CN100386440C - Use of recommbined D-amino acid oxidase - Google Patents

Use of recommbined D-amino acid oxidase Download PDF

Info

Publication number
CN100386440C
CN100386440C CNB2004101031662A CN200410103166A CN100386440C CN 100386440 C CN100386440 C CN 100386440C CN B2004101031662 A CNB2004101031662 A CN B2004101031662A CN 200410103166 A CN200410103166 A CN 200410103166A CN 100386440 C CN100386440 C CN 100386440C
Authority
CN
China
Prior art keywords
sequence
leu
gly
acid oxidase
ser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2004101031662A
Other languages
Chinese (zh)
Other versions
CN1680583A (en
Inventor
王骏
叶康坚
曾伟基
吕旭新
萧游龙
曾实现
游明翰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAIRUI GLOBAL Co Ltd
Original Assignee
BAIRUI GLOBAL Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BAIRUI GLOBAL Co Ltd filed Critical BAIRUI GLOBAL Co Ltd
Priority to CNB2004101031662A priority Critical patent/CN100386440C/en
Publication of CN1680583A publication Critical patent/CN1680583A/en
Application granted granted Critical
Publication of CN100386440C publication Critical patent/CN100386440C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The present invention provides recombinant D-amino acid oxidase and an encoding DNA sequence thereof. The activity for catalyzing cephalont bacterin C is higher than the catalyzing activity of parent D-amino acid oxidase by at least 25 %.

Description

The purposes of recommbined D-amino acid oxidase
The application's application number that to be applicant Bairui Global Co., Ltd. submit on April 8th, 2004 is dividing an application of 200410030842.8 application for a patent for invention.
Technical field
The present invention relates to technical field of bioengineering, particularly, relate to the preparation and the application of new D-amino-acid oxidase.The recommbined D-amino acid oxidase that two pieces high enzymes provided by the invention are lived can be used for cephalosporin (cephalosporin C) is changed into Glularyl-7-amino cephalosporinic acid (glutaryl-7-aminocephalosporanic acid).
Background technology
The parent nucleus 7-amino-cephalosporanic acid (7-aminocephalosporanicacid) of semi-synthetic cynnematin can be formed by chemical method cracking cephalosporin.But chemical method uses a large amount of poisonous chemical reagent, contaminate environment, and reactions steps is complicated, and yield is lower.In recent years, enzyme process becomes another main technique of preparation 7-amino-cephalosporanic acid.The enzymatic conversion method cephalosporin comprises two steps: (1) D-amino-acid oxidase oxydasis cephalosporin (cephalosporin C) generates Glularyl-7-amino cephalosporinic acid (glutaryl-7-aminocephalosporanic acid); (2) Glularyl-7-amino cephalosporinic acid acyl enzyme hydrolysis Glularyl-7-amino cephalosporinic acid produces the 7-amino-cephalosporanic acid.At present, the D-amino-acid oxidase of industrial employing is mainly from red winter spore yeast (Rhodotorula gracilis) or trigonopsis variabilis (Trigonopsis variabilis).All lower (Simonetta, et al., Biochimica et Biophysica Acta, 914:136-142 (1987) but the ratio of these two kinds of enzyme catalysis cephalosporins is lived; U.S.Pat.No.5,453,374; U.S.Pat.No.5,208,155).Thereby, in the prior art, still there is demand, thereby can reduces the cost that enzyme process prepares the 7-amino-cephalosporanic acid the D-amino-acid oxidase of high catalytic activity.
Summary of the invention
The object of the present invention is to provide recommbined D-amino acid oxidase with high catalysis cephalosporin vigor.The present invention also aims to provide and use high catalytic activity recommbined D-amino acid oxidase of the present invention to produce the Glularyl-7-amino cephalosporinic acid.
The present invention is with the daao gene (Li of trigonopsis variabilis (Trigonopsis variabilis) FA10, W.et al., Acta Microbioiogica Sinica 31:251-253,1991) be cloned on the appropriate carriers, adopt the rite-directed mutagenesis method to carry out gene and improve.Particularly, the coding nucleotide of the 53rd amino acids is carried out rite-directed mutagenesis, thereby obtain the recommbined D-amino acid oxidase of high catalytic activity.
On the one hand, the invention provides a kind of dna sequence dna of the recommbined D-amino acid oxidase of encoding, the gene that it is characterized in that described recommbined D-amino acid oxidase is compared with the sequence 1 in the sequence table, existing in the Nucleotide codon of coding the 53rd amino acids causes the Threonine of its coding by the difference of at least one Nucleotide of other aminoacid replacement, and the vigor of the D-amino-acid oxidase enzyme catalysis cephalosporin that its coded protein had exceeds 25% at least than the vigor of the catalysis cephalosporin that the parent D-amino-acid oxidase with aminoacid sequence shown in the sequence 2 is had, preferably exceed 35%, more preferably exceed 50%, most preferably exceed 100%.
Preferably, dna sequence dna of the present invention contains the nucleotide sequence of aminoacid sequence shown in the sequence 4 or 6 in the code sequence tabulation, and more preferably this dna sequence dna comprises the nucleotide sequence shown in sequence 3 or 5.
On the other hand, the invention provides a peptide species, it is characterized in that with the sequence in the sequence table 2 be reference sequences, corresponding to the amino acid of the 53rd Threonine in the sequence 2 by other amino acid replacement, and the vigor of the D-amino-acid oxidase enzyme catalysis cephalosporin that it had exceeds 25% at least than the D-amino-acid oxidase catalysis activity that the parent D-amino-acid oxidase with aminoacid sequence shown in the sequence 2 is had, preferably exceed 35%, more preferably exceed 50%, most preferably exceed 100%.
Preferably, polypeptide of the present invention is characterized in that, is reference sequences with the sequence in the sequence table 2, is Serine or proline(Pro) corresponding to the amino acid of the 53rd Threonine in the sequence 2.In an embodiment of the present invention, two new recommbined D-amino acid oxidases have specifically been enumerated, recommbined D-amino acid oxidase GHA and recommbined D-amino acid oxidase GHB.Recommbined D-amino acid oxidase GHA has the aminoacid sequence shown in the sequence 4, and the ratio work of its catalysis cephalosporin is high by 105% than the parent's; Recommbined D-amino acid oxidase GHB has the aminoacid sequence shown in the sequence 6, and the ratio work of its catalysis cephalosporin is high by 35% than the parent's.Parental gene means the daao gene (Li from trigonopsis variabilis (Trigonopsisvariabilis) FA10 among the present invention, W.et al., Acta MicrobiologicaSinica 31:251-253,1991), its nucleotide sequence is shown in sequence 1, and aminoacid sequence is shown in sequence 2.
Recommbined D-amino acid oxidase of the present invention also comprises, the aminoacid sequence of GHA or GHB is carried out one or more amino acid whose conservative alternate forms, increases or reduce the form of one or more amino acid whose derivatives.
The present invention prepares in the method for recommbined D-amino acid oxidase GHA or recommbined D-amino acid oxidase GHB, and the carrier that is suitable for includes but not limited to prokaryotic expression carrier pRSET-A and pET; Include but not limited to carrier for expression of eukaryon pYD1 and pYES2; Include but not limited to cloning vector
Figure C20041010316600051
-T Easy, pUC18, pUC19 and
Figure C20041010316600052
-SK (+/-).
The present invention prepares in the method for recommbined D-amino acid oxidase, and host cell can be that prokaryotic cell prokaryocyte also can be an eukaryotic cell.The prokaryotic micro-organisms that is suitable for includes but not limited to intestinal bacteria (E.coli), subtilis (Bacillus subtilis), bacillus brevis (Bacillus brevis) and streptomycete (Streptomyces); The eukaryotic microorganisms that is suitable for includes but not limited to yeast saccharomyces cerevisiae (Saccharomycescerevisiae), red winter spore yeast, trigonopsis variabilis, aspergillus niger (Aspergillus niger), Kluyveromyces lactis (Kluyveromyces lactis) and finishes red saccharomyces pastorianus (Pichia pastoris).
The present invention prepares in the method for recommbined D-amino acid oxidase GHA and recommbined D-amino acid oxidase GHB, adopts proper method known in the art, and described recommbined D-amino acid oxidase can or be expressed outside the born of the same parents in prokaryotic cell prokaryocyte or eukaryotic cell born of the same parents.Can be by the dna sequence dna of the invention described above for example in intestinal bacteria or the yeast cell, be carried out polypeptide expression by the suitable microbial host cell of any method importing known in the art.
If the recommbined D-amino acid oxidase of expressing is an extracellular enzyme, can be by routine techniques such as ammonium sulfate separation and acetone precipitation etc. from cellular products, obtain partially purified recommbined D-amino acid oxidase, or by complete purifying from cellular products such as conventional purification technique such as ion-exchange affinity chromatography.Therefore, in use, recommbined D-amino acid oxidase of the present invention can be without the thick enzyme of purifying; It also can be partially purified enzyme; It also can be the enzyme of purifying.
If recommbined D-amino acid oxidase is an intracellular enzyme, then can then for example by centrifugal removal cell debris, then pass through fractional separation again, the D-amino-acid oxidase of separation and purification reorganization earlier with the host cell fragmentation.
In addition, for convenience in industrial various application, can recommbined D-amino acid oxidase of the present invention be made the solid phase cell according to any appropriate means as known in the art.For preparing described solid phase cell, the transformant that contains recommbined D-amino acid oxidase of the present invention can be coupled together according to methods known in the art and solid phase carrier, make the solid phase cell that comprises described D-amino-acid oxidase.In the present invention, can also be fixed on the carrier with the recommbined D-amino acid oxidase of ordinary method itself not purified thick enzyme, partially purified enzyme or purifying.Can be by recommbined D-amino acid oxidase of the present invention being adsorbed onto ion exchange resin to prepare immobilized solid enzyme.
In addition, can be according to for example Miyake Y., Aki K., Hashimoto S., and Yamano T. (1965) Crystallization and some properties of D-Amino Acid OxidaseApoenzyme, Biochemica et Biophysica Acta, 105:86-99 prepares crystalline enzyme.Obviously, these solid enzymes or crystalline enzyme and application thereof are also within the scope of the invention.
Description of drawings
Fig. 1 plasmid pRSET-kan collection of illustrative plates.
Fig. 2 plasmid pRSET-kan sequence.
The SDS-PAGE electrophorogram of Fig. 3 recommbined D-amino acid oxidase GHA and recommbined D-amino acid oxidase GHB.1, molecular weight protein marker BenchMark TMPre-Stained ProteinLadder (Invitrogen), unit is KDa; 2,3 and 4 is respectively parent's trigonopsis variabilis D-amino-acid oxidase, the recommbined D-amino acid oxidase GHA of purifying, and recommbined D-amino acid oxidase GHB.
Embodiment
The following example only is used for explanation and should be considered as limiting scope of the present invention.Unreceipted actual conditions person in the embodiment, the condition of conditioned disjunction manufacturers suggestion is carried out routinely.
The structure of example 1 daao gene recombinant plasmid pRSET-A-DAO
According to known trigonopsis variabilis daao gene 5 ' and 3 ' terminal sequence (Gonzalez, F.J., Montes, J., Martin, F., Lopez, M.C., Ferminan, E., Catalan, J., Galan, M.A.Dominguez, A.Molecular cloning of TvDAO1, a gene encoding a D-aminoacid oxidase from Trigonopsis variabilis and its expression inSaccharomyces cerevisiae and Kluyveromyces lactis.Yeast 13:1399-1408; 1997) the design primer is as follows:
5 '-Ndel (introducing the Ndel restriction enzyme site):
5 '-TAGGGCTGA CATATGGCTAAAATCGTTGTTATTGGTGC-3 ' (sequence 7)
3 '-BgIII (introducing the BgIII restriction enzyme site):
5 '-TAGGGCTGA AGATCTCTAAAGGTTTGGACGAGTAAGAGC-3 ' (sequence 8)
With plasmid pJL (Liu Yang Yun etc., Chinese patent application publication number: CN 1371999A) be template,, under the effect of Pfu archaeal dna polymerase (Promega), synthesize the trigonopsis variabilis daao gene with above two primers.PJL carries trigonopsis variabilis FA10 daao gene (Li, W.etal., Acta Microbiologica Sinica 31:251-253,1991).The PCR reaction conditions is: 40ng pJL, 0.4 μ M, 5 '-Ndel, 0.4 μ M, 3 '-BgIII, 50 μ M dATP, 50 μ M dTTP, 50 μ MdCTP, 50 μ M dGTP, 20mM Tris-HCl (pH8.8), 10mM KCl, 10mM (NH 4) 2SO 4, 2mM MgSO 4, 0.1% Triton X-100,2.5U Pfu archaeal dna polymerase is transferred reaction volume to 50 μ l with sterilized water.The pcr amplification reaction program is:
94 ℃, 94 ℃ of 60sec circulations 10 times, 94 ℃ of 60sec circulations 25 times, 5min → → 50 ℃, 60sec → → 60 ℃, 60sec → → 72 ℃, 10min72 ℃, 120sec
Get 1, the long PCR product of 098bp, its 5 ' and 3 ' end has Ndel and BgIII restriction enzyme site respectively.The PCR product is purified through 1% agarose electrophoresis, after Ndel and BgIII enzyme are cut, is connected with the fragment of the 2.9Kb that obtains through Ndel and BgIII digested plasmid pRSET-A (Invitrogen), must connect product pRSET-A-DAO.With pRSET-A-DAO transformed competence colibacillus e. coli bl21 (DE3) pLysS (Novagen), 37 ℃ of cultivations on penbritin LB flat board, according to Molecular Cloning-A Laboratory Manual, ed.By J.Sambrook, et.al., 1989, the method that CSHL Press describes is extracted plasmid, through dna sequencing, determine trigonopsis variabilis daao gene nucleotide sequence such as sequence 1, it infers that the aminoacid sequence that is shown in sequence 2.
The structure of example 2 pRSET-kan carriers
For removing ampicillin resistance gene, as follows according to the sequences Design primer of carrier pRSET-A from pRSET-A:
VET-F:5 '-CTGTCAGACCAAGTTTACTCATATATACTTTAG-3 ' (sequence 9)
VET-R:5 '-ACTCTTCCTTTTTCAATATTATTGAAGC-3 ' (sequence 10)
For amplifying kalamycin resistance gene, as follows according to the sequences Design primer of carrier pET-28b (Novogen) from carrier pET-28b (Novogen):
KAN-F:5 '-ATGAGTCATATTCAACGGGAAAC-3 ' (sequence 11)
KAN-R:5 '-TTAGAAAAACTCATCGAGCATCAAATG-3 ' (sequence 12)
The segmental PCR condition of pRSET-A that ampicillin resistance gene is removed in amplification is: 50ngpRSET-A, 0.4 μ M VET-F, 0.4 μ M VET-R, 50 μ M dATP, 50 μ M dTTP, 50 μ M dCTP, 50 μ M dGTP, 20mM Tris-HCl (pH8.8), 10mM KCl, 10mM (NH 4) 2SO 4, 2mM MgSO 4, 0.1%Triton X-100,2.5U Pfu archaeal dna polymerase is transferred reaction volume to 50 μ l with sterilized water.The PCR condition of amplification pET-28b kalamycin resistance gene is: 50ng pET-28b, 0.4 μ M KAN-F, 0.4 μ M KAN-R, 50 μ M dATP, 50 μ M dTTP, 50 μ M dCTP, 50 μ M dGTP, 20mM Tris-HCl (pH8.8), 10mM KCl, 10mM (NH 4) 2SO 4, 2mM MgSO 4, 0.1% Triton X-100,2.5U Pfu archaeal dna polymerase is transferred reaction volume to 50 μ l with sterilized water.The pcr amplification reaction program is:
94 ℃, 94 ℃ of 60sec circulations 35 times, 5min → → 50 ℃, 60sec → → 72 ℃, 10min → → 72 ℃, 4min72 ℃, 4min
1% agarose electrophoresis and the PCR product of purifying (the pRSET-A fragment length of removing ampicillin resistance gene is 2036bp, and kalamycin resistance gene is 816bp) connect these two segments and must connect product pRSET-kan (Fig. 1).With pRSET-kan transformed competence colibacillus e. coli bl21 (DE3) pLysS, plasmid is extracted in 37 ℃ of cultivations on kantlex LB flat board, through dna sequencing definite kernel nucleotide sequence shown in Fig. 2 and sequence 13.
The structure of example 3 recommbined D-amino acid oxidase GHA
Recommbined D-amino acid oxidase GHA is made up by rite-directed mutagenesis.The description of site-directed mutagenesis technique main reference PCR Protocols (editor: John M.S.Bartlett and David Stirling.Totowa, N.J.:Humana Press, a 2003.) book.
According to the sequence (sequence 1) of example 1 clone's trigonopsis variabilis daao gene, the design primer is as follows:
Primer A:5 '-TAGGGCTGA CATATGGCTAAAATCGTTGTT ATTG-3 ' (sequence 14)
Primer B:5 '-TAGGGCTGA AGATCTCTAAAGGTTTGGACGAG-3 ' (sequence 15)
Primer C1:5 '-GCAGGTGCCAACTGGCTC CCGTTTTACGATGGAGGCAAG-3 ' (sequence 16)
Primer D:5 '-GAGCCAGTTGGCACCTGCCCAAGG-3 ' (sequence 17)
Primer A and B are a pair of outer primers.Primer A comprises the Ndel restriction enzyme site, and partly base and daao gene 5 ' terminal sequence crossover are arranged; Primer B comprises the BgIII restriction enzyme site, and partly base and daao gene 3 ' terminal sequence crossover are arranged.Primer C1 and D are inner primers.Primer C1 is transformed into proline(Pro) with the Threonine of 53 of parent's daao genes.The sequence crossover of primer D part base and primer C1.
Utilizing the polymerase chain reaction, is template with pRSET-A-DAO, with primer to A and D amplification template fragment 1; With primer to B and C1 amplification template fragment 2.Amplification reaction condition is: 20ngpRSET-A-DAO, 20mM Tris-HCl (pH8.8), 10mM KCl, 10mM (NH 4) 2SO 4, 2mM MgSO 40.1%Triton X-100,0.4 μ M primer A and 0.4 μ M primer D (amplification template fragment 1) or 0.4 μ M primer B and 0.4 μ M primer C1 (amplification template fragment 2), 50 μ MdATP, 50 μ M dTTP, 50 μ M dCTP, 50 μ M dGTP, 1.5U the Pfu archaeal dna polymerase is transferred reaction volume to 50 μ l with sterilized water.The polymerase chain reaction (PCR) amplification program is:
94 ℃, 94 ℃ of 60sec circulations 30 times, 2min → → 53 ℃, 60sec → → → → → 72 ℃, 10min72 ℃, 60sec
Template fragment 1 and template fragment 2 that amplification obtains are after 1% agarose gel electrophoresis separation and purification, in order to the amplification full-length gene.The reaction conditions of amplification full-length gene is: 20ng template fragment 1,20ng template fragment 2,20mM Tris-HCl (pH8.8), 10mM KCl, 10mM (NH 4) 2SO 4, 2mMMgSO 4, 0.1%Triton X-100,0.4 μ M primer A and 0.4 μ M primer B, 50 μ M dATP, 50 μ M dTTP, 50 μ M dCTP, 50 μ M dGTP, 1.5U Pfu archaeal dna polymerase is transferred reaction volume to 50 μ l with sterilized water.The polymerase chain reaction (PCR) amplification program is:
94 ℃, 94 ℃ of 60sec circulations 35 times, 2min → → → → 53 ℃, 60sec → → → 72 ℃, 10min72 ℃, 120sec
The total length amplified reaction obtains recommbined D-amino acid oxidase GHA gene, after Ndel and BgIII enzyme are cut, be connected to pRSET-kan and must connect product pRSET-kan-DAOGHA, with pRSET-kan-DAOGHA transformed competence colibacillus e. coli bl21 (DE3) pLysS, the dull and stereotyped 37 ℃ of cultivations of kantlex LB, extract plasmid, determine that through dna sequencing the sudden change of introducing is errorless, determine recommbined D-amino acid oxidase GHA nucleotide sequence shown in sequence 3, the aminoacid sequence of its supposition is shown in sequence 4.
The structure of example 4 recommbined D-amino acid oxidase GHB
Recommbined D-amino acid oxidase GHB is made up by rite-directed mutagenesis.The description of site-directed mutagenesis technique main reference PCR Protocols (editor: John M.S.Bartlett and David Stirling.Totowa, N.J.:Humana Press, a 2003.) book.
According to the sequence (sequence 1) of example 1 clone's trigonopsis variabilis daao gene, the design primer is as follows:
Primer A:5 '-TAGGGCTGA CATATGGCTAAAATCGTTGTTA TTG-3 ' (sequence 14)
Primer B:5 '-TAGGGCTGA AGATCTCTAAAGGTTTGGACGAG-3 ' (sequence 15)
Primer C2:5 '-GCAGGTGCCAACTGGCTC AGCTTTTACGATGGAGGCAAG-3 ' (sequence 18)
Primer D:5 '-GAGCCAGTTGGCACCTGCCCAAGG-3 ' (sequence 17)
Above primer A, B are described identical with example 3 with D.Primer C2 is an inner primer, and the Threonine of 53 of parent's daao genes is transformed into Serine.The sequence crossover of primer D part base and primer C2.The amplification of template fragment 1 such as example 3. utilize the polymerase chain reaction, are template with pRSET-A-DAO DNA, with primer to B and C2 amplification template fragment 3.Amplification reaction condition is: 20ng pRSET-A-DAO, 20mM Tris-HCl (pH8.8), 10mM KCl, 10mM (NH 4) 2SO 4, 2mM MgSO 4, 0.1% Triton X-100), 0.4 μ M primer B and 0.4 μ M primer C2,50 μ M dATP, 50 μ M dTTP, 50 μ M dCTP, 50 μ M dGTP, 1.5U PfuDNA polysaccharase is transferred reaction volume to 50 μ l with sterilized water.The polymerase chain reaction (PCR) amplification program is:
94 ℃, 94 ℃ of 60sec circulations 30 times, 2min → → → 53 ℃, 60sec → → → 72 ℃, 10min72 ℃, 60sec
Amplification obtains template fragment 3, after 1% agarose gel electrophoresis separation and purification, in order to the amplification full-length gene.The reaction conditions of amplification full-length gene is: 20ng template fragment 1,20ng template fragment 3,20mM Tris-HCl (pH8.8), 10mM KCl, 10mM (NH 4) 2SO 4, 2mM MgSO 4, 0.1% Triton X-100,0.4 μ M primer A and 0.4 μ M primer B, 50 μ M dATP, 50 μ MdTTP, 50 μ M dCTP, 50 μ M dGTP, 1.5U Pfu archaeal dna polymerase is transferred reaction volume to 50 μ l with sterilized water.The polymerase chain reaction (PCR) amplification program is:
94 ℃, 94 ℃ of 60sec circulations 35 times, 2min → → → 53 ℃, 60sec → → → 72 ℃, 10min72 ℃, 120sec
The total length amplified reaction obtains recommbined D-amino acid oxidase GHB gene, after cutting, Ndel and BgIII enzyme be connected on the pRSET-kan, transformed competence colibacillus e. coli bl21 (DE3) pLysS, the dull and stereotyped 37 ℃ of cultivations of kantlex LB, extract plasmid, determine that through dna sequencing the sudden change of introducing is errorless, determine recommbined D-amino acid oxidase GHB nucleotide sequence shown in sequence 5, the aminoacid sequence of its supposition is shown in sequence 6.
The purifying of example 5 D-amino-acid oxidases
The purifying of D-amino-acid oxidase is pressed Alonso, J., Barredo substantially, J.L., Diez, B., Mellado, E., Salto, F., Garcia, J.L., Cortes, E. (D-amino-acid oxidase genefrom Rhodotorula gracilis[Rhodosporidium toruloides] ATCC 26217.Microbiology 144:1095-1101; 1998) described.E. coli bl21 (DE3) the pLysS cell (example 3) of getting single bacterium colony pRSET-kan-DAOGHA conversion is 37 ℃ of 200ml kantlex LB nutrient solutions, and 250rpm cultivated 12 hours, added 1mM IPTG inducing cell then 6 hours.Centrifugal collecting cell washs and is dissolved in 20ml buffer A [20mM sodium phosphate buffer (pH8.0) contains 20% glycerine, 5mM 2 mercapto ethanol, 1mM PMSF and 2mM EDTA], uses the ultrasonic treatment cell.Centrifugal (4 ℃, 13,000g, 20 minutes) remove cell debris, get supernatant liquor upper prop DEAE-cellulose column (Sigma company, 6 * 2.5cm), with buffer A wash-out active ingredient, partially purified recommbined D-amino acid oxidase GHA.Partially purified recommbined D-amino acid oxidase GHA can continue by following method purifying: Cibacron Blue 3GA-agarose column (the Pharmacia LKB Biotechnology that goes up the buffer A balance, 4 * 1cm), with 30ml1M sodium phosphate (pH8.0) flushing, use 10ml buffer A+50 μ M FAD wash-out active parts then.Detect proteinic purity (Fig. 3) with SDS-PAGE.The purifying of trigonopsis variabilis D-amino-acid oxidase and recommbined D-amino acid oxidase GHB is also carried out (Fig. 3) according to above-mentioned steps.
The active mensuration of example 6 D-amino-acid oxidases
With reference to Isogai, T., Ono, H., Ishitani, Y., Kojo, H., Ueda, Y., Kohsaka, M. (Structure and expression of cDNA for D-amino acid oxidase active againstcephalosporm C from Fusarium solani.J Biochem[Tokyo] .108:1063-1069,1990) described, concrete steps have change.Get three milliliters of reaction solution phosphoric acid sodium damping fluids (50mM, pH7.5), 75mM cephalosporin sodium salt and three milliliters as described in the example 5, partially purified trigonopsis variabilis D-amino-acid oxidase, oxygenation was 22 ℃ of oscillatory reactions 60 minutes.100 μ l reaction solutions and 10 μ l3% hydrogen peroxide mixings are extracted at different time (1,5,10,30,60 minute) in reaction beginning back, add 50 μ l10% Tricholroacetic Acids again, and mixing is with termination reaction.With termination reaction liquid centrifugal (10,000g, 3 minutes), to get 10 μ l supernatant liquors and 990 μ l HPLC moving phases and mix, last HPLC post detects.HPLC chromatographic column: Diamonsil TMC18,250 * 4.6mm (Di Ma company, Beijing); Moving phase: 50mMK 2HPO 4/ KH 2PO 4(pH7.0), 5% acetonitrile; Column temperature: 30 ℃; Flow velocity: 1ml/min; Detect: 260nm UV.One unit enzymic activity is defined as at above-mentioned condition per minute and transforms the enzyme amount that micromole's cephalosporin is the Glularyl-7-amino cephalosporinic acid.Recommbined D-amino acid oxidase GHA and the active mensuration of recommbined D-amino acid oxidase GHB are also as above-mentioned.The ratio work that records recommbined D-amino acid oxidase GHA is that parent's trigonopsis variabilis D-amino-acid oxidase is than 205% of work; The ratio work of recommbined D-amino acid oxidase GHB is that parent D-amino-acid oxidase is than 135% of work.
The preparation of example 7 D-amino-acid oxidase solid enzymes
It is described that the extraction of enzyme and purifying are pressed example 5.The preparation of D-amino-acid oxidase immobilized enzyme is with reference to Germany
Figure C20041010316600121
(Darmstadt, explanation Germany) is carried out in company.Measure 50ml 200mg total protein, partially purified recommbined D-amino acid oxidase GHA enzyme solution, add K 2HPO 4With KH 2PO 4The phosphate concn that makes solution is to 0.5M, and the pH value is 7.5.Add Eupergit C TM(
Figure C20041010316600122
GmbH, Darmstadt, Germany) dried carrier 5g, room temperature (17 ℃-23 ℃) 75rpm stirred 72 hours, removed by filter supernatant liquor, washed repeatedly with distilled water, behind the suction filtration, got immobilized enzyme 19.4g.Enzyme is basic described more identical with example 6 than the measuring method of living, and only used reaction solution volume is 1, and 000ml adds recommbined D-amino acid oxidase GHA solid enzyme 19.4g.The ratio work that records recommbined D-amino acid oxidase GHA is the wet carriers of 65 units/gram.
The present invention is not subjected to the restriction of above-mentioned concrete text description.The present invention can make various changes in the generalized scope of claims institute.These change all within the scope of the present invention.
Sequence table
<110〉Bairui Global Co., Ltd.
<120〉purposes of recommbined D-amino acid oxidase
<130>FI-040125-59
<150>CN2004100308428
<151>2004-04-08
<160>18
<170>Patentln?vetsion?3.2
<210>1
<211>1071
<212>DNA
<213>Trigonopsis?variabilis
<400>1
atggctaaaa?tcgttgttat?tggtgccggt?gttgccggtt?taactacagc?tcttcaactt 60
cttcgtaaag?gacatgaggt?tacaattgtg?tccgagttta?cgcccggtga?tcttagtatc 120
ggatatacct?cgccttgggc?aggtgccaac?tggctcacat?tttacgatgg?aggcaagtta 180
gccgactacg?atgccgtctc?ttatcctatc?ttgcgagagc?tggctcgaag?cagccccgag 240
gctggaattc?gactcatcaa?ccaacgctcc?catgttctca?agcgtgatct?tcctaaactg 300
gaaggtgcca?tgtcggccat?ctgtcaacgc?aacccctggt?tcaaaaacac?agtcgattct 360
ttcgagatta?tcgaggacag?gtccaggatt?gtccacgatg?atgtggctta?tctagtcgaa 420
tttgcttccg?tttgtatcca?caccggagtc?tacttgaact?ggctgatgtc?ccaatgctta 480
tcgctcggcg?ccacggtggt?taaacgtcga?gtgaaccata?tcaaggatgc?caattttcta 540
cactcctcag?gatcacgccc?cgacgtgatt?gtcaactgta?gtggtctctt?tgcccggttc 600
ttgggaggcg?tcgaggacaa?gaagatgtac?cctattcgag?gacaagtcgt?ccttgttcga 660
aactctcttc?cttttatggc?ctccttttcc?agcactcctg?aaaaagaaaa?tgaagacgaa 720
gctctatata?tcatgacccg?attcgatggt?acttctatca?ttggcggttg?tttccaatcc 780
aacaactggt?catccgaacc?cgatccttct?ctcacccatc?gaatcctgtc?tagagccctc 840
gaccgattcc?cggaactgac?caaagatggc?cctcttgaca?ttgtgcgcga?atgcgttggc 900
caccgtcctg?gtagagaggg?cggtccccga?gtagaattag?agaagatccc?cggcgttggc 960
tttgttgtcc?ataactatgg?tgccgccggt?gctggttacc?agtcctctta?cggcatggct 1020
gatgaagctg?tttcttacgt?cgaaagagct?cttactcgtc?caaaccttta?g 1071
<210>2
<211>356
<212>PRT
<213>Trigonopsis?variabilis
<400>2
Met?Ala?Lys?Ile?Val?Val?Ile?Gly?Ala?Gly?Val?Ala?Gly?Leu?Thr?Thr
1 5 10 15
Ala?Leu?Gln?Leu?Leu?Arg?Lys?Gly?His?Glu?Val?Thr?Ile?Val?Ser?Glu
20 25 30
Phe?Thr?Pro?Gly?Asp?Leu?Ser?Ile?Gly?Tyr?Thr?Ser?Pro?Trp?Ala?Gly
35 40 45
Ala?Asn?Trp?Leu?Thr?Phe?Tyr?Asp?Gly?Gly?Lys?Leu?Ala?Asp?Tyr?Asp
50 55 60
Ala?Val?Ser?Tyr?Pro?Ile?Leu?Arg?Glu?Leu?Ala?Arg?Ser?Ser?Pro?Glu
65 70 75 80
Ala?Gly?Ile?Arg?Leu?Ile?Asn?Gln?Arg?Ser?His?Val?Leu?Lys?Arg?Asp
85 90 95
Leu?Pro?Lys?Leu?Glu?Gly?Ala?Met?Ser?Ala?Ile?Cys?Gln?Arg?Asn?Pro
100 105 110
Trp?Phe?Lys?Asn?Thr?Val?Asp?Ser?Phe?Glu?Ile?Ile?Glu?Asp?Arg?Ser
115 120 125
Arg?Ile?Val?His?Asp?Asp?Val?Ala?Tyr?Leu?Val?Glu?Phe?Ala?Ser?Val
130 135 140
Cys?Ile?His?Thr?Gly?Val?Tyr?Leu?Asn?Trp?Leu?Met?Ser?Gln?Cys?Leu
145 150 155 160
Ser?Leu?Gly?Ala?Thr?Val?Val?Lys?Arg?Arg?Val?Asn?His?Ile?Lys?Asp
165 170 175
Ala?Asn?Phe?Leu?His?Ser?Ser?Gly?Ser?Arg?Pro?Asp?Val?Ile?Val?Asn
180 185 190
Cys?Ser?Gly?Leu?Phe?Ala?Arg?Phe?Leu?Gly?Gly?Val?Glu?Asp?Lys?Lys
195 200 205
Met?Tyr?Pro?Ile?Arg?Gly?Gln?Val?Val?Leu?Val?Arg?Asn?Ser?Leu?Pro
210 215 220
Phe?Met?Ala?Ser?Phe?Ser?Ser?Thr?Pro?Glu?Lys?Glu?Asn?Glu?Asp?Glu
225 230 235 240
Ala?Leu?Tyr?Ile?Met?Thr?Arg?Phe?Asp?Gly?Thr?Ser?Ile?Ile?Gly?Gly
245 250 255
Cys?Phe?Gln?Ser?Asn?Asn?Trp?Ser?Ser?Glu?Pro?Asp?Pro?Ser?Leu?Thr
260 265 270
His?Arg?Ile?Leu?Ser?Arg?Ala?Leu?Asp?Arg?Phe?Pro?Glu?Leu?Thr?Lys
275 280 285
Asp?Gly?Pro?Leu?Asp?Ile?Val?Arg?Glu?Cys?Val?Gly?His?Arg?Pro?Gly
290 295 300
Arg?Glu?Gly?Gly?Pro?Arg?Val?Glu?Leu?Glu?Lys?Ile?Pro?Gly?Val?Gly
305 310 315 320
Phe?Val?Val?His?Asn?Tyr?Gly?Ala?Ala?Gly?Ala?Gly?Tyr?Gln?Ser?Ser
325 330 335
Tyr?Gly?Met?Ala?Asp?Glu?Ala?Val?Ser?Tyr?Val?Glu?Arg?Ala?Leu?Thr
340 345 350
Arg?Pro?Asn?Leu
355
<210>3
<211>1071
<212>DNA
<213>Trigonopsis?variabilis
<400>3
atggctaaaa?tcgttgttat?tggtgccggt?gttgccggtt?taactacagc?tcttcaactt 60
cttcgtaaag?gacatgaggt?tacaattgtg?tccgagttta?cgcccggtga?tcttagtatc 120
ggatatacct?cgccttgggc?aggtgccaac?tggctcccgt?tttacgatgg?aggcaagtta 180
gccgactacg?atgccgtctc?ttatcctatc?ttgcgagagc?tggctcgaag?cagccccgag 240
gctggaattc?gactcatcaa?ccaacgctcc?catgttctca?agcgtgatct?tcctaaactg 300
gaaggtgcca?tgtcggccat?ctgtcaacgc?aacccctggt?tcaaaaacac?agtcgattct 360
ttcgagatta?tcgaggacag?gtccaggatt?gtccacgatg?atgtggctta?tctagtcgaa 420
tttgcttccg?tttgtatcca?caccggagtc?tacttgaact?ggctgatgtc?ccaatgctta 480
tcgctcggcg?ccacggtggt?taaacgtcga?gtgaaccata?tcaaggatgc?caattttcta 540
cactcctcag?gatcacgccc?cgacgtgatt?gtcaactgta?gtggtctctt?tgcccggttc 600
ttgggaggcg?tcgaggacaa?gaagatgtac?cctattcgag?gacaagtcgt?ccttgttcga 660
aactctcttc?cttttatggc?ctccttttcc?agcactcctg?aaaaagaaaa?tgaagacgaa 720
gctctatata?tcatgacccg?attcgatggt?acttctatca?ttggcggttg?tttccaatcc 780
aacaactggt?catccgaacc?cgatccttct?ctcacccatc?gaatcctgtc?tagagccctc 840
gaccgattcc?cggaactgac?caaagatggc?cctcttgaca?ttgtgcgcga?atgcgttggc 900
caccgtcctg?gtagagaggg?cggtccccga?gtagaattag?agaagatccc?cggcgttggc 960
tttgttgtcc?ataactatgg?tgccgccggt?gctggttacc?agtcctctta?cggcatggct 1020
gatgaagctg?tttcttacgt?cgaaagagct?cttactcgtc?caaaccttta?g 1071
<210>4
<211>356
<212>PRT
<213>Trigonopsis?variabilis
<400>4
Met?Ala?Lys?Ile?Val?Val?Ile?Gly?Ala?Gly?Val?Ala?Gly?Leu?Thr?Thr
1 5 10 15
Ala?Leu?Gln?Leu?Leu?Arg?Lys?Gly?His?Glu?Val?Thr?Ile?Val?Ser?Glu
20 25 30
Phe?Thr?Pro?Gly?Asp?Leu?Ser?Ile?Gly?Tyr?Thr?Ser?Pro?Trp?Ala?Gly
35 40 45
Ala?Asn?Trp?Leu?Pro?Phe?Tyr?Asp?Gly?Gly?Lys?Leu?Ala?Asp?Tyr?Asp
50 55 60
Ala?Val?Ser?Tyr?Pro?Ile?Leu?Arg?Glu?Leu?Ala?Arg?Ser?Ser?Pro?Glu
65 70 75 80
Ala?Gly?Ile?Arg?Leu?Ile?Asn?Gln?Arg?Ser?His?Val?Leu?Lys?Arg?Asp
85 90 95
Leu?Pro?Lys?Leu?Glu?Gly?Ala?Met?Ser?Ala?Ile?Cys?Gln?Arg?Asn?Pro
100 105 110
Trp?Phe?Lys?Asn?Thr?Val?Asp?Ser?Phe?Glu?Ile?Ile?Glu?Asp?Arg?Ser
115 120 125
Arg?Ile?Val?His?Asp?Asp?Val?Ala?Tyr?Leu?Val?Glu?Phe?Ala?Ser?Val
130 135 140
Cys?Ile?His?Thr?Gly?Val?Tyr?Leu?Asn?Trp?Leu?Met?Ser?Gln?Cys?Leu
145 150 155 160
Ser?Leu?Gly?Ala?Thr?Val?Val?Lys?Arg?Arg?Val?Asn?His?Ile?Lys?Asp
165 170 175
Ala?Asn?Phe?Leu?His?Ser?Ser?Gly?Ser?Arg?Pro?Asp?Val?Ile?Val?Asn
180 185 190
Cys?Ser?Gly?Leu?Phe?Ala?Arg?Phe?Leu?Gly?Gly?Val?Glu?Asp?Lys?Lys
195 200 205
Met?Tyr?Pro?Ile?Arg?Gly?Gln?Val?Val?Leu?Val?Arg?Asn?Ser?Leu?Pro
210 215 220
Phe?Met?Ala?Ser?Phe?Ser?Ser?Thr?Pro?Glu?Lys?Glu?Asn?Glu?Asp?Glu
225 230 235 240
Ala?Leu?Tyr?Ile?Met?Thr?Arg?Phe?Asp?Gly?Thr?Ser?Ile?Ile?Gly?Gly
245 250 255
Cys?Phe?Gln?Ser?Asn?Asn?Trp?Ser?Ser?Glu?Pro?Asp?Pro?Ser?Leu?Thr
260 265 270
His?Arg?Ile?Leu?Ser?Arg?Ala?Leu?Asp?Arg?Phe?Pro?Glu?Leu?Thr?Lys
275 280 285
Asp?Gly?Pro?Leu?Asp?Ile?Val?Arg?Glu?Cys?Val?Gly?His?Arg?Pro?Gly
290 295 300
Arg?Glu?Gly?Gly?Pro?Arg?Val?Glu?Leu?Glu?Lys?Ile?Pro?Gly?Val?Gly
305 310 315 320
Phe?Val?Val?His?Asn?Tyr?Gly?Ala?Ala?Gly?Ala?Gly?Tyr?Gln?Ser?Ser
325 330 335
Tyr?Gly?Met?Ala?Asp?Glu?Ala?Val?Ser?Tyr?Val?Glu?Arg?Ala?Leu?Thr
340 345 350
Arg?Pro?Asn?Leu
355
<210>5
<211>1071
<212>DNA
<213>Trigonopsis?variabilis
<400>5
atggctaaaa?tcgttgttat?tggtgccggt?gttgccggtt?taactacagc?tcttcaactt 60
cttcgtaaag?gacatgaggt?tacaattgtg?tccgagttta?cgcccggtga?tcttagtatc 120
ggatatacct?cgccttgggc?aggtgccaac?tggctcagct?tttacgatgg?aggcaagtta 180
gccgactacg?atgccgtctc?ttatcctatc?ttgcgagagc?tggctcgaag?cagccccgag 240
gctggaattc?gactcatcaa?ccaacgctcc?catgttctca?agcgtgatct?tcctaaactg 300
gaaggtgcca?tgtcggccat?ctgtcaacgc?aacccctggt?tcaaaaacac?agtcgattct 360
ttcgagatta?tcgaggacag?gtccaggatt?gtccacgatg?atgtggctta?tctagtcgaa 420
tttgcttccg?tttgtatcca?caccggagtc?tacttgaact?ggctgatgtc?ccaatgctta 480
tcgctcggcg?ccacggtggt?taaacgtcga?gtgaaccata?tcaaggatgc?caattttcta 540
cactcctcag?gatcacgccc?cgacgtgatt?gtcaactgta?gtggtctctt?tgcccggttc 600
ttgggaggcg?tcgaggacaa?gaagatgtac?cctattcgag?gacaagtcgt?ccttgttcga 660
aactctcttc?cttttatggc?ctccttttcc?agcactcctg?aaaaagaaaa?tgaagacgaa 720
gctctatata?tcatgacccg?attcgatggt?acttctatca?ttggcggttg?tttccaatcc 780
aacaactggt?catccgaacc?cgatccttct?ctcacccatc?gaatcctgtc?tagagccctc 840
gaccgattcc?cggaactgac?caaagatggc?cctcttgaca?ttgtgcgcga?atgcgttggc 900
caccgtcctg?gtagagaggg?cggtccccga?gtagaattag?agaagatccc?cggcgttggc 960
tttgttgtcc?ataactatgg?tgccgccggt?gctggttacc?agtcctctta?cggcatggct 1020
gatgaagctg?tttcttacgt?cgaaagagct?cttactcgtc?caaaccttta?g 1071
<210>6
<211>356
<212>PRT
<213>Trigonopsis?variabilis
<400>6
Met?Ala?Lys?Ile?Val?Val?Ile?Gly?Ala?Gly?Val?Ala?Gly?Leu?Thr?Thr
1 5 10 15
Ala?Leu?Gln?Leu?Leu?Arg?Lys?Gly?His?Glu?Val?Thr?Ile?Val?Ser?Glu
20 25 30
Phe?Thr?Pro?Gly?Asp?Leu?Ser?Ile?Gly?Tyr?Thr?Ser?Pro?Trp?Ala?Gly
35 40 45
Ala?Asn?Trp?Leu?Ser?Phe?Tyr?Asp?Gly?Gly?Lys?Leu?Ala?Asp?Tyr?Asp
50 55 60
Ala?Val?Ser?Tyr?Pro?Ile?Leu?Arg?Glu?Leu?Ala?Arg?Ser?Ser?Pro?Glu
65 70 75 80
Ala?Gly?Ile?Arg?Leu?Ile?Asn?Gln?Arg?Ser?His?Val?Leu?Lys?Arg?Asp
85 90 95
Leu?Pro?Lys?Leu?Glu?Gly?Ala?Met?Ser?Ala?Ile?Cys?Gln?Arg?Asn?Pro
100 105 110
Trp?Phe?Lys?Asn?Thr?Val?Asp?Ser?Phe?Glu?Ile?Ile?Glu?Asp?Arg?Ser
115 120 125
Arg?Ile?Val?His?Asp?Asp?Val?Ala?Tyr?Leu?Val?Glu?Phe?Ala?Ser?Val
130 135 140
Cys?Ile?His?Thr?Gly?Val?Tyr?Leu?Asn?Trp?Leu?Met?Ser?Gln?Cys?Leu
145 150 155 160
Ser?Leu?Gly?Ala?Thr?Val?Val?Lys?Arg?Arg?Val?Asn?His?Ile?Lys?Asp
165 170 175
Ala?Asn?Phe?Leu?His?Ser?Ser?Gly?Ser?Arg?Pro?Asp?Val?Ile?Val?Asn
180 185 190
Cys?Ser?Gly?Leu?Phe?Ala?Arg?Phe?Leu?Gly?Gly?Val?Glu?Asp?Lys?Lys
195 200 205
Met?Tyr?Pro?Ile?Arg?Gly?Gln?Val?Val?Leu?Val?Arg?Asn?Ser?Leu?Pro
210 215 220
Phe?Met?Ala?Ser?Phe?Ser?Ser?Thr?Pro?Glu?Lys?Glu?Asn?Glu?Asp?Glu
225 230 235 240
Ala?Leu?Tyr?Ile?Met?Thr?Arg?Phe?Asp?Gly?Thr?Ser?Ile?Ile?Gly?Gly
245 250 255
Cys?Phe?Gln?Ser?Asn?Asn?Trp?Ser?Ser?Glu?Pro?Asp?Pro?Ser?Leu?Thr
260 265 270
His?Arg?Ile?Leu?Ser?Arg?Ala?Leu?Asp?Arg?Phe?Pro?Glu?Leu?Thr?Lys
275 280 285
Asp?Gly?Pro?Leu?Asp?Ile?Val?Arg?Glu?Cys?Val?Gly?His?Arg?Pro?Gly
290 295 300
Arg?Glu?Gly?Gly?Pro?Arg?Val?Glu?Leu?Glu?Lys?Ile?Pro?Gly?Val?Gly
305 310 315 320
Phe?Val?Val?His?Asn?Tyr?Gly?Ala?Ala?Gly?Ala?Gly?Tyr?Gin?Ser?Ser
325 330 335
Tyr?Gly?Met?Ala?Asp?Glu?Ala?Val?Ser?Tyr?Val?Glu?Arg?Ala?Leu?Thr
340 345 350
Arg?Pro?Asn?Leu
355
<210>7
<211>38
<212>DNA
<213>Artificial
<220>
<223〉be used to produce the primer of restriction enzyme site Ndel
<400>7
tagggctgac?atatggctaa?aatcgttgtt?attggtgc 38
<210>8
<211>39
<212>DNA
<213>Artificial
<220>
<223〉be used to produce the primer of restriction enzyme site BgIII
<400>8
tagggctgaa?gatctctaaa?ggtttggacg?agtaagagc 39
<210>9
<211>33
<212>DNA
<213>Artificial
<220>
<223〉be used for the forward primer except that deammoniation benzyl cream mycin resistant gene from pRSET-A
<400>9
ctgtcagacc?aagtttactc?atatatactt?tag 33
<210>10
<211>28
<212>DNA
<213>Artificial
<220>
<223〉be used for removing the reverse primer of ampicillin resistance gene from pRSET-A
<400>10
actcttcctt?tttcaatatt?attgaagc 28
<210>11
<211>23
<212>DNA
<213>Artificial
<220>
<223〉be used for from the forward primer of pET-28b amplification kalamycin resistance gene
<400>11
atgagtcata?ttcaacggga?aac 23
<210>12
<211>27
<212>DNA
<213>Artificial
<220>
<223〉be used for from the reverse primer of pET-28b amplification kalamycin resistance gene
<400>12
ttagaaaaac?tcatcgagca?tcaaatg 27
<210>13
<211>2852
<212>DNA
<213>Trigonopsis?variabilis
<400>13
gatctcgatc?ccgcgaaatt?aatacgactc?actataggga?gaccacaacg?gtttccctct 60
agaaataatt?ttgtttaact?ttaagaagga?gatatacata?tgcggggttc?tcatcatcat 120
catcatcatg?gtatggctag?catgactggt?ggacagcaaa?tgggtcggga?tctgtacgac 180
gatgacgata?aggatcgatg?gggatccgag?ctcgagatct?gcagctggta?ccatggaatt 240
cgaagcttga?tccggctgct?aacaaagccc?gaaaggaagc?tgagttggct?gctgccaccg 300
ctgagcaata?actagcataa?ccccttgggg?cctctaaacg?ggtcttgagg?ggttttttgc 360
tgaaaggagg?aactatatcc?ggatctggcg?taatagcgaa?gaggcccgca?ccgatcgccc 420
ttcccaacag?ttgcgcagcc?tgaatggcga?atgggacgcg?ccctgtagcg?gcgcattaag 480
cgcggcgggt?gtggtggtta?cgcgcagcgt?gaccgctaca?cttgccagcg?ccctagcgcc 540
cgctcctttc?gctttcttcc?cttcctttct?cgccacgttc?gccggctttc?cccgtcaagc 600
tctaaatcgg?gggctccctt?tagggttccg?atttagtgct?ttacggcacc?tcgaccccaa 660
aaaacttgat?tagggtgatg?gttcacgtag?tgggccatcg?ccctgataga?cggtttttcg 720
ccctttgacg?ttggagtcca?cgttctttaa?tagtggactc?ttgttccaaa?ctggaacaac 780
actcaaccct?atcgcggtct?attcttttga?tttataaggg?attttgccga?tttcggccta 840
ttggttaaaa?aatgagctga?tttaacaaat?atttaacgcg?aattttaaca?aaatattaac 900
gcttacaatt?taggtggcac?ttttcgggga?aatgtgcgcg?gaacccctat?ttgtttattt 960
ttctaaatac?attcaaatat?gtatccgctc?atgagacaat?aaccctgata?aatgcttcaa 1020
taatattgaa?aaaggaagag?tatgagtcat?attcaacggg?aaacgtcttg?ctctaggccg 1080
cgattaaatt?ccaacatgga?tgctgattta?tatgggtata?aatgggctcg?cgataatgtc 1140
gggcaatcag?gtgcgacaat?ctatcgattg?tatgggaagc?ccgatgcgcc?agagttgttt 1200
ctgaaacatg?gcaaaggtag?cgttgccaat?gatgttacag?atgagatggt?cagactaaac 1260
tggctgacgg?aatttatgcc?tcttccgacc?atcaagcatt?ttatccgtac?tcctgatgat 1320
gcatggttac?tcaccactgc?gatccccggg?aaaacagcat?tccaggtatt?agaagaatat 1380
cctgattcag?gtgaaaatat?tgttgatgcg?ctggcagtgt?tcctgcgccg?gttgcattcg 1440
attcctgttt?gtaattgtcc?ttttaacagc?gatcgcgtat?ttcgtctcgc?tcaggcgcaa 1500
tcacgaatga?ataacggttt?ggttgatgcg?agtgattttg?atgacgagcg?taatggctgg 1560
cctgttgaac?aagtctggaa?agaaatgcat?aaacttttgc?cattctcacc?ggattcagtc 1620
gtcactcatg?gtgatttctc?acttgataac?cttatttttg?acgaggggaa?attaataggt 1680
tgtattgatg?ttggacgagt?cggaatcgca?gaccgatacc?aggatcttgc?catcctatgg 1740
aactgcctcg?gtgagttttc?tccttcatta?cagaaacggc?tttttcaaaa?atatggtatt 1800
gataatcctg?atatgaataa?attgcagttt?catttgatgc?tcgatgagtt?tttctaactg 1860
tcagaccaag?tttactcata?tatactttag?attgatttaa?aacttcattt?ttaatttaaa 1920
aggatctagg?tgaagatcct?ttttgataat?ctcatgacca?aaatccctta?acgtgagttt 1980
tcgttccact?gagcgtcaga?ccccgtagaa?aagatcaaag?gatcttcttg?agatcctttt 2040
tttctgcgcg?taatctgctg?cttgcaaaca?aaaaaaccac?cgctaccagc?ggtggtttgt 2100
ttgccggatc?aagagctacc?aactcttttt?ccgaaggtaa?ctggcttcag?cagagcgcag 2160
ataccaaata?ctgtccttct?agtgtagccg?tagttaggcc?accacttcaa?gaactctgta 2220
gcaccgccta?catacctcgc?tctgctaatc?ctgttaccag?tggctgctgc?cagtggcgat 2280
aagtcgtgtc?ttaccgggtt?ggactcaaga?cgatagttac?cggataaggc?gcagcggtcg 2340
ggctgaacgg?ggggttcgtg?cacacagccc?agcttggagc?gaacgaccta?caccgaactg 2400
agatacctac?agcgtgagct?atgagaaagc?gccacgcttc?ccgaagggag?aaaggcggac 2460
aggtatccgg?taagcggcag?ggtcggaaca?ggagagcgca?cgagggagct?tccaggggga 2520
aacgcctggt?atctttatag?tcctgtcggg?tttcgccacc?tctgacttga?gcgtcgattt 2580
ttgtgatgct?cgtcaggggg?gcggagccta?tggaaaaacg?ccagcaacgc?ggccttttta 2640
cggttcctgg?gcttttgctg?gccttttgct?cacatgttct?ttcctgcgtt?atcccctgat 2700
tctgtggata?accgtattac?cgcctttgag?tgagctgata?ccgctcgccg?cagccgaacg 2760
accgagcgca?gcgagtcagt?gagcgaggaa?gcggaagagc?gcccaatacg?caaaccgcct 2820
ctccccgcgc?gttggccgat?tcattaatgc?ag 2852
<210>14
<211>34
<212>DNA
<213>Artificial
<220>
<223〉be used to the to increase outer primer of encoding gene of D-amino-acid oxidase
<400>14
tagggctgac?atatggctaa?aatcgttgtt?attg 34
<210>15
<211>32
<212>DNA
<213>Artificial
<220>
<223〉be used to the to increase outer primer of encoding gene of D-amino-acid oxidase
<400>15
tagggctgaa?gatctctaaa?ggtttggacg?ag 32
<210>16
<211>39
<212>DNA
<213>Artificial
<220>
<223〉be used for the 53rd the Thr of SEQ ID NO:2 is become the forward inner primer of Pro
<400>16
gcaggtgcca?actggctccc?gttttacgat?ggaggcaag 39
<210>17
<211>24
<212>DNA
<213>Artificial
<220>
<223〉reverse inner primer
<400>17
gagccagttg?gcacctgccc?aagg 24
<210>18
<211>39
<212>DNA
<213>Artificial
<220>
<223〉be used for the 53rd the Thr of SEQ ID NO:2 is become the forward inner primer of Ser
<400>18
gcaggtgcca?actggctcag?cttttacgat?ggaggcaag 39

Claims (8)

1. the purposes of a recommbined D-amino acid oxidase, be used for the catalysis cephalosporin and generate the Glularyl-7-amino cephalosporinic acid, it is characterized in that, compare with aminoacid sequence shown in the sequence in the sequence table 2, described recommbined D-amino acid oxidase sports Serine or proline(Pro) at the 53rd Threonine.
2. purposes according to claim 1, sequence 4 described consensus amino acid sequences in the sequence of wherein said D-amino-acid oxidase and the sequence table.
3. nucleotide sequence coded by shown in the sequence in the sequence table 3 of purposes according to claim 2, the aminoacid sequence of wherein said D-amino-acid oxidase.
4. purposes according to claim 1, sequence 6 described consensus amino acid sequences in the sequence of wherein said D-amino-acid oxidase and the sequence table.
5. nucleotide sequence coded by shown in the sequence in the sequence table 5 of purposes according to claim 4, the aminoacid sequence of wherein said D-amino-acid oxidase.
6. according to each described purposes of claim 1-5, wherein said D-amino-acid oxidase is purified enzyme.
7. according to each described purposes of claim 1-5, wherein said D-amino-acid oxidase is through partially purified enzyme.
8. according to each described purposes of claim 1-5, wherein said D-amino-acid oxidase is a solid enzyme.
CNB2004101031662A 2004-04-08 2004-04-08 Use of recommbined D-amino acid oxidase Expired - Lifetime CN100386440C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004101031662A CN100386440C (en) 2004-04-08 2004-04-08 Use of recommbined D-amino acid oxidase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004101031662A CN100386440C (en) 2004-04-08 2004-04-08 Use of recommbined D-amino acid oxidase

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100308428A Division CN100342014C (en) 2004-04-08 2004-04-08 Recommbined D-amino acid oxidase

Publications (2)

Publication Number Publication Date
CN1680583A CN1680583A (en) 2005-10-12
CN100386440C true CN100386440C (en) 2008-05-07

Family

ID=35067335

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004101031662A Expired - Lifetime CN100386440C (en) 2004-04-08 2004-04-08 Use of recommbined D-amino acid oxidase

Country Status (1)

Country Link
CN (1) CN100386440C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1912130B (en) * 2005-08-08 2011-06-15 百瑞全球有限公司 Two-step enzyme method for preparing 7-aminocephalosporanic acid
CN1912127B (en) * 2005-08-08 2011-05-25 百瑞全球有限公司 Colibacillus expression carrier and its application
CN107881159B (en) * 2017-12-15 2020-10-09 江南大学 Method for improving soluble heterologous expression of D-amino acid oxidase

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Active site of yeast D-animo acid oxidase:mutations andinference. Boselli,Angelo等.Flavins and Flavoproteins,Vol.14 No.18. 2002
Active site of yeast D-animo acid oxidase:mutations andinference. Boselli,Angelo等.Flavins and Flavoproteins,Vol.14 No.18. 2002 *
固定化D-氨基酸氧化酶转化头孢菌素C2为戊二酰基-7-氨基头孢霉烷酸. 陈少欣等.化学反应工程与工艺,第19卷第3期. 2003
固定化D-氨基酸氧化酶转化头孢菌素C2为戊二酰基-7-氨基头孢霉烷酸. 陈少欣等.化学反应工程与工艺,第19卷第3期. 2003 *

Also Published As

Publication number Publication date
CN1680583A (en) 2005-10-12

Similar Documents

Publication Publication Date Title
WO2009104622A1 (en) Thermotolerant catalase
Suzuki et al. Purification and properties of maize polyamine oxidase: a flavoprotein
CN110343703B (en) Portunus trituberculatus C-type lectin PtCLec1 gene, and coding protein and application thereof
CN113862233B (en) Method for improving acid stability of glucose oxidase, mutant Q241E/R499E, gene and application
CN101348794A (en) Encoding gene of high activity glucose oxidase, preparation and use thereof
CN100386440C (en) Use of recommbined D-amino acid oxidase
CN111621457B (en) Engineering bacterium for efficiently synthesizing pyruvic acid and D-alanine and construction method and application thereof
CN106497905A (en) The mutant of the PD in one plant of anabena source
CN114395541A (en) Glucose oxidase mutant GOx1-MUT with improved thermal stability and specific activity, and coding gene and application thereof
EP1748073B1 (en) Recombinant d-amino acid oxidase
CN110317813B (en) Portunus trituberculatus C-type lectin PtCLec2 gene, and coding protein and application thereof
CN111269899A (en) Human urate oxidase with catalytic activity and application thereof
CN115029328A (en) Glucose oxidase mutant GOx-MUT 1-6 and coding gene and application thereof
CN115029327A (en) Glucose oxidase mutant GOx-MUT 7-11 and coding gene and application thereof
JP3471916B2 (en) Recombinant β-amylase
CN109837294B (en) Recombinant plasmid, preparation method thereof, preparation method of cell capable of expressing high-temperature-resistant alpha-amylase by using recombinant plasmid and application of cell
CN110845578A (en) Novel intestinal mucosa antioxidant active peptide and preparation method thereof
EP0897006A1 (en) Rhodosporidium d-amino acid oxidase
EP1948793B1 (en) Method for conversion of uric acid to allantoin and related enzymes
CN106554945B (en) A kind of fructosyl peptide oxidase that thermal stability is high and its encoding gene and purposes
CN106906235B (en) Escherichia coli expression system of retinol binding protein and preparation method of protein thereof
CN110184256B (en) Preparation method and application of heat-resistant alkali-resistant feruloyl esterase
RU2790496C2 (en) Method for production of chiral alpha-haloalkanoic acids
CN114410669B (en) Production and immobilization method of recombinant nitrilase and application of recombinant nitrilase to degradation of acetonitrile
CN111094578A (en) Preparation method of chiral α halogenated alkanoic acid

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20080507

CX01 Expiry of patent term