,热界面材料与散热装置的接触界面间距产生的热阻为电子元件散热的最大热阻,因而有必要控制其接触界面间距以提高导热效果。该间距控制方法是用机械方法将一厚度比电子元件与散热底座之间间距稍厚的热界面材料压缩,使热界面材料最终厚度跟电子元件与散热底座之间间距相等,从而达到控制热传界面间距以提高导热效率。但是,该方法是在室温下实施,因此,当电子元件工作达到较高温度时,由于热界面材料与电子元件及散热底座具有不同的热扩散系数及热形变效应,势必引起热界面材料与电子元件及散热底座之间间距增大,直接导致散热效果下降。
为提高电子元件工作温度时热界面材料的接触紧密性,减小界面之间距,也有在热界面材料中添加高导热系数的颗粒,并对硅胶、橡胶等基体进行改性处理。如美国专利第6,605,238号或中国专利第00812789.1号所揭露的一种柔软且可交联的热界面材料,该材料是将马来酐加合到橡胶中,并添加银、铜、铝或金属氮化物、碳纤维及其混合物等高热传导性材料。当处于电子元件高温工作环境时,该热界面材料中的烯烃受热活化会交联而形成一种软凝胶,避免了热脂类热界面材料的高温下界面脱层。然而该热界面材料的填料含量高达95wt%以上,橡胶含量较少,并不能完整地体现橡胶的特性,降低橡胶粘性,减小其扣合力。而且反复热循环使用时间过长时,橡胶将会***并最终老化,直接导致该热界面材料性能下降。
有鉴于此,提供一种热传导性能优良及导热效率高,在电子元件工作温度下能保持紧密接合形状的热界面材料实为必要。
【发明内容】
为克服先前技术中热界面材料与电子元件及散热装置之间接合不紧密,热界面材料导热效果不良等问题,本发明的目的在于提供一种热传导性能优良及导热效率高,在电子元件工作温度下能保持紧密接合形状的热界面材料。
本发明的另一目的在于提供这种热界面材料的制造方法。
为实现第一目的,本发明提供一种热界面材料,其包括一导热胶基体,该基体包括一第一表面及相对于第一表面的第二表面。其中,至少一形状记忆合金分散在该基体内,该形状记忆合金可选自CuNiTi、CuAlFe、CuAlNi、CuZrZn、CuAlZn、CuAlFeZn、NiTiAlCu、NiTiAlZn或NiTiAlZnCu等纳米合金一种或多种的组合。该形状记忆合金颗粒大小范围为10~100纳米,以20~40纳米为佳。
为实现第二目的,另外,本发明提供该热界面材料的制造方法,其可包括以下步骤:
提供一导热胶基体;
在预定温度下,将选定的形状记忆合金分散在该基体中;
在同样温度下,将该处理后基体紧密扣合在散热装置与热源之间;
冷却固化,形成热界面材料。
其中,该预定温度选用热源工作温度,其可通过热源工作时所产生的热流计算而得,如CPU,工作温度通常在50~100℃之间;处理后的导热胶基体与散热装置及热源紧密扣合时所需扣合力为49~294牛顿,且以98~137牛顿为佳。
另外,该制造方法还进一步包括从散热装置与热源间揭下固化后含形状记忆合金的导热胶基体的步骤。
与先前的热界面材料相比,本发明提供的热界面材料包含形状记忆合金,并在热源工作温度下形成。当使用时,热界面材料在电子元件工作温度时将恢复其紧密扣合的形状,即可增加导热效率,从而避免先前技术中电子元件温度上升时热界面材料与其接触面积下降,以至于导热效率下降的问题。另外,本发明提供的热界面材料采用纳米合金,可利用其大表面积及纳米尺寸效应,并在合金中添加有如铝铜等高导热性材料,最终可提高该热界面材料的导热性能。
【附图说明】
图1是本发明所提供的热界面材料的横截面示意图。
图2是本发明的热界面材料应用示意图。
图3是本发明的热界面材料形成时与散热装置及热源之间接触界面的放大示意图。
图4是本发明的热界面材料非工作状态时与散热装置及热源之间接触界面的截面放大示意图。
图5是本发明的热界面材料工作时与散热装置及热源之间接触界面的截面放大示意图。
图6是本发明的热界面材料制造方法流程图。
【具体实施方式】
下面结合附图对本发明作进一步详细说明。
请参阅图1,本发明提供的热界面材料10包括一导热胶基体11,该基体11可选自一银胶或硅胶,如G751胶(产于Shin-Etsu公司),其具有一第一表面13及相对的第二表面14。其中,形状记忆合金12分散在该基体内,该形状记忆合金12可选用CuNiTi、CuAlFe、CuAlNi、CuZrZn、CuAlZn、CuAlFeZn、NiTiAlCu、NiTiAlZn或NiTiAlZnCu等纳米合金一种或多种的组合,该形状记忆合金12颗粒大小范围为10~100纳米,且以20~40纳米为佳。本发明选用纳米CuNiTi合金作为形状记忆合金。
请参阅图2,即本发明的热界面材料应用示意图。热界面材料10位于散热装置20与电子元件30之间。工作时由电子元件30所产生的热量,经热界面材料10传到散热装置20,在此热传导期间,由于分散在热界面材料10中的形状记忆合金(未标示)具有形状记忆功能,即它处于电子元件30工作温度下,能记忆并恢复到最初形成时的紧密接合形状,使得热界面材料10与散热装置20及电子元件30均密切扣合,因而由电子元件30产生的热量能迅速高效地经由热界面材料10传导到散热装置20,并通过散热装置20散发出去,从而达到将电子元件30的热量及时散发出,保证电子元件30正常运作的目的。
本发明是基于形状记忆合金的形状记忆效应(SME,Shape Memory Effect)来实现,详细内容请参阅美国专利第6,689,486号及中国第02136712.4号公开专利申请。该效应使合金由低温马氏体相转向较高温度时奥氏体相过程中发生晶相形变,与一般错位变形不同之处在于:该晶相形变受热时或处于热流循环中能够恢复原来较高温度时奥氏体相形状,且该变形是可逆变化过程,即在低温下,合金也会由较高温度的奥氏体相转向低温马氏体相。因此,利用此形状记忆效应,只需使热界面材料在热源工作温度下形成,即可使低温或室温下发生变形后的热界面材料在发热源工作时恢复到形成时紧密接合状态。从而保证热量快速高效地散发出。
结合上述原理,请一并参阅图3、图4及图5,详细说明热界面材料10与散热装置20及发热源电子元件30的扣合状况,其中,电子元件30可为中央处理器(CPU)、场效应晶体管、视频图形阵列芯片(VGA)、射频芯片等元件。在电子元件30工作温度下,热界面材料10紧密扣合在散热装置20与电子元件30之间而形成,因此,热界面材料10的第一表面13与散热装置20的底面(图未标示)处于紧密接合的形状,及热界面材料10的第二表面14与电子元件30的表面(图未标示)处于紧密接合的形状(如图3所示)。此时,热界面材料10中的形状记忆合金12含有较高温度时的奥氏体相。而电子元件30处于未工作状况,如室温时,形状记忆合金12将由较高温度的奥氏体相转向低温马氏体相,受形状记忆合金12形变的影响,热界面材料10的外形将发生相应变化,使热界面材料10的第一表面13与散热装置20的底面(图未标示)处于未紧密接合的形状,及热界面材料10的第二表面14与电子元件30的表面(图未标示)处于未紧密接合的形状(如图4所示),使得热界面材料10与散热装置20及电子元件30未能密切扣合。当电子元件30处于工作状况下,即热界面材料10处于电子元件30工作热流温度时,由于温度回升,形状记忆合金12发生相变,由低温马氏体相转到较高温度时的奥氏体相,从而恢复到形成时的紧密接合形状,使得热界面材料10的第一表面13与散热装置20的底面(图未标示)处于紧密接合的形状,及热界面材料10的第二表面14与电子元件30的表面(图未标示)处于紧密接合的形状(如图5所示),热界面材料10即达到与散热装置20及电子元件30密切扣合的效果,从而提高热界面材料10的导热效率。
请参阅图6,本发明所提供热界面材料的制造方法包括以下步骤:
提供一导热胶基体,该基体可为银胶或硅胶基体;
在预定温度下,将选定的形状记忆合金分散在该基体中;
在同样温度下,将该处理后基体紧密扣合在散热装置与热源之间;
冷却固化,形成热界面材料。
其中,热源工作温度可通过热源工作时所产生的热流计算而得,如CPU,工作温度通常在50~100℃之间,本发明采用90℃(CPU散热为120W时温度)为热源工作温度。处理后的导热胶基体与散热装置及热源紧密扣合时所需扣合力为49~294牛顿,且以98~137牛顿为佳。形状记忆合金可选自CuNiTi、CuAlFe、CuAlNi、CuZrZn、CuAlZn、CuAlFeZn、NiTiAlCu、NiTiAlZn或NiTiAlZnCu纳米合金中一种或多种的组合,本发明选用CuNiTi作为形状记忆合金。
另外,该制造方法可进一步包括从散热装置与热源间揭下固化后含形状记忆合金的导热胶基体。

Claims (8)

1.一种热界面材料,其包括一导热胶基体,该基体包括一第一表面及相对于第一表面的第二表面,其特征在于至少一形状记忆合金分散在该基体内。
2.如权利要求1所述的热界面材料,其特征在于该形状记忆合金可选自CuNiTi、CuAlFe、CuAlNi、CuZrZn、CuAlZn、CuAlFeZn、NiTiAlCu、NiTiAlZn或NiTiAlZnCu纳米合金中一种或多种的组合。
3.如权利要求2所述的热界面材料,其特征在于该形状记忆合金颗粒大小范围为10~100纳米。
4.一种热界面材料制造方法,其特征在于该方法可包括以下步骤:
提供一导热胶基体;
在预定温度下,将选定的形状记忆合金分散在该基体中;
在同样温度下,将该处理后基体紧密扣合在散热装置与热源之间;
冷却固化,形成热界面材料。
5.如权利要求4所述的热界面材料制造方法,其特征在于该预定温度为热源工作温度。
6.如权利要求5所述的热界面材料制造方法,其特征在于该预定温度范围为50~100℃。
7.如权利要求4所述的热界面材料制造方法,其特征在于该处理后基体紧密扣合在散热装置与热源之间时所需扣合力为49~294牛顿。
8.如权利要求4所述的热界面材料制造方法,其特征在于该制造方法进一步包括一从散热装置与热源间揭下固化后含形状记忆合金的导热胶基体的步骤。
CNB2004100271033A 2004-04-29 2004-04-29 一种热界面材料及其制造方法 Expired - Fee Related CN100389166C (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNB2004100271033A CN100389166C (zh) 2004-04-29 2004-04-29 一种热界面材料及其制造方法
US10/991,022 US20050245659A1 (en) 2004-04-29 2004-11-17 Thermal interface material and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100271033A CN100389166C (zh) 2004-04-29 2004-04-29 一种热界面材料及其制造方法

Publications (2)

Publication Number Publication Date
CN1690160A CN1690160A (zh) 2005-11-02
CN100389166C true CN100389166C (zh) 2008-05-21

Family

ID=35187959

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100271033A Expired - Fee Related CN100389166C (zh) 2004-04-29 2004-04-29 一种热界面材料及其制造方法

Country Status (2)

Country Link
US (1) US20050245659A1 (zh)
CN (1) CN100389166C (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2081869B1 (en) * 2006-07-10 2020-11-04 California Institute of Technology Method for selectively anchoring large numbers of nanoscale structures
US8846143B2 (en) 2006-07-10 2014-09-30 California Institute Of Technology Method for selectively anchoring and exposing large numbers of nanoscale structures
US20080080144A1 (en) * 2006-09-29 2008-04-03 Sridhar Machiroutu Thermal interfaces in electronic systems
US20100196446A1 (en) 2007-07-10 2010-08-05 Morteza Gharib Drug delivery and substance transfer facilitated by nano-enhanced device having aligned carbon nanotubes protruding from device surface
US7959969B2 (en) 2007-07-10 2011-06-14 California Institute Of Technology Fabrication of anchored carbon nanotube array devices for integrated light collection and energy conversion
US20090321416A1 (en) * 2008-06-27 2009-12-31 Christos Sarigiannidis Enhanced energy delivery mechanism for bulk specialty gas supply systems
WO2011127207A2 (en) 2010-04-07 2011-10-13 California Institute Of Technology Simple method for producing superhydrophobic carbon nanotube array
US10041745B2 (en) 2010-05-04 2018-08-07 Fractal Heatsink Technologies LLC Fractal heat transfer device
US9228785B2 (en) 2010-05-04 2016-01-05 Alexander Poltorak Fractal heat transfer device
US10852069B2 (en) 2010-05-04 2020-12-01 Fractal Heatsink Technologies, LLC System and method for maintaining efficiency of a fractal heat sink
US8609458B2 (en) 2010-12-10 2013-12-17 California Institute Of Technology Method for producing graphene oxide with tunable gap
WO2012135238A1 (en) 2011-03-29 2012-10-04 California Institute Of Technology Method to increase the capacitance of electrochemical carbon nanotube capacitors by conformal deposition of nanoparticles
CN102208501B (zh) * 2011-05-20 2012-12-05 山东大学 大功率led用马氏体相变型铜合金内外散热一体件的制备方法
US8764681B2 (en) 2011-12-14 2014-07-01 California Institute Of Technology Sharp tip carbon nanotube microneedle devices and their fabrication
WO2014022314A1 (en) 2012-07-30 2014-02-06 California Institute Of Technology Nano tri-carbon composite systems and manufacture
CN104219932A (zh) * 2013-06-03 2014-12-17 联想(北京)有限公司 一种电子设备
CN105838333A (zh) * 2016-04-05 2016-08-10 中国科学院深圳先进技术研究院 一种相变合金热界面复合材料及其制备方法
WO2018013668A1 (en) 2016-07-12 2018-01-18 Alexander Poltorak System and method for maintaining efficiency of a heat sink
US9873774B1 (en) 2016-09-01 2018-01-23 International Business Machines Corporation Shape memory thermal interface materials
US9937662B2 (en) 2016-09-01 2018-04-10 International Business Machines Corporation Shape memory thermal interface materials
US11031312B2 (en) 2017-07-17 2021-06-08 Fractal Heatsink Technologies, LLC Multi-fractal heatsink system and method
CN111995991B (zh) * 2020-07-27 2022-01-18 深圳陶陶科技有限公司 一种热界面材料及其制备方法
CN115847947B (zh) * 2023-02-07 2023-06-06 有研工程技术研究院有限公司 一种多层复合铟基热界面材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6294408B1 (en) * 1999-01-06 2001-09-25 International Business Machines Corporation Method for controlling thermal interface gap distance
CN1402875A (zh) * 1999-09-17 2003-03-12 霍尼韦尔国际公司 柔软且可交联的热界面材料
WO2003064148A1 (en) * 2002-01-14 2003-08-07 Honeywell International Inc. Thermal interface materials
US6605238B2 (en) * 1999-09-17 2003-08-12 Honeywell International Inc. Compliant and crosslinkable thermal interface materials
WO2004008497A2 (en) * 2002-07-15 2004-01-22 Honeywell International Inc. Thermal interconnect and interface systems, methods of production and uses thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2772657B1 (fr) * 1997-12-23 2000-03-03 Thomson Csf Procedure de realisation de pate a braser et joint de soudure obtenu
US20020043456A1 (en) * 2000-02-29 2002-04-18 Ho Ken K. Bimorphic, compositionally-graded, sputter-deposited, thin film shape memory device
US6946190B2 (en) * 2002-02-06 2005-09-20 Parker-Hannifin Corporation Thermal management materials
US7101400B2 (en) * 2002-08-19 2006-09-05 Jeffery Thramann Shaped memory artificial disc and methods of engrafting the same
US6970354B2 (en) * 2003-08-08 2005-11-29 Dell Products L.P. Processor retention system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6294408B1 (en) * 1999-01-06 2001-09-25 International Business Machines Corporation Method for controlling thermal interface gap distance
CN1402875A (zh) * 1999-09-17 2003-03-12 霍尼韦尔国际公司 柔软且可交联的热界面材料
US6605238B2 (en) * 1999-09-17 2003-08-12 Honeywell International Inc. Compliant and crosslinkable thermal interface materials
WO2003064148A1 (en) * 2002-01-14 2003-08-07 Honeywell International Inc. Thermal interface materials
WO2004008497A2 (en) * 2002-07-15 2004-01-22 Honeywell International Inc. Thermal interconnect and interface systems, methods of production and uses thereof

Also Published As

Publication number Publication date
US20050245659A1 (en) 2005-11-03
CN1690160A (zh) 2005-11-02

Similar Documents

Publication Publication Date Title
CN100389166C (zh) 一种热界面材料及其制造方法
CN100370604C (zh) 一种热界面材料及其制造方法
EP2324074A1 (en) A heat radiator composed of a combination of a graphite-metal complex and an aluminum extruded material
CN106856180B (zh) 一种焊接igbt模块的方法
TW200849295A (en) Super-conducting uniform-temperature heat dissipating module
CN107343378A (zh) 一种液态金属与硅脂结合的散热方法
CN103725261B (zh) 一种具有双熔点特征的三元液态金属热界面材料
CN102859683B (zh) 用于将发热构件冷却的冷却组件
CN105206589A (zh) 功率电子应用中传热的方法
JP3792180B2 (ja) 放熱部品の製造方法
CN204836913U (zh) 复合散热器和散热模组
CN101619206A (zh) 一种导热界面材料及其散热结构
TW555953B (en) Method of manufacturing heat dissipater
CN101319775B (zh) 功率型led灯具的高导热柔性填隙材料
CN103000590A (zh) 无底板功率模块
US20080170369A1 (en) Heat dissipating apparatus, heat dissipating base and its manufacturing method
CN204516803U (zh) 大功率led低热阻散热结构
US11175100B2 (en) Heat sinks using memory shaping materials
CN204425876U (zh) 一种具有复合结构的散热装置
CN1846920A (zh) 结合低熔点金属合金材料的装置及制造方法与该材料应用
CN218389799U (zh) 一种导热装置
WO2014134791A1 (zh) 导热垫片及其应用
CN112599653B (zh) 一种适于冷热交变的热电模块及其制作方法
Furukawa et al. Technologies of a cooling device for power semiconductor
CN215379574U (zh) 一种装配预紧力可调节的柔性高性能导热索组件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080521

Termination date: 20150429

EXPY Termination of patent right or utility model