CN100353036C - 用于产冷的发电厂 - Google Patents

用于产冷的发电厂 Download PDF

Info

Publication number
CN100353036C
CN100353036C CNB038069059A CN03806905A CN100353036C CN 100353036 C CN100353036 C CN 100353036C CN B038069059 A CNB038069059 A CN B038069059A CN 03806905 A CN03806905 A CN 03806905A CN 100353036 C CN100353036 C CN 100353036C
Authority
CN
China
Prior art keywords
steam
combustion gas
heat
absorption refrigerator
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB038069059A
Other languages
English (en)
Other versions
CN1643237A (zh
Inventor
弗朗兹·斯图尔米勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7714255&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN100353036(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN1643237A publication Critical patent/CN1643237A/zh
Application granted granted Critical
Publication of CN100353036C publication Critical patent/CN100353036C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/005Using steam or condensate extracted or exhausted from steam engine plant by means of a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2333/00Details of boilers; Analysers; Rectifiers
    • F25B2333/007Details of boilers; Analysers; Rectifiers the generator or boiler heated by heat exchangers with steam or hot water as heating fluid or by a secondary boiling-condensing heater
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

本发明公开一种发电厂(1),它包括至少一台为供冷而与至少一台吸收式制冷机(10)相连接的蒸汽透平(5)和/或燃气透平(52),其中,所述吸收式制冷机(10)借助于取自蒸汽透平(5)的蒸汽(12)或借助于燃气透平(52)的余热(AH,AH’)来运行。

Description

用于产冷的发电厂
技术领域
本发明涉及一种装有至少一台蒸汽透平和/或至少一台燃气透平的发电厂。
背景技术
当前,最重要的技术任务之一是在生产和利用能源方面具有可支配能源的经济设施。
为了生产电能,而且还要远距离输送热能,常常根据电厂发电设备的安装功率采用能确保集中向很多用户和较大区域供电和远距离供热的大型电厂发电设备。
与分散向很多小型单机设备(Inselanlagen)供电和供热相比,这种集中供给电能和热能费用低,特别经济。
现有的所谓供电-供热组合实际上与所装备的电厂类型、电厂大小及使用的燃料无关。不同之处仅在于可随时提供具有合适的初始温度的热源来加热热介质载热体。当今几乎只用热水作为热介质载热体。
为了实现公知的供电-供热组合,将发电过程中输出的大部分热量作为余热传给周围环境,这些热量在其他情况下全部或者至少大部分未被利用。
例如可以利用蒸汽透平的蒸汽作为用于这类供电-供热组合的热源,所述蒸汽例如可以从蒸汽透平的低压部分提取,所述蒸汽通过热交换将它们的冷凝热传给热介质载热体。
通过所述供电-供热组合来提供热量特别经济,因为可利用在其他情况下未被利用的过程热量,例如,将这些热量用来向建筑物供暖。
与集中供电和供热相反,迄今,公知的产冷方式冷量几乎只是分散地大多由封闭的热电厂(Blockheizkraftwerken)生产,或直接在现场、大多在住户家中自己产生。
由于为了产生期望的冷量或者封闭的热电厂自身必须能向有大冷量需求的用户供冷、或者在住户家直接供冷的情况下将消耗大量电能,所以这种分散供冷大大提高了经费开支和能源消耗。
日本专利文献JP2001141329A公开了一种发电厂的应用,该发电厂包括一个蒸汽透平,其中,为了供冷,一个制冷机与该蒸汽透平相连,并由此借助于取自该蒸汽透平的抽汽来运行,以用于对一些建筑物进行中央空调。
美国专利文献US4942734A也公开了一种发电厂的应用,其中,一个吸收式制冷机借助于取自一个蒸汽透平的抽汽来运行。但该制冷机的作用并不是冷却建筑物,而是仅仅用于给热交换器提供制冷。
在另一篇美国专利文献US2548508所公开的一种发电厂的应用中,提供一附加的冷却流体来冷却所述燃气透平,被加热的冷却流体在离开燃气透平后通过一个吸收式制冷机被用于人工制冷。
发明内容
本发明要解决的技术问题是要经济地生产冷量。
为了解决上述技术问题,需提供一种既能经济地满足机械能(通常为电能)需求又能满足大冷量需求的电厂,其安装灵活,尤其能克服现有产冷装置的所述缺点。
根据本发明,可通过设有至少一台蒸汽透平的电厂来解决上述问题,其中,为了生产冷量,将至少一台吸收式制冷机与所述蒸汽透平相连;从所述蒸汽透平提取的蒸汽、优选来自所述蒸汽透平的低压部分的抽汽推动该吸收式制冷机的发生器,并且所述蒸汽在加热所述发生器后作为工作蒸汽导送回所述蒸汽透平。
为此,本发明认为包括克拉西斯循环过程的电厂能为产冷装置的一体化提供非常良好的先决条件。
具有水-蒸汽循环的电厂***的先决条件(Systembedingt)是该被利用的***能以简单的方式与吸收式制冷机结合。
为了产冷,人们大都利用使液态制冷剂(如氨)膨胀转变为汽相,同时吸收来自冷却空间、冷却水循环或其他设备部分的热量的循环。然后,对制冷剂蒸汽进行压缩,其热量通过冷却传给外部的所述设备部分。对于空调设备,通常用水作为制冷剂,因为在接近真空的压力下,水在约4℃时蒸发,而可以为冷却水循环提供约6℃的快速冷却水。
因此,根据吸收式制冷机的原理,通过制冷剂蒸汽被吸收在溶液中(例如用水作为制冷剂时在溴化锂稀溶液中)而使制冷剂蒸汽压缩,然后通过加热使制冷剂再排出溶液并使其处于液相。不采用能引起磨损并消耗机械能或电能的机械式压缩机而采用利用热能推动的占有优势(或者甚至是独特的)的发生器,其中在蒸发和排出时释放的热量的传递起决定性作用。
优选在冷却塔或分段冷却塔中传递这种热量,这类塔在很多电厂例如冷凝式发电厂原本已配备。
为了推动吸收式制冷机,和产生热量一样需要提供热源,该热源优选具有约100℃至120℃的温度。在本发明中,利用来自蒸汽透平的抽汽作为热源。
在燃气透平-发电厂或燃气-和蒸汽-发电厂中实施本发明时,也可考虑采用燃气透平的热废气作为热源,所述热废气例如可沿废气的流动方向提取或在余热锅炉的端部区域提取,并使之与热介质载热体进行热交换。
因此,本发明还披露了一种电厂,该电厂至少包括一台燃气透平,在该电厂中,为了产生冷量,至少一台吸收式制冷机与所述燃气透平相连,其中,该吸收式制冷机由燃气透平的废燃气推动。
优选在这类电厂中附加或可选择地设置所述吸收式制冷机,以便冷却其他冷负载,还用于冷却燃气透平的吸入气体。
在很多现有的设有蒸汽透平的电厂中,能用简单的方式从蒸汽透平中提取蒸汽,并用所述蒸汽推动吸收式制冷机,因此,在很多情况中,用少量经费就可扩建现有电厂,以便具备集中供冷的功能。
除需要推动吸收式制冷机的热源外,这些部件也需要冷却。在这种情况下,例如涉及处于真空状态的容器,该容器装有所述需要冷却的溴化锂溶液,或者涉及预置真空的冷凝器。
吸收式制冷机的这类待冷却部件例如可以同时与蒸汽透平的冷凝器组装在一起,所述冷凝器原来就设有且被供有冷却水,所述待冷却部件也需供应冷却水,在这种情况下,这些冷却水受环境温度的影响,因此,为了所述冷却目的,它们应具有足够低的温度。为此,例如所提到的水可从电厂附近的河流或其他水域中提取。因此,为了非常好地适于冷却目的而不必采取例如为了降低冷却水温度的其他措施,与需要冷却的部件相比,将环境看作为冷却源,因而将冷却水导入冷却源,并将其导向冷却部件。由于现有的分散供冷的装置常常出现问题,本发明的较大的优点是能提供合适的冷却剂,所述冷却剂能为待冷却部件的冷却提供足够的能量。
本发明的另一优点在于因为必须装入最大的液体循环泵,而且不象公知的压缩式制冷机那样对气体进行循环,吸收式制冷机是一种牢固而不易坏的技术设备。因此,吸收式制冷机的主要构件实际上没有运动部分,并且很少需要维修。
再者,吸收式制冷机对电能的需求也非常小。
在本发明的一优选实施方式中,为了加热优选为热水的热介质载热体,至少将从蒸汽透平中提取的部分蒸汽导入热交换器中。
在本发明的此实施方式中,将电厂扩建成除设置产冷部分外还设置产生热量的部分。此时,从蒸汽透平中提取的蒸汽除推动吸收式制冷机外还推动热交换器,通过热交换器将热能提供给热负载。因此,例如对于如用于建筑物取暖的装置而言,其可通过热水流推动。加热所述热水流所需的热能由从蒸汽透平中提取的蒸汽通过热交换提供。
在本发明的该实施方式中可直接实现用于对用户集中供电、供热和供冷的供电-供热-供冷组合。
吸收式制冷机的发生器可直接由抽汽推动,或者也可间接通过与如水之类的发生器-热介质载热体热交换而推动。还可将所述抽汽导入空调设备中,此时可为该空调设备设置转换部件,借助于该转换部件可选择地将抽汽供给吸收式制冷机的发生器(例如,在夏季为了冷却需要产生冷量)或热交换器(如在冬季为了供暖需要产生热量);此时,所述吸收式制冷机和/或热交换器由所述空调设备包围。
在本发明的另一优选实施方式中,所述电厂还包括至少一台燃气透平,该燃气透平的余热用来产生用于蒸汽透平的工作蒸汽,在这种情况下,吸收式制冷机附加地或可供选择地设置成既用于冷却其他冷负载,还用于冷却燃气透平的吸入空气。
在本发明的此实施方式中,所涉及的所谓燃气-和蒸汽-设备(GuD-Anlage)包括用于产生冷量的吸收式制冷机。
在驱动燃气透平时,为了提高功率,优选使吸入的空气冷却。在本发明的此优选实施方式中,吸收式制冷机所产生的冷量至少部分地和/或暂时地用于吸入空气的冷却,也就是说尤其在电厂的各种起动情况中,不充分利用吸收式制冷机的总冷却潜力,因此可提供剩余冷量用于冷却燃气透平-吸入空气。
借此可提高燃气透平的功率。此外,借此还可减少冷量下降的波动,因此,尤其可确保吸收式制冷机以相同的方式运行。
本发明的所有实施方式都适合于例如对居住区、大型住宅区、写字楼群、工业园、旅馆、医院、公共开放设施等进行空气调节。因此,本发明的使用现场(Einsatzorte)优选是地面气温较高的地区,在这些地区环境温度高,必需进行和/或希望进行空气调节。
其他可能的使用现场例如是热带和亚热带地区的渡假中心。
附图说明
下面将详细描述本发明的实施方式。
附图中:
图1示出了本发明的作为GUD-设备的发电厂;
图2示出了本发明的装有燃气透平的发电厂。
具体实施方式
所述附图示意地示出了本发明的作为GuD-设备的发电厂1,其包括蒸汽透平5以及燃气透平30。
此时利用燃气透平30的余热A为蒸汽透平5提供工作蒸汽B。
蒸汽透平5包括高压部分7和低压部分9。
借助于用作热源的抽汽12推动吸收式制冷机10。此时,抽汽12被导入吸收式制冷机10的发生器14,该发生器使吸收式制冷机进行吸收过程。发生器14的输出经泵41与由燃气透平30的余热A加热的加热面38相连,以便产生使蒸汽透平运行必需的工作蒸汽B。燃气透平30的废气与加热面38进行热交换后被导入冷却塔36。
在本例中,吸收式制冷机10按溴化锂溶液循环工作,将溴化锂溶液导入循环中,以便通过抽汽传给发生器14中的液态水而使溴化锂溶液逐渐加热,然后在水蒸汽排出装置16中吸收水蒸汽而使溴化锂溶液再冷却。水蒸汽排出装置16也是一种必需冷却的部件,并向其供给冷水K,例如可采用与蒸汽透平5的冷凝器15的冷却水并联的冷水,例如它可从冷却塔25中提取。
在本实施方式中,蒸汽透平5的高压部分7和低压部分9通过例如用于使部分膨胀蒸汽中间过热的加热面39彼此相连。
为了产生电能,将蒸汽透平5及燃气透平30都与发电机G相连,借助于蒸发器13,吸收式制冷机10产生冷量。该蒸发器处于非常低的压力下,甚至于接近真空。其结果使被蒸发器13蒸发的水达到非常低的温度,例如达到4℃。由此形成的水蒸汽通过水蒸汽排出装置16从蒸发器13中排出。由于蒸发器中温度实际已达到恒定的低温,使流过蒸发器13的水被冷却到接近此低温,因而形成具有低恒定温度的用于冷却冷负载32的快速冷却水流45。
此外,在本发明的实施方式中,还利用吸收式制冷机10使快速冷却水流继续推动冷却面34工作,以冷却用于燃气透平30的吸入空气L。借此可提高燃气透平的功率。再者,通过将所述两种措施结合、即将提供冷负载32及冷却吸入空气L结合可使吸收式制冷机10的吸收冷量达到恒定的接收冷量。
为此,进一步利用蒸汽透平5低压部分9的抽汽12,以便通过热交换器20对热介质载热体28加热,从而能通过热介质载热体28提供具有热能的热负载27。
利用图1所示的本发明的实施方式还可实现供电-供冷-供热组合,这种组合尤其适用于集中提供具有这类能量的大负载。
与现有的供电-供热组合的远距离供热网络相似,本发明能对远距离供冷网络集中供冷,借此例如可对冷量需求大的大面积建筑群进行空气调节。
这对于冷却和空调需求较大的高温地区尤其具有吸引力。通过实施本发明可确保供电、供热和供冷。
图2示出了装有燃气透平52的电厂50,该燃气透平的余热AH被导入余热锅炉AHK中;此处从余热锅炉AHK排出的余热AH用于推动吸收式制冷机100。关于本实施方式的细节、余热锅炉的其他连接以及电厂50的其他细节在本图中均未详细示出。

Claims (5)

1.一种发电厂(1)的利用,该发电厂包括至少一蒸汽透平(5),其中,为了产生冷量,至少一吸收式制冷机(10)与所述蒸汽透平(5)相连;所述吸收式制冷机(10)的发生器(14)由从所述蒸汽透平(5)中提取的蒸汽(12)推动,以便对一些建筑物进行空气调节,并且所述蒸汽(12)在加热所述发生器(14)后作为工作蒸汽(B)导送回所述蒸汽透平(5)。
2.如权利要求1所述的利用,其中,将从所述蒸汽透平(5)中提取的至少一部分蒸汽(1)导入一热交换器(20)中,以便加热热介质载热体(28)。
3.如权利要求1或2所述的利用,其中,所述发电厂(1)还至少包括一燃气透平(30),利用该燃气透平的余热产生用于所述蒸汽透平(5)的工作蒸汽(B);所述吸收式制冷机(10)附加或可选择地用于冷却其他冷负载(32),还用于冷却所述燃气透平(30)的吸入空气(L)。
4.一种发电厂(50)的利用,其中,所述发电厂至少包括一燃气透平(52),为了产生冷量,至少一吸收式制冷机(100)与所述燃气透平(52)相连;所述吸收式制冷机(100)由所述燃气透平(52)的废燃气(AH,AH’)推动,以便对一些建筑物进行空气调节。
5.如权利要求4所述的利用,其中,所述吸收式制冷机(100)附加或可选择地冷却其他冷负载(32),还冷却所述燃气轮机(30)的吸入空气(L)。
CNB038069059A 2002-03-28 2003-03-17 用于产冷的发电厂 Expired - Fee Related CN100353036C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10214183A DE10214183C1 (de) 2002-03-28 2002-03-28 Kraftwerk zur Kälteerzeugung
DE10214183.5 2002-03-28

Publications (2)

Publication Number Publication Date
CN1643237A CN1643237A (zh) 2005-07-20
CN100353036C true CN100353036C (zh) 2007-12-05

Family

ID=7714255

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038069059A Expired - Fee Related CN100353036C (zh) 2002-03-28 2003-03-17 用于产冷的发电厂

Country Status (11)

Country Link
US (1) US7178348B2 (zh)
EP (1) EP1488080B1 (zh)
JP (1) JP2005527730A (zh)
CN (1) CN100353036C (zh)
AU (1) AU2003223877B2 (zh)
BR (1) BR0308797B1 (zh)
DE (1) DE10214183C1 (zh)
ES (1) ES2272974T3 (zh)
MX (1) MXPA04009308A (zh)
PT (1) PT1488080E (zh)
WO (1) WO2003083268A1 (zh)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1702139A1 (de) * 2003-12-22 2006-09-20 Erwin Oser Vorrichtung und verfahren zur umwandlung von wärmeenergie in mechanische energie
DE102004006837A1 (de) * 2004-02-12 2005-08-25 Erwin Dr. Oser Stromgewinnung aus Luft
CN100402814C (zh) * 2005-01-20 2008-07-16 华南理工大学 一种天然气冷热电联供的烟气低温端热利用***
DE102005025981A1 (de) * 2005-06-03 2008-03-27 Remstedt, Hans Gotthard, Dr. Verfahren zur Erzeugung elektrischer Energie aus der Entspannung einer Turbine bis in den Bereich tiefer Temperatur, die seine Enthalpie aus zugeführter Wärme eines Verbrennungsgas-Luftgemisch erhält und in und nach dessen Durchlauf als Nebenprodukt Wasser und Kälte liefert
CN100390476C (zh) * 2005-10-13 2008-05-28 中国科学院工程热物理研究所 功-冷联供的跨寂态正逆耦合热力循环***及方法
PL1870646T3 (pl) * 2006-06-19 2020-01-31 Fritz Egger Gmbh & Co. Og Sposób i urządzenie do odzyskiwania ciepła skraplania z obiegu termodynamicznego
CN100400969C (zh) * 2006-09-06 2008-07-09 清华大学 一种利用电厂凝汽余热的水源热泵供热***
CN101636622B (zh) * 2007-03-16 2011-10-19 开利公司 具有可变容积式膨胀机的制冷***
US20090078401A1 (en) * 2007-09-25 2009-03-26 Cichanowicz J Edward Integration of an internet-serving datacenter with a thermal power station and reducing operating costs and emissions of carbon dioxide
US20090252845A1 (en) * 2008-04-03 2009-10-08 Southwick Kenneth J Collider chamber apparatus and method of use
US8074458B2 (en) * 2008-07-31 2011-12-13 General Electric Company Power plant heat recovery system having heat removal and refrigerator systems
US7730712B2 (en) * 2008-07-31 2010-06-08 General Electric Company System and method for use in a combined cycle or rankine cycle power plant using an air-cooled steam condenser
US7748210B2 (en) * 2008-07-31 2010-07-06 General Electric Company System and method for use in a combined or rankine cycle power plant
US8037703B2 (en) * 2008-07-31 2011-10-18 General Electric Company Heat recovery system for a turbomachine and method of operating a heat recovery steam system for a turbomachine
US8833083B2 (en) * 2008-10-07 2014-09-16 Ben M. Enis Method and apparatus for using compressed air to increase the efficiency of a fuel driven turbine generator
US8020397B2 (en) * 2008-10-30 2011-09-20 General Electric Company Reduction of diluent nitrogen compressor power using vapor absorption chiller
US20100229594A1 (en) * 2008-12-04 2010-09-16 Donald Charles Erickson Chilling economizer
US9470149B2 (en) * 2008-12-11 2016-10-18 General Electric Company Turbine inlet air heat pump-type system
US8356466B2 (en) * 2008-12-11 2013-01-22 General Electric Company Low grade heat recovery system for turbine air inlet
US8468830B2 (en) * 2008-12-11 2013-06-25 General Electric Company Inlet air heating and cooling system
US20100187320A1 (en) * 2009-01-29 2010-07-29 Southwick Kenneth J Methods and systems for recovering and redistributing heat
US20100275648A1 (en) * 2009-05-04 2010-11-04 General Elctric Company Efficiently compressing nitrogen in a combined cycle power plant
EP2270322B1 (de) 2009-06-26 2012-02-29 Siemens Aktiengesellschaft Kühlkreislauf zum Abführen von Abwärme eines elektromechanischen Wandlers und Kraftwerksanlage mit einem derartigen Kühlkreislauf
US20110000210A1 (en) * 2009-07-01 2011-01-06 Miles Mark W Integrated System for Using Thermal Energy Conversion
US20110056219A1 (en) * 2009-09-08 2011-03-10 Industrial Idea Partners, Inc. Utilization of Exhaust of Low Pressure Condensing Steam Turbine as Heat Input to Silica Gel-Water Working Pair Adsorption Chiller
US20110149676A1 (en) * 2009-10-09 2011-06-23 Southwick Kenneth J Methods of and Systems for Introducing Acoustic Energy into a Fluid in a Collider Chamber Apparatus
HUP0900749A2 (en) * 2009-12-03 2012-01-30 Gea Egi Energiagazdalkodasi Zrt Cooling system for power plant
GB2476475B (en) * 2009-12-23 2014-03-12 2Oc Data centre, and power and cooling system therefor
CN101788141B (zh) * 2010-03-05 2011-08-31 王利军 一种吸收式回热器在电厂回热循环***中的应用
DE102011005227A1 (de) * 2010-05-10 2011-11-10 Siemens Aktiengesellschaft Überwachungsstation, insbesondere für Pipelines
US20120102996A1 (en) * 2010-10-29 2012-05-03 General Electric Company Rankine cycle integrated with absorption chiller
US8631660B2 (en) 2011-03-23 2014-01-21 General Electric Company Integrated gasification combined cycle system with vapor absorption chilling
ITCO20110073A1 (it) * 2011-12-23 2013-06-24 Nuovo Pignone Spa Impianto comprendente un dispositivo di recupero di acqua condensata
US9181876B2 (en) 2012-01-04 2015-11-10 General Electric Company Method and apparatus for operating a gas turbine engine
US9145793B2 (en) 2012-11-05 2015-09-29 General Electric Company Combined cycle power plant with absorption heat transformer
CN103233821B (zh) * 2013-05-08 2015-11-04 中冶赛迪工程技术股份有限公司 一种空气温度调节***
CN103352761B (zh) * 2013-06-20 2016-05-18 华电电力科学研究院 基于余热利用的燃机进气冷却装置
ITRM20130480A1 (it) * 2013-08-23 2015-02-24 Ciccolella Davide Sistema di raffrescamento di ambienti adibiti a serre, complessi industriali e civili, con il calore del vapore di scarico di turbine.
DE102013219166A1 (de) * 2013-09-24 2015-03-26 Siemens Aktiengesellschaft Ansaugluftvorwärmsystem
CN103790658B (zh) * 2014-02-26 2015-04-08 刘朋云 双元组合热泵发电***
CN103967544A (zh) * 2014-05-19 2014-08-06 山东泓奥电力科技有限公司 燃气-蒸汽联合循环发电机组余热利用***
CN104500160A (zh) * 2014-12-26 2015-04-08 北京中科华誉能源技术发展有限责任公司 一种基于吸收式热泵技术的乏汽余热回收***
CN104564197B (zh) * 2015-01-22 2016-05-04 烟台荏原空调设备有限公司 一种回收散热的双工质循环发电***
AT517535B1 (de) * 2015-06-30 2018-03-15 Rudolf Dipl Ing Fh Gutscher Dampfkraftwerk
US10890113B2 (en) * 2015-12-02 2021-01-12 Airtech Innovations, Llc System, apparatuses, and methods for improving the operation of a turbine by using electrostatic precipitation
CN110325806A (zh) * 2016-10-05 2019-10-11 江森自控科技公司 用于hvac&r***的热泵
US10612821B1 (en) 2018-07-03 2020-04-07 Kalindha Rashmi LLC Heat-pump system with combined vapor expansion-compression stages and single-effect vapor absorption unit
US11221161B1 (en) 2018-07-03 2022-01-11 Kalindha Rashmi LLC Heat-pump system with combined vapor expansion-compression stages and single-effect vapor absorption unit
WO2020217509A1 (ja) * 2019-04-26 2020-10-29 株式会社 ユーリカ エンジニアリング 高温排ガス発生装置コンバインドサイクル発電システム
CN112302806B (zh) * 2020-11-21 2024-03-26 西安热工研究院有限公司 一种利用制冷站冷量余量的燃气轮机进气单回路冷却***及方法
US11448129B2 (en) * 2020-12-08 2022-09-20 General Electric Company Inlet air heating system for a gas turbine system
CN113464278B (zh) * 2021-07-06 2022-07-22 华北电力大学 一种提升燃气轮机联合循环热电联供调峰灵活性的***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2548508A (en) * 1946-03-05 1951-04-10 Alfred S Wolfner Thermal system
US3041853A (en) * 1955-11-25 1962-07-03 Harwich Stanley Refrigerating process and apparatus for the same
US4942734A (en) * 1989-03-20 1990-07-24 Kryos Energy Inc. Cogeneration of electricity and liquid carbon dioxide by combustion of methane-rich gas
JP2001141329A (ja) * 1999-11-15 2001-05-25 Hitachi Ltd 海水冷却システム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3778347A (en) * 1971-09-27 1973-12-11 Giras T Method and system for operating a boiling water reactor-steam turbine plant preferably under digital computer control
US3881004A (en) * 1972-12-29 1975-04-29 Masar Inc Ammonium nitrate plant
US4785622A (en) * 1984-12-03 1988-11-22 General Electric Company Integrated coal gasification plant and combined cycle system with air bleed and steam injection
US5025631A (en) * 1990-07-16 1991-06-25 Garbo Paul W Cogeneration system with low NOx combustion of fuel gas
US5449568A (en) * 1993-10-28 1995-09-12 The United States Of America As Represented By The United States Department Of Energy Indirect-fired gas turbine bottomed with fuel cell
US5555738A (en) * 1994-09-27 1996-09-17 The Babcock & Wilcox Company Ammonia absorption refrigeration cycle for combined cycle power plant
JPH08121901A (ja) * 1994-10-25 1996-05-17 Hitachi Ltd 廃棄物焼却熱変換装置
SE9604594L (sv) * 1996-12-13 1998-06-14 Abb Carbon Ab Förbränningsanläggning och förfarande för att förbränna ett bränsle
DE19723543C2 (de) * 1997-06-05 2003-04-17 Deutsch Zentr Luft & Raumfahrt Energieerzeugungsanlage
JPH11324794A (ja) * 1998-05-19 1999-11-26 Osaka Gas Co Ltd 原動機排熱利用システム
DE19831425A1 (de) * 1998-07-14 2000-01-27 Integral Energietechnik Gmbh Verfahren zum Betreiben einer Gasturbine
US6651443B1 (en) * 2000-10-20 2003-11-25 Milton Meckler Integrated absorption cogeneration
JP4089187B2 (ja) * 2001-08-31 2008-05-28 株式会社日立製作所 熱電供給システム
US6574962B1 (en) * 2001-11-23 2003-06-10 Justin Chin-Chung Hsu KOH flue gas recirculation power plant with waste heat and byproduct recovery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2548508A (en) * 1946-03-05 1951-04-10 Alfred S Wolfner Thermal system
US3041853A (en) * 1955-11-25 1962-07-03 Harwich Stanley Refrigerating process and apparatus for the same
US4942734A (en) * 1989-03-20 1990-07-24 Kryos Energy Inc. Cogeneration of electricity and liquid carbon dioxide by combustion of methane-rich gas
JP2001141329A (ja) * 1999-11-15 2001-05-25 Hitachi Ltd 海水冷却システム

Also Published As

Publication number Publication date
US20050223728A1 (en) 2005-10-13
EP1488080B1 (de) 2006-10-11
JP2005527730A (ja) 2005-09-15
WO2003083268A1 (de) 2003-10-09
EP1488080A1 (de) 2004-12-22
US7178348B2 (en) 2007-02-20
AU2003223877B2 (en) 2009-05-21
ES2272974T3 (es) 2007-05-01
BR0308797B1 (pt) 2012-04-17
CN1643237A (zh) 2005-07-20
DE10214183C1 (de) 2003-05-08
BR0308797A (pt) 2005-01-18
AU2003223877A1 (en) 2003-10-13
PT1488080E (pt) 2007-01-31
MXPA04009308A (es) 2005-01-25

Similar Documents

Publication Publication Date Title
CN100353036C (zh) 用于产冷的发电厂
US10965191B2 (en) Thermodynamic system for storing/producing electrical energy
CN101458000B (zh) 热能驱动的制冷与发电一体化装置
US7019412B2 (en) Power generation methods and systems
US7971424B2 (en) Heat cycle system and composite heat cycle electric power generation system
US20110088399A1 (en) Combined Cycle Power Plant Including A Refrigeration Cycle
CN102563987A (zh) 有机朗肯循环驱动的蒸气压缩制冷装置及方法
KR100798347B1 (ko) 재생에너지를 이용한 주택의 복합형 냉난방 시스템
CN101140116A (zh) 废烟利用、废热回收式热电冷联产技术
Gluesenkamp et al. High efficiency micro trigeneration systems
CN111577458A (zh) 液化天然气综合利用***
US6913076B1 (en) High temperature heat pump
Wang et al. Theoretical analysis of organic rankine cycle combine power and ejector refrigeration driven by solar energy
Baniasad Askari et al. Investigation of an ejector-cascaded vapor compression–absorption refrigeration cycle powered by linear Fresnel and organic Rankine cycle
Baradey et al. Waste heat recovery in heat pump systems: solution to reduce global warming
Klimenko et al. Layouts of trigeneration plants for centralized power supply
KR20150109102A (ko) Orc 발전시스템
CN103195518A (zh) 基于多级蒸发器串联的有机朗肯循环发电***
CN102367747A (zh) 新型空气能等温发动机
CN204002958U (zh) 使用混合有机工质的内置热泵的有机朗肯循环***
CN104033200B (zh) 使用混合有机工质的内置热泵的有机朗肯循环***
RU2364796C1 (ru) Способ теплоснабжения и устройство теплоснабжения
RU2812381C1 (ru) Способ работы парогазовой установки
Dagilis Combined heat pump and power plant. Part I: thermodynamic analysis
Darwish New idea for co-generation power desalting plants due to abandoned MSF desalination process

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071205

Termination date: 20130317