CN100355939C - Method for cladding honeycomb metal cobalt or cobalt alloy on nickel or nickel alloy powder surface - Google Patents

Method for cladding honeycomb metal cobalt or cobalt alloy on nickel or nickel alloy powder surface Download PDF

Info

Publication number
CN100355939C
CN100355939C CNB2005101106729A CN200510110672A CN100355939C CN 100355939 C CN100355939 C CN 100355939C CN B2005101106729 A CNB2005101106729 A CN B2005101106729A CN 200510110672 A CN200510110672 A CN 200510110672A CN 100355939 C CN100355939 C CN 100355939C
Authority
CN
China
Prior art keywords
cobalt
nickel
alloy powder
alloy
nickel alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005101106729A
Other languages
Chinese (zh)
Other versions
CN1776014A (en
Inventor
胡文彬
刘曦
邓意达
沈彬
刘磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CNB2005101106729A priority Critical patent/CN100355939C/en
Publication of CN1776014A publication Critical patent/CN1776014A/en
Application granted granted Critical
Publication of CN100355939C publication Critical patent/CN100355939C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The present invention relates to a method for coating the surface of nickel or nickel alloy powders with honeycomb metal cobalt or cobalt alloy. Nickel or nickel alloy powders are preprocessed firstly, and after oxidizing layers on the surface of the nickel or the nickel alloy powders are cleaned, the nickel or the nickel alloy powders are uniformly dispersed in water solution to provide a basal body interface for plating reaction. Then, the preprocessed powders are put into plating solution containing cobalt salt, chemical plating technology is utilized to make redox reaction occur on the surfaces of the powers, and reducing agents are catalyzed to react with cobalt ions or other metal ions. A strong stirring mode is adopted to ensure that the surfaces of the nickel alloy powders suspending in the plating solution are uniformly coated with honeycomb cobalt plated layers, and after the post-processing of obtained particles, honeycomb cobalt-nickel alloy powders can be obtained. The present invention has advantages of simple process equipment and low cost and can be used for preparing micron-sized and nanometer-sized cobalt-nickel alloy powders, and simultaneously, the components of alloy elements and the sizes of particles of plating layers can be controlled. Due to the unique construction of cobalt-nickel alloy powers, cobalt-nickel alloy powers can be used in the fields of adsorbing agents, microwave absorbing material, etc.

Description

The method of nickel or Ni alloy powder surface cladding honeycomb metal cobalt or cobalt-base alloy
Technical field
The present invention relates to the method for a kind of nickel or Ni alloy powder surface cladding honeycomb metal cobalt or cobalt-base alloy, specifically, use a kind of special chemical plating technology surface to coat assembling nickel or Ni alloy powder,, belong to technical field of electromagnetic shielding to improve the electromagnetic performance of Ni alloy powder.
Background technology
Along with people's deepening continuously to nano ZnO and related preparation technical study, hyperfine structure with special appearance and function often shows excellent characteristic at aspects such as chemistry, mechanics, optics, electricity and magnetics, these hyperfine structures are expected to be widely used in military and civilian fields such as chemical industry, electronics, metallurgy, aviation, medicine.Electron device is applied to industry more and more in recent years, and commerce, and military field, electromagnetic interference also more and more become a serious problem.This just need prepare the electromagnetic wave absorbent material of low reflection and high-absorbable energy, protects these electron devices not to be subjected to externally electromagneticly to influence or reduce itself electromagnetic radiation to external world, and wherein studies morely with microwave absorbing material.The research of microwave absorbing material before concentrates on the ferrite of ferromagnetic property and metal Fe, Co, the Ni mostly.Nearest these ferromagnetic hyperfine structure such as nanometer powders that studies show that, ultra-fine fibre etc. also have microwave absorbing property preferably.Qi Liu etc. are at " Advanced Materials " (Vol.17,2005) publish an article on " Nanometer-sized Nickel Hollow Spheres " (research of preparation hollow Nano level nickel ball) prepare ultra-fine hollow nickel ball powder with organic formwork, the solid relatively powder of this hollow particle surface atom increases, can produce very big dielectric loss to hertzian wave, thereby can effectively absorb microwave.Consider nickel or the Ni alloy powder deficiency aspect magnetic loss, the magnetic property that cobalt metal is outstanding than nickel, and the boxwork structure can significantly strengthen the specific surface area of powder, need carry out coating surface cobalt or cobalt-base alloy to nickel or nickelalloy powder and handle and strengthen its electro-magnetic screen function.
Summary of the invention
The objective of the invention is at the deficiencies in the prior art, the method of a kind of nickel or Ni alloy powder surface cladding honeycomb metal cobalt or cobalt-base alloy is proposed, can be relatively low at cost, under the simple situation of testing installation, prepare the nickel alloy powder powder composite material of high dielectric loss and magnetic loss, can be used as good microwave absorbing material.
For realizing this purpose, in technical scheme of the present invention, at first nickel or Ni alloy powder are carried out pre-treatment, be dispersed in the aqueous solution again after cleaning its surface oxide layer, for the plating reaction provides basal body interface, then pretreated powder is put into the plating bath that contains cobalt salt, utilize chemical plating technology to make nickel or Ni alloy powder surface that redox reaction take place.Because nickel powder upper layer catalytic activity in plating bath is inconsistent,, pile up the cellular porosity coating layer subsequently gradually at high reactivity basic point at first catalytic reducer and cobalt ion or other metal ions reaction generation coating layer.The Ni alloy powder surface of adopting powerful alr mode to make during reaction to be suspended in the plating bath forms even cladding honeycomb cobalt plating layer, and the gained particle just obtains the nickel or the Ni alloy powder of surperficial cladding honeycomb metal cobalt or cobalt-base alloy through aftertreatment.
Method of the present invention specifically comprises the steps:
(1) nickel or Ni alloy powder pre-treatment: it is in 15% the dilute sulphuric acid that exsiccant nickel or Ni alloy powder are dissolved in volume by volume concentration, cleans its oxide on surface with dilute sulphuric acid, erodes away the catalytic reaction active site at nickel or Ni alloy powder upper layer.Usefulness ultrasonic dispersing method in the aqueous solution, provides basal body interface for plating reacts with the powder uniformly dispersing of reunion again.
(2) plating bath preparation: with metal-salt, reductive agent, buffer reagent, complexing agent respectively in deionized water dissolving be mixed with chemical plating bath.Each component concentration is metal-salt 30~50g/L, reductive agent 20~40g/L, complexing agent 0.045~0.055mol/L, buffer reagent 0.015~0.02mol/L in the plating bath.
Wherein, described metal-salt is a cobalt salt, and perhaps cobalt salt adds mantoquita or cobalt salt adds molysite.Described cobalt salt comprises rose vitriol, cobalt chloride, Xiao Suangu, Cobaltous diacetate.
Described reductive agent comprises hypophosphite, hydroborate, hydrazine hydrate, sodium wolframate, potassium wolframate.
Described buffer reagent comprises ammoniacal liquor, ammonium chloride, ammonium nitrate, ammonium sulfate, ammonium acetate.
Described complexing agent comprises citric acid, lactic acid, Succinic Acid, hexanodioic acid, Seignette salt, thiocarbamide, propenyl thiocarbamide, potassiumiodide, ammonium molybdate.
(3) coating layer generates: will pretreated nickel or Ni alloy powder put into chemical plating fluid and carry out ultrasonic stirring and manually stir, stir in the constant temperature water bath that is poured into 80 ℃ after abundant and heat.Adopt the powerful motor stirrer constantly to stir chemical plating fluid in heat-processed, the stirring frequency scope is: 200 rev/mins~400 rev/mins.Up to no longer producing bubble, promptly the plating process is finished substantially, generates the nickel or the nickelalloy particle of surperficial cladding honeycomb metal cobalt or cobalt-base alloy.
(4) aftertreatment:,, in 60~80 ℃ of baking ovens dry 2 hours then, obtain the nickel or the Ni alloy powder of surperficial cladding honeycomb metal cobalt or cobalt-base alloy more respectively through ammoniacal liquor, deionized water, washing with acetone with the particle filtration of gained.
The surperficial cladding honeycomb metal cobalt of the present invention's preparation or the nickel or the Ni alloy powder of cobalt-base alloy are amorphous or crystallite attitude, and gained powder diameter size is 100nm~10 μ m, and the powder composition is the ternary or the quad alloy of nickel.The powder outside is cellular plating cobalt-base alloy layer, and inside is nickel or Ni alloy powder.By selecting micron order or nano level nickel particle to control gained powder diameter size, can access micron order or nano level cellular cladding powder.Control the alloy element component of the cellular coating layer of final formation by control metal salt concentrations, ratio and stirring velocity.
The present invention utilizes the chemical plating technology surface to coat assembling nickel or Ni alloy powder, redox reaction takes place at powder case surface catalytic activity point, prepare and have special cellular pattern, the surface coats the particulate composite of even, high dielectric loss and magnetic loss, further increased the specific surface area of Ni alloy powder, improved particle the absorption of electromagnetic wave performance.Preparation cost of the present invention is relatively low, the equipment that adopts is simple, only needing to load on common response device and thermostatic equipment the powerful motor stirrer just can use, technological operation is simple, prepared cellular powdered alloy can be applied in fields such as sorbent material and microwave absorbing materials owing to its particular structure.
Embodiment
Below by specific embodiment technical scheme of the present invention is further described.
Embodiment 1:
Micrometer nickel alloy ball powder coated honeycomb metal cobalt
The spherical nickel-phosphor alloy powder of pre-treatment 2~10 μ m micron-scales.For avoiding particle aggregation and surface oxidation, clean the hollow nickel ball of micron order with dilute sulphuric acid, and it is carried out ultrasonic dispersing.The pretreated nickel ball of 5g is dispersed in the 1L plating bath, carries out cobalt then and coats.Each constituent concentration is in the plating bath: Cobalt monosulfate heptahydrate (CoSO 47H 2O): 30g/L; Sodium hypophosphite (NaH 2PO 2H 2O): 20g/L; Ammoniacal liquor (NH 3H 2O): 0.015mol/L, lactic acid: 0.045mol/L.The adjusting process parameter: water bath heating controlled temperature remains on 80 ℃, and mechanical stirring speed is 200 rev/mins.Coat after experiment finishes, the gained particle is used ammoniacal liquor, deionized water, washing with acetone respectively after, place 80 ℃ vacuum drying oven, obtain final particulate behind the dry 2h.Phosphorus content is 4.31%Wt in the cellular nickel-phosphor alloy ball that obtains at last, and nickel content is 67.81%Wt, and cobalt contents is 27.88%Wt, and the spheroid particle diameter is 2~10 μ m.Spherome surface is the boxwork hole, and the BET specific surface area is 4.9888m 2/ g.
Embodiment 2:
Nano level nickelalloy ball powder coated honeycomb metal cobalt
The spherical nickel-phosphor alloy powder of pre-treatment 100~300nm nanometer particle size size.For avoiding particle aggregation and surface oxidation, clean nano level nickel ball with dilute sulphuric acid, and it is carried out ultrasonic dispersing.The pretreated nickel ball of 5g is dispersed in the 1L plating bath, carries out cobalt then and coats.Each constituent concentration is in the plating bath: cobalt chloride hexahydrate (CoCL 26H 2O): 40g/L; Potassium hypophosphite (KH 2PO 2H 2O): 30g/L; Ammoniacal liquor (NH 3H 2O): 0.018mol/L, lactic acid: 0.05mol/L.The adjusting process parameter: water bath heating controlled temperature remains on 80 ℃, and mechanical stirring speed is 200 rev/mins.Coat after experiment finishes, the gained particle is used ammoniacal liquor, deionized water, washing with acetone respectively after, place 60 ℃ vacuum drying oven, obtain final particulate behind the dry 2h.Phosphorus content is 4.52Wt in the cellular nickel-phosphor alloy ball that obtains at last, and nickel content is 66.81%Wt, and cobalt contents is 28.67%Wt, and the spheroid particle diameter is 100~350nm.Spherome surface is the boxwork hole, and the BET specific surface area is 4.8818m 2/ g.
Embodiment 3:
The cellular cobalt-base alloy of micrometer nickel alloy ball powder coated
The spherical nickel-phosphor alloy powder of pre-treatment 2~10 μ m micron-scales.For avoiding particle aggregation and surface oxidation, clean the micrometer nickel ball with dilute sulphuric acid, and it is carried out ultrasonic dispersing.The pretreated nickel ball of 5g is dispersed in 11 plating baths, carries out cobalt then and coats.Each constituent concentration is in the plating bath: Cobalt monosulfate heptahydrate (CoSO 47H 2O): 30g/L; Six hydrated copper sulfates: (CuSO 46H 2O) 10g/L; Sodium hypophosphite (NaH 2PO 2H 2O): 30g/L; Ammonium chloride (NH 4CL): 0.018mol/L, Seignette salt: 0.05mol/L.The adjusting process parameter: water bath heating controlled temperature remains on 80 ℃, and mechanical stirring speed is 400 rev/mins.Coat after experiment finishes, the gained particle is used ammoniacal liquor, deionized water, washing with acetone respectively after, place 80 ℃ vacuum drying oven, obtain final particulate behind the dry 2h.Phosphorus content is 4.51%Wt in the cellular nickel-phosphor alloy ball that obtains at last, and nickel content is 64.99%Wt, and cobalt contents is 25.09%Wt, and copper content is 5.41%Wt, and the spheroid particle diameter is 2~10 μ m.Spherome surface is the boxwork hole, and the BET specific surface area is 4.8567m 2/ g.
Embodiment 4:
The cellular cobalt-base alloy of nano level nickelalloy ball powder coated
The spherical nickel-phosphor alloy powder of pre-treatment 100~300nm nanometer particle size size.For avoiding particle aggregation and surface oxidation, clean nano level nickel ball with dilute sulphuric acid, and it is carried out ultrasonic dispersing.The pretreated nickel ball of 5g is dispersed in the 1L plating bath, carries out cobalt then and coats.Each constituent concentration is in the plating bath: cobalt chloride hexahydrate (CoCL 26H 2O): 40g/L; Six hydrated copper sulfates: (CuSO 46H 2O) 10g/L; Potassium hypophosphite (KH 2PO 2H 2O): 40g/L; Ammonium chloride (NH 4CL): 0.02mol/L, Seignette salt: 0.055mol/L.The adjusting process parameter: water bath heating controlled temperature remains on 80 ℃, and mechanical stirring speed is 400 rev/mins.Coat after experiment finishes, the gained particle is used ammoniacal liquor, deionized water, washing with acetone respectively after, place 60 ℃ vacuum drying oven, obtain final particulate behind the dry 2h.Phosphorus content is 4.39%Wt in the cellular nickel-phosphor alloy ball that obtains at last, and nickel content is 63.72%Wt, and cobalt contents is 26.03%Wt, and copper content is 5.86%Wt, and the spheroid particle diameter is 100~350nm.Spherome surface is the boxwork hole, and the BET specific surface area is 4.7618m 2/ g.

Claims (5)

1, the method for a kind of nickel or Ni alloy powder surface cladding honeycomb metal cobalt or cobalt-base alloy is characterized in that comprising the steps:
(1) Ni alloy powder pre-treatment: it is in 15% the dilute sulphuric acid that exsiccant nickel or Ni alloy powder are dissolved in volume by volume concentration, clean its oxide on surface with dilute sulphuric acid, erode away the catalytic reaction active site at nickel or Ni alloy powder upper layer, usefulness ultrasonic dispersing method in the aqueous solution, provides basal body interface for plating reacts with the powder uniformly dispersing of reunion again;
(2) plating bath preparation: with metal-salt, reductive agent, buffer reagent, complexing agent respectively in deionized water dissolving be mixed with chemical plating bath, each component concentration is metal-salt 30~50g/L, reductive agent 20~40g/L, complexing agent 0.045~0.055mol/L, buffer reagent 0.015~0.02mol/L in the plating bath; Wherein, described metal-salt is a cobalt salt, and perhaps cobalt salt adds mantoquita or cobalt salt adds molysite;
(3) coating layer generates: pretreated nickel or Ni alloy powder are put into chemical plating fluid, be poured into after stirring fully in 80 ℃ the constant temperature water bath and heat, in heat-processed, adopt stirrer constantly to stir chemical plating fluid, the stirring frequency scope is: 200 rev/mins~400 rev/mins, up to no longer producing bubble, be that the plating process is finished, generate the nickel or the nickelalloy particle of surperficial cladding honeycomb metal cobalt or cobalt-base alloy;
(4) aftertreatment:,, in 60~80 ℃ of baking ovens dry 2 hours then, obtain the nickel or the Ni alloy powder of surperficial cladding honeycomb metal cobalt or cobalt-base alloy more respectively through ammoniacal liquor, deionized water, washing with acetone with the particle filtration of gained.
2, according to the method for the nickel of claim 1 or Ni alloy powder surface cladding honeycomb metal cobalt or cobalt-base alloy, it is characterized in that described cobalt salt is rose vitriol, cobalt chloride, Xiao Suangu or Cobaltous diacetate.
3, according to the method for the nickel of claim 1 or Ni alloy powder surface cladding honeycomb metal cobalt or cobalt-base alloy, it is characterized in that described reductive agent is phosphite, hydroborate, hydrazine hydrate, sodium wolframate or potassium wolframate.
4, according to the method for the nickel of claim 1 or Ni alloy powder surface cladding honeycomb metal cobalt or cobalt-base alloy, it is characterized in that described buffer reagent is ammoniacal liquor, ammonium chloride, ammonium nitrate, ammonium sulfate or ammonium acetate.
5, according to the method for the nickel of claim 1 or Ni alloy powder surface cladding honeycomb metal cobalt or cobalt-base alloy, it is characterized in that described complexing agent is citric acid, lactic acid, Succinic Acid, hexanodioic acid, Seignette salt, thiocarbamide, propenyl thiocarbamide, potassiumiodide or ammonium molybdate.
CNB2005101106729A 2005-11-24 2005-11-24 Method for cladding honeycomb metal cobalt or cobalt alloy on nickel or nickel alloy powder surface Expired - Fee Related CN100355939C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005101106729A CN100355939C (en) 2005-11-24 2005-11-24 Method for cladding honeycomb metal cobalt or cobalt alloy on nickel or nickel alloy powder surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005101106729A CN100355939C (en) 2005-11-24 2005-11-24 Method for cladding honeycomb metal cobalt or cobalt alloy on nickel or nickel alloy powder surface

Publications (2)

Publication Number Publication Date
CN1776014A CN1776014A (en) 2006-05-24
CN100355939C true CN100355939C (en) 2007-12-19

Family

ID=36765725

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005101106729A Expired - Fee Related CN100355939C (en) 2005-11-24 2005-11-24 Method for cladding honeycomb metal cobalt or cobalt alloy on nickel or nickel alloy powder surface

Country Status (1)

Country Link
CN (1) CN100355939C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101967641A (en) * 2010-09-17 2011-02-09 江门市安诺特炊具制造有限公司 Honeycomb hole surface treatment technology before spraying aluminum cooking utensils
CN102689011A (en) * 2012-06-14 2012-09-26 湖南顶融科技有限公司 Preparation method for copper-coated composite powder

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101428349B (en) * 2008-07-29 2011-06-22 张建玲 Method for producing nickel-cobalt metal powder
CN102000830B (en) * 2010-11-18 2012-07-04 深圳市格林美高新技术股份有限公司 Superfine cobalt alloy powder and preparation method thereof
CN102021543B (en) * 2010-12-10 2013-04-17 广州晋惠化工科技有限公司 Chemical nickel-plating solution containing composite complexing agent
CN102154571A (en) * 2011-03-22 2011-08-17 北京航空航天大学 Method for preparing micro-nano hole cobalt nickel alloy
CN102601384B (en) * 2012-03-31 2014-01-15 北京科技大学 Chemical method for preparing cobalt nickel nanoscale alloy powder
CN103086816B (en) * 2013-01-28 2015-07-15 北京矿冶研究总院 Method for coating metal on surface of agglomerated boron powder
CN105033277B (en) * 2015-08-13 2017-12-19 兰云科 A kind of preparation technology of superfine spherical nickel cobalt iron ternary alloy three-partalloy powder
CH713262B1 (en) * 2016-12-20 2023-03-15 Swatch Group Res & Dev Ltd Watch component in composite material.
CN113182733B (en) * 2021-04-28 2022-08-02 武汉理工大学 Preparation and brazing method of low-temperature active solder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1198972A (en) * 1998-04-21 1998-11-18 冶金工业部钢铁研究总院 Method for surface chemical nickel plating of nickel-base alloy powder
US20030235709A1 (en) * 2002-06-20 2003-12-25 Lockheed Martin Corporation Electromagnetic wave absorbing materials
CN1661131A (en) * 2004-11-22 2005-08-31 武汉理工大学 Plating liquid for nickel-titanium alloy to coat nickel, cobalt and tungsten through chemical technology and technique method
JP2005281786A (en) * 2004-03-30 2005-10-13 Hitachi Metals Ltd Magnetic metal particle and production method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1198972A (en) * 1998-04-21 1998-11-18 冶金工业部钢铁研究总院 Method for surface chemical nickel plating of nickel-base alloy powder
US20030235709A1 (en) * 2002-06-20 2003-12-25 Lockheed Martin Corporation Electromagnetic wave absorbing materials
JP2005281786A (en) * 2004-03-30 2005-10-13 Hitachi Metals Ltd Magnetic metal particle and production method therefor
CN1661131A (en) * 2004-11-22 2005-08-31 武汉理工大学 Plating liquid for nickel-titanium alloy to coat nickel, cobalt and tungsten through chemical technology and technique method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
球型氢氧化镍表面包覆钴的正交试验研究 王先友,阎杰,张允什,袁华堂,宋德瑛.电源技术,第23卷第2期 1999 *
羰基铁粉体表面化学镀镍改性的研究 魏美玲,马峻峰,陈文,纪娟.硅酸盐通报,第22卷第5期 2003 *
陶瓷粉体表面镀钴及镀后粉末性能分析 杜光旭,王旭辉,涂国荣,周晓华,郝文析.精细化工,第22卷第9期 2005 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101967641A (en) * 2010-09-17 2011-02-09 江门市安诺特炊具制造有限公司 Honeycomb hole surface treatment technology before spraying aluminum cooking utensils
CN101967641B (en) * 2010-09-17 2012-07-18 江门市安诺特炊具制造有限公司 Honeycomb hole surface treatment technology before spraying aluminum cooking utensils
CN102689011A (en) * 2012-06-14 2012-09-26 湖南顶融科技有限公司 Preparation method for copper-coated composite powder

Also Published As

Publication number Publication date
CN1776014A (en) 2006-05-24

Similar Documents

Publication Publication Date Title
CN100355939C (en) Method for cladding honeycomb metal cobalt or cobalt alloy on nickel or nickel alloy powder surface
CN101503579B (en) Preparation of surface load magnetic alloy particle carbon nano-tube composite material
CN1299863C (en) Method for preparing hollow or clad nickel alloy spherical powder
CN101045533B (en) Carbon nano tube wave absorption material of surface carried with magnetic alloy particle and preparation method thereof
CN1971780B (en) Preparing method of nano-Fe3O4 coating carbon nanoube magnetic composite material
Pang et al. Preparation and characterization of electroless Ni–Co–P ternary alloy on fly ash cenospheres
CN111069591B (en) Preparation method of nickel-cobalt alloy particle modified graphene micro-sheet wave-absorbing composite powder
CN102732863B (en) Method for preparing magnetic-field-assisted graphite carbon material chemical plating magnetic metal
CN102311233A (en) Surface chemical plating treatment process for hollow glass microsphere, plated metal hollow glass microsphere and application thereof
CN103008675B (en) A kind of preparation method of nickel coated copper composite powder
CN102381844A (en) Method for modifying hollow glass microspheres by chemical precipitation process
Pang et al. Preparation and characterization of electroless Ni-Fe-P alloy films on fly ash cenospheres
CN103691937B (en) A kind of method preparing nickel bag graphite compound particle
CN106028768A (en) Iron-plated graphene and preparation method
CN107338024A (en) A kind of Co Fe alloys/carbon ball composite microwave absorbent and preparation method thereof
CN109548392A (en) A kind of preparation method of ferroso-ferric oxide-porous carbon composite wave-suction material
CN101546610A (en) Ceramic whisker/ferromagnetic metal composite wave-absorbing material and preparation method thereof
CN101521046B (en) Graphite sheet surface load magnetic alloy particle wave-absorbing material and preparation method thereof
Qu et al. Robust magnetic and electromagnetic wave absorption performance of reduced graphene oxide loaded magnetic metal nanoparticle composites
CN105290419B (en) Herring-bone form nuclear shell structure nano monel powder and preparation method thereof
Zhong et al. Flexible and durable poly para-phenylene terephthalamide fabric constructed by polydopamine and corrugated Co-Ni-P alloy with reflection characteristic for electromagnetic interference shielding
CN102962470B (en) Method for preparing spherical ultrafine nickel powder at room temperature
CN104195532A (en) Preparation method of graphite sheet surface chemical plating iron-nickel alloy layer
CN101597473A (en) It with diatomite electromagnetic wave absorption particle of template and preparation method thereof
CN102719812B (en) Method for preparing one-dimensional spinel type ferrite AxB1-xFe2O4 through chemical plating

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071219

Termination date: 20101124