CH716162A2 - Boîte de montre étanche. - Google Patents

Boîte de montre étanche. Download PDF

Info

Publication number
CH716162A2
CH716162A2 CH00611/19A CH6112019A CH716162A2 CH 716162 A2 CH716162 A2 CH 716162A2 CH 00611/19 A CH00611/19 A CH 00611/19A CH 6112019 A CH6112019 A CH 6112019A CH 716162 A2 CH716162 A2 CH 716162A2
Authority
CH
Switzerland
Prior art keywords
crystal
watch case
annular
seal
peripheral surface
Prior art date
Application number
CH00611/19A
Other languages
English (en)
Inventor
Kaltenrieder Cédric
Kissling Gregory
Winkler Yves
Original Assignee
Omega Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omega Sa filed Critical Omega Sa
Priority to CH00611/19A priority Critical patent/CH716162A2/fr
Publication of CH716162A2 publication Critical patent/CH716162A2/fr

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B37/00Cases
    • G04B37/08Hermetic sealing of openings, joints, passages or slits
    • G04B37/081Complete encasings for wrist or pocket watches also comprising means for hermetic sealing of the winding stem and crown
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B39/00Watch crystals; Fastening or sealing of crystals; Clock glasses
    • G04B39/02Sealing crystals or glasses
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B37/00Cases
    • G04B37/08Hermetic sealing of openings, joints, passages or slits
    • G04B37/084Complete encasings for wrist or pocket watches without means for hermetic sealing of winding stem or crown
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B45/00Time pieces of which the indicating means or cases provoke special effects, e.g. aesthetic effects
    • G04B45/0015Light-, colour-, line- or spot-effects caused by or on stationary parts
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B37/00Cases
    • G04B37/08Hermetic sealing of openings, joints, passages or slits
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B45/00Time pieces of which the indicating means or cases provoke special effects, e.g. aesthetic effects
    • G04B45/0076Decoration of the case and of parts thereof, e.g. as a method of manufacture thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

La boîte de montre (1) étanche à l'eau d'une montre notamment d'une montre de plongée, comprend au moins une glace (3) montée sur un côté supérieur de la carrure (2). La glace (3) comprend une surface périphérique annulaire (13) pour être fixée par l'intermédiaire d'un joint en métal (5, 5') notamment amorphe, sur une surface intérieure annulaire (12), qui est de préférence de forme complémentaire, du côté supérieur de la carrure. Selon l'invention, la surface périphérique annulaire (13) de la glace (3) est inclinée vers l'intérieur de la boîte de montre (1) d'un angle défini plus petit que 90° par rapport à un axe central perpendiculaire à un plan de boîte de montre (1) pour répartir des contraintes entre la glace (3) et la carrure (2) dues à la pression de l'eau lors d'une plongée. La surface périphérique annulaire (13) et la surface intérieure annulaire (12) peuvent être de forme conique.

Description

DOMAINE TECHNIQUE
[0001] La présente invention concerne une boîte de montre étanche notamment pour une montre de plongée.
ARRIERE-PLAN TECHNOLOGIQUE
[0002] Pour prévoir l'utilisation d'une montre mécanique ou électronique sous l'eau, la boîte de montre, qui comprend un mouvement horloger ou un module horloger à base de temps, doit être fermée de manière bien étanche. Pour ce faire, la boîte de montre comprend un fond fixé de manière étanche à un premier côté d'une carrure et une glace fixée à un second côté opposé de la carrure. Des garnitures d'étanchéité sont prévues à l'assemblage du fond, de la carrure et de la glace de montre. Un organe de contrôle ou réglage de fonctions de la montre est monté également de manière étanche à travers la carrure de la boîte en position de repos.
[0003] Généralement des boîtes de montre ne sont pas configurées ou assemblées pour supporter de fortes pressions d'eau par exemple lors d'une plongée étant donné que la pression à l'intérieur de la boîte de montre est proche de la pression atmosphérique. De simples garnitures d'étanchéité de montres traditionnelles ne suffisent pas pour garantir une bonne étanchéité à l'eau de la boîte lors d'une plongée à de très grandes profondeurs sous l'eau.
[0004] On peut citer la demande de brevet CH 690 870 A5 qui décrit une boîte de montre étanche. La boîte de montre est constituée d'une glace fixée d'un côté supérieur à une carrure-lunette et d'un fond fixé à la carrure en le vissant à un taraudage intérieur de la carrure. La glace est fixée à la carrure par une garniture d'étanchéité annulaire de forme torique et en appui sur un bord de carrure. Une garniture d'étanchéité est aussi prévue entre un bord extérieur du fond et une surface inférieure de la carrure. Comme à forte pression d'eau le taraudage peut s'abîmer, il est encore prévu une cuvette en métal résistant en appui contre une surface intérieure du fond et contre un rebord intérieur de la carrure. Cependant même avec un tel agencement de boîte de montre, cela ne permet pas de garantir une bonne étanchéité de la boîte lors d'une plongée à de très grandes profondeurs sous l'eau, ce qui constitue un inconvénient.
[0005] Le brevet CH 372 606 décrit une boîte de montre étanche, qui a une partie centrale ou carrure entourant un fond et fermée par une glace. Une bague filetée est en appui contre une surface extérieure inclinée du fond pour le retenir, et est vissée à une partie de fixation connectée à la carrure. Avec un tel agencement présenté, cela ne permet pas de garantir une bonne étanchéité de la boîte lors d'une plongée à de très grandes profondeurs sous l'eau, ce qui constitue un inconvénient.
RESUME DE L'INVENTION
[0006] L'invention a donc pour but principal de pallier les inconvénients de l'état de la technique décrit ci-dessus en proposant une boîte de montre étanche à l'eau adaptée pour supporter les fortes pression d'eau pour une plongée à de grandes profondeurs sous l'eau.
[0007] A cet effet, la présente invention concerne une boîte de montre étanche à l'eau, qui comprend les caractéristiques de la revendication indépendante 1.
[0008] Des formes particulières d'exécution d'une boîte de montre étanche à l'eau sont définies dans les revendications dépendantes 2 à 16.
[0009] Un avantage de la boîte de montre étanche à l'eau réside dans le fait que la glace est fixée à la carrure par l'intermédiaire d'un joint métallique monobloc et avec des surfaces de contact inclinées de la carrure et de la glace. Le joint métallique de fixation a une forme complémentaire aux surfaces de fixation avant l'opération de fixation de la glace à la carrure. Dans le cas d'une carrure de forme générale cylindrique, des surfaces d'appui coniques sont prévues sur la glace et la carrure, voire aussi sur le fond monté d'un côté opposé de la carrure. De cette manière, des efforts de pression sur la glace et le fond sont transmis à la carrure via des surfaces d'appui coniques et par l'intermédiaire du joint métallique monobloc.
[0010] Avantageusement dans le cas d'un joint monobloc en métal amorphe, la fixation de la glace sur la carrure par l'intermédiaire du joint de fixation peut être fait notamment par un formage à chaud. Cela permet d'éviter les concentrations de contraintes, de réaliser une bonne tenue de la glace et de réaliser une très bonne étanchéité de la boîte de montre.
[0011] Avantageusement lors de l'opération de fixation de la glace sur la carrure, le joint en métal amorphe chauffé est dans un état ramolli pour bien s'appliquer sur la surface de contact de la glace et la surface de contact de la carrure en comblant tout interstice de l'état de surface de chaque surface de contact. De plus, lors du refroidissement de la glace fixée à la carrure, le joint en métal amorphe sert d'interface de contraintes entre la carrure et la glace comme le coefficient de dilation thermique de la carrure, par exemple en titane, est plus grand que celui de la glace par exemple en saphir.
BREVE DESCRIPTION DES FIGURES
[0012] Les buts, avantages et caractéristiques d'une boîte de montre étanche à l'eau apparaîtront mieux dans la description suivante de manière non limitative en regard des dessins sur lesquels : les figures 1a et 1b représentent de manière simplifiée une coupe transversale d'une forme d'exécution d'une montre avec une boîte étanche à l'eau selon l'invention, et une coupe partielle de détail de la fixation de la glace à la carrure selon l'invention, les figures 2a à 2c représentent un joint de fixation en vue partiellement en coupe tridimensionnelle et différentes étapes de la fixation de la glace à la carrure par l'intermédiaire du joint de fixation de la boîte de montre selon l'invention, la figure 3 représente une coupe partielle de détail d'une variante de la fixation de la glace à la carrure selon l'invention, la figure 4 représente schématiquement une vue de dessus d'une forme d'exécution d'une boîte de montre selon l'invention, et les figures 5a et 5b représentent une glace avec un revêtement métallique susceptible d'être gravé par un laser pour la réalisation d'une inscription sur la surface de fixation de la glace sur la carrure, et une portion du revêtement métallique sur la glace avec l'inscription selon l'invention.
DESCRIPTION DETAILLEE DE L'INVENTION
[0013] Dans la description suivante, tous les composants d'une boîte de montre étanche à l'eau notamment d'une montre de plongée, qui sont bien connus d'un homme du métier dans ce domaine technique ne sont relatés que de manière simplifiée.
[0014] Les figures 1a et 1b représentent une forme d'exécution d'une boîte de montre 1, qui peut être utilisée pour une montre de plongée. La boîte de montre 1 comprend essentiellement une glace 3, qui peut être en saphir ou en verre minéral, fixée sur un côté supérieur d'une carrure 2, et éventuellement un fond 4 monté sur un côté inférieur de la carrure 2. Une lunette 7 peut encore être montée sur le côté supérieur de la carrure 2. Un mouvement ou module horloger 10 est disposé dans la boîte de montre 1 dans un cercle d'emboîtage 8, et au moins un organe de contrôle non représenté peut être monté de manière étanche en position de repos sur ou à travers la carrure 2 pour le réglage de l'heure, de la date ou d'autres fonctions de la montre de plongée.
[0015] Dans le cas où il est prévu un fond 4 de la boîte de montre 1, le fond 4 massif peut comprendre un bord annulaire 14 à taraudage intérieur pour être vissé sur un taraudage 26 sur le côté inférieur de la carrure 2. Une surface d'appui annulaire 24 du fond 4 vient en contact d'une surface intérieure annulaire 32 de la carrure 2 de forme complémentaire à la surface d'appui 24 lors du montage du fond 4 sur la carrure 2. Les surfaces d'appui 24 et intérieure 32 sont inclinées d'un angle déterminé par rapport à un axe perpendiculaire à un plan de boîte de montre 1. Dans le cas d'une carrure de forme générale cylindrique, les surfaces 24, 32 sont de forme conique et inclinées vers l'intérieur de la boîte de montre 1 d'un angle déterminé par rapport à un axe central de la boîte de montre 1. Cela signifie que le sommet de chaque forme de cône est en direction de l'intérieur de la boîte de montre 1. Le côté inférieur de la carrure 2 comprend encore une rainure annulaire 16 logeant une garniture d'étanchéité 6 de forme torique en contact de la surface d'appui 24 lors du montage du fond 4 sur la carrure 2. Pour une carrure 2 et un fond 4 réalisés dans un matériau, tel que le titane, l'angle peut être de l'ordre de 60° ± 5° par rapport à l'axe central. Ceci permet d'avoir une bonne répartition des contraintes entre le fond 4 et la carrure 2 dues à la pression de l'eau lors d'une plongée à de grandes profondeurs sous l'eau.
[0016] La glace 3 comprend une surface périphérique annulaire 13 pour être fixée par l'intermédiaire d'un joint métallique monobloc 5, 5' de fixation sur une surface intérieure annulaire 12 du côté supérieur de la carrure 2. La surface intérieure annulaire 12 est de préférence de forme complémentaire à la surface périphérique annulaire 13. Le joint 5, 5', en tant qu'interface entre la carrure 2 et la glace 3, peut aussi être réalisé avant l'opération de fixation avec une forme complémentaire aux surfaces de contact de la glace 3 sur la carrure 2. La surface périphérique annulaire 13 de la glace 3 est inclinée d'un angle défini plus petit que 90° par rapport à un axe perpendiculaire à un plan de boîte de montre 1. De préférence, la surface intérieure annulaire 12 est inclinée généralement vers l'intérieur de la boîte de montre 1 d'un même angle que la surface périphérique annulaire 13 par rapport à un axe central.
[0017] Si la carrure 2 est de forme générale cylindrique, la surface intérieure périphérique 13 et la surface intérieure annulaire 12 sont de forme conique et inclinées d'un angle défini vers l'intérieur de la boîte de montre. Cela signifie que le sommet de chaque forme de cône est en direction de l'intérieur de la boîte de montre 1. L'angle défini d'inclinaison des surfaces 12 et 13 peut être de l'ordre de 43° ± 5° par rapport à l'axe central. Ceci permet d'avoir une bonne répartition des contraintes entre la glace 3 et la carrure 2 dues à la pression de l'eau lors d'une plongée à de grandes profondeurs sous l'eau. La différence de pression de l'eau par rapport à la pression à l'intérieur de la boîte de montre 1 a tendance à fermer tout interstice subsistant entre les surfaces 12, 13 en contact et le joint 5, 5' de fixation grâce à l'inclinaison des surfaces de contact vers l'intérieur de la boîte de montre 1. Cela garantit une bonne étanchéité et une résistance à de fortes pressions.
[0018] Dans cette forme d'exécution, le joint métallique monobloc 5, 5' de fixation est réalisé en métal amorphe ou verre métallique ou alliage métallique amorphe. Il peut comprendre une première partie 5 et une seconde partie 5'. Le joint 5, 5' de fixation est de forme annulaire pour la fermeture hermétique de la glace 3 sur la carrure 2. Pour une carrure 2 de forme générale cylindrique, la première partie 5 du joint est de forme conique, alors que la seconde partie 5' est cylindrique. Une fois la glace 3 fixée sur la carrure 2, la première partie 5 est fixée aux surfaces inclinées de la carrure 2 et de la glace 3, alors que la seconde partie 5' est fixée à une paroi intérieure annulaire 22 de la carrure 2 et une paroi extérieure annulaire 23 de la glace 3 au-dessus de la surface périphérique annulaire 13 de la glace 3. La seconde partie 5' peut s'arrêter à mi-hauteur de la glace 3 juste en dessous de la lunette 7, alors que la première partie 5 du joint peut se prolonger au-dessous du niveau de la liaison entre le bas de la glace 3 et la carrure 2.
[0019] A titre non limitatif, la longueur de la première partie 5 en section transversale peut être de l'ordre de 5 mm, alors que la hauteur de la seconde partie du joint 5, 5' peut être de l'ordre de 2.5 mm. L'épaisseur du joint peut être de l'ordre de 0.65 mm.
[0020] Normalement, le joint métallique monobloc 5, 5' de fixation de forme annulaire est réalisé en alliage métallique amorphe de manière à fixer la glace 3 à la carrure 2 par exemple par une déformation à chaud. Lors de la fixation de la glace 3 à la carrure 2, on cherche à remplir complètement l'espace entre la glace 3 et la carrure 2. Ainsi par cette déformation à chaud du joint avec pression de la glace 3 sur la carrure 2, on réplique l'état de surface de la surface de contact de la glace 3 et de la surface de contact de la carrure 2 par le joint ramolli par la chaleur. Il peut donc être envisagé d'avoir une certaine rugosité au niveau de la surface périphérique annulaire 13 de la glace 3 suffisante pour avoir une meilleure adhérence du joint 5, 5' à la glace 3 et à la carrure 2. De cette manière, le joint en métal amorphe ramolli par la chaleur épouse totalement l'état de surface de la glace 3 et de la carrure 2, ce qui garantit une bonne fermeture hermétique.
[0021] Par ailleurs, le métal compense également un éventuel défaut d'angles entre la surface conique de la glace 3 et la surface conique de la carrure 2, et permet ainsi d'assurer un appui parfait entre la glace 3 et la carrure 2 ce qui réduit fortement les concentrations de contraintes lors de la mise sous pression. Ceci est très important car la glace 3 est généralement réalisée dans un matériau fragile, tel que le saphir ou le verre minéral. Ainsi, un contact très localisé de la glace 3 sur la carrure 2 risque d'engendrer une rupture lors de la mise sous pression sous l'eau.
[0022] Comme expliqué ci-après, le joint 5, 5' en métal amorphe sert d'interface entre la carrure 2 et la glace 3. Lors de l'opération de fixation à chaud de la glace 3 sur la carrure 2 par l'intermédiaire du joint 5, 5' ramolli par la chaleur, ce joint sert aussi d'accumulation de contraintes lors de l'opération de refroidissement. Ceci est important car le coefficient de dilation thermique de la carrure 2 en titane est plus grand que surface de contact de la glace 3 en saphir.
[0023] Plusieurs types d'alliages de métaux amorphes peuvent être utilisés pour réaliser entièrement le joint métallique monobloc 5, 5'. Dans les cas les plus fréquents, l'alliage de métaux amorphes peut être principalement composé de zirconium, ce qui permet de former le joint à une température supérieure à 350°C, c'est-à-dire supérieure à la température de transition vitreuse de l'alliage. L'alliage de métaux amorphes à base de zirconium peut être composé de Zr(52.5%), Cu(17.6%), Ni(14.9%), AI(10%) et Ti(5%). L'alliage de métaux amorphes à base de zirconium peut aussi comprendre Zr(58.5%), Cu(15.6%), Ni(12.8%), AI(10.3%) et Nb(2.8%). L'alliage de métaux amorphes à base de zirconium peut aussi comprendre Zr(44%), Ti(11%), Cu(9.8%), Ni(10.2%) et Be(25%), ou finalement Zr(58%), Cu(22%), Fe(8%) et AI(12%). De préférence, pour faciliter la réalisation d'un tel joint, l'alliage de métaux amorphes peut être principalement composé de platine (Pt), ce qui permet de former le joint à une température supérieure à 230°C. L'alliage de métaux amorphes à base de platine peut comprendre Pt(57.5%), Cu(14.7%), Ni(5.3%) et P(22.5%). Il peut aussi être prévu de réaliser le joint métallique monobloc 5, 5' en alliage de métaux amorphes à base principalement de palladium (Pd, ce qui permet de former le joint à une température supérieure à 300°C.
[0024] On peut citer encore d'autres alliages de métaux amorphes. Un alliage de métaux amorphes à base de titane peut comprendre Ti(41.5%), Zr(10%), Cu(35%), Pd(11%) et Sn(2.5%). Un alliage de métaux amorphes à base de palladium peut comprendre Pd(43%), Cu(27%), Ni(10%) et P(20%), ou Pd(77%), Cu(6%) et Si(16.5%), ou finalement Pd(79%), Cu(6%), Si(10%) et P(5%). Un alliage de métaux amorphes à base de nickel peut comprendre Ni(53%), Nb(20%), Ti(10%), Zr(8%), Co(6%) et Cu(3%), ou Ni(67%), Cr(6%), Fe(4%), Si(7%), C(0.25%) et B(15,75%), ou finalement Ni(60%), Pd(20%), P(17%) et B(3%). Un alliage de métaux amorphes à base de fer peut comprendre Fe(45%), Cr(20%), Mo(14%), C(15%) et B(6%), ou Fe(56%), Co(7%), Ni(7%), Zr(8%), Nb(2%) et B(20%). Un alliage de métaux amorphes à base d'or peut comprendre Au(49%), Ag(5%), Pd(2.3%), Cu(26.9%) et Si(16.3%).
[0025] La réalisation d'un tel joint 5, 5' en métal amorphe peut être faite par différents procédés de mise en forme soit : directement à partir du métal en fusion tels que par exemple, l'injection sous pression, la coulée gravitationnelle, la coulée centrifuge, la coulée antigravitationnelle, la coulée par succion, la fabrication additive de poudre à partir de préformes amorphes par déformation à chaud au-dessus de la température de transition vitreuse comme par exemple, le formage électromagnétique, le formage par décharge capacitive, le formage sous pression de gaz, le formage mécanique. L'objectif de cette étape est d'obtenir une préforme ayant les bonnes dimensions et ayant une proportion de phase amorphe suffisante pour permettre sa déformation lors de l'étape d'assemblage décrite ci-après.
[0026] Le joint de fixation annulaire avec la première partie 5 de forme conique et la seconde partie 5' de forme cylindrique est montré selon une vue en coupe partielle tridimensionnelle à la figure 2a. Cette forme de joint en deux parties 5, 5' est utilisée pour la fixation de la glace 3 à la carrure 2 comme représenté aux figures 2b et 2c.
[0027] A la figure 2b, le joint 5, 5' est tout d'abord placé sur le côté supérieur de la carrure 2. La première partie 5 du joint est en contact de la surface intérieure annulaire 12, alors que la seconde partie 5' est proche de la paroi intérieure annulaire 22 de la carrure 2. Ensuite la glace 3 est montée sur le joint 5, 5'. La surface périphérique annulaire 13 de la glace 3 est en contact sur la première partie 5 du joint, alors que la paroi extérieure annulaire 23 de la glace 3 au-dessus de la surface périphérique annulaire 13 est proche de la seconde partie 5' du joint. De cette manière, le joint 5, 5' est disposé entre la carrure 2 et la glace 3.
[0028] Pour effectuer la fixation de la glace 3 à la carrure 2 au moyen d'un joint 5, 5' entièrement en alliage de métaux amorphes, un outil anti-débordement MC est placé sur le côté supérieur de la carrure 2 et en contact de la paroi extérieure annulaire 23 de la glace 3. Cet outil anti-débordement MC sert à éviter que l'alliage en métaux amorphes du joint sorte du côté supérieur de la carrure 2. Il peut aussi être prévu un autre outil anti-débordement non représenté en dessous côté intérieur de la boîte de montre pour éviter que l'alliage en métaux amorphes du joint sorte du côté inférieur. Un outil haut MH presse la glace 3 vers la carrure 2, alors qu'un outil bas MB maintien en appui le côté inférieur de la carrure 2.
[0029] Avec un alliage de métaux amorphes à base de zirconium du joint, il est effectué une pression de l'ordre de 10'000 à 80'000 N de la glace 3 sur la carrure 2 à une température de l'ordre de 480°C pendant une période de 30 - 250 secondes. Ainsi la pression exercée par le saphir 3 sur la partie 5 du joint engendre un fluage de la matière contenue dans la partie 5 du joint vers la partie 5' ainsi que vers le bas. Les conséquences sont un déplacement vers le bas de la glace 3 et un amincissement de la partie 5 du joint jusqu'à ce que le joint remplisse complètement l'espace se trouvant entre la carrure 2, l'outil anti-débordement MC, l'outil anti-débordement intérieur et la glace 3. Le joint en métal amorphe va, durant son fluage, mouler tous les détails des surfaces 12, 13, 22 et 23. Lors du refroidissement de l'assemblage à la fin de l'étape de déformation du joint, les dimensions de la carrure 2, du joint 5, 5' et de la glace 3 vont vouloir diminuer proportionnellement à leurs coefficients de dilatation α respectifs. Hors la glace 3 (p.ex en saphir avec α = 5 à 8 ppm) possède un coefficient de dilatation inférieur à ceux de la carrure 2 (p.ex : α = 8.5 à 11 ppm pour du titane, 12 à 18 ppm pour de l'acier inoxydable; 12 à 16 pour de l'or) et du joint 5, 5' en métal amorphe (a = 9 à 18 ppm). Cela génère une force de compression de la carrure 2 et du joint 5, 5' en métal amorphe sur la glace 3 au niveau de la deuxième partie 5' du joint qui est cylindrique. Cette compression permet d'assurer à la fois une très bonne tenue et une très bonne étanchéité de l'assemblage à température ambiante.
[0030] Par ailleurs, les propriétés mécaniques particulières des métaux amorphes, notamment leur limite élastique σetrès élevée (p.ex : 1700 MPa pour une base Zr; 1550 MPa pour une base Pd; 1350 MPa pour une base Pt) couplée à une déformation élastique εetrès élevée (1.5 à 2% pour tous les métaux amorphes), permettent d'éviter la plastification du joint 5, 5' dans sa zone de contact avec la glace 3 lors d'une sollicitation à des pressions très élevées. La carrure 2, dont les propriétés mécaniques (p.ex. pour du titane grade 5 : σe850 MPa; εe0.5 à 0.8%) sont inférieures aux métaux amorphes choisis pour le joint, ne plastifie pas non plus car le joint 5, 5' en métal amorphe permet d'homogénéiser les contraintes, qui diminuent alors au niveau de l'interface joint - carrure.
[0031] Pour un alliage de métaux amorphes principalement composé de palladium, la fixation de la glace 3 à la carrure 2 par l'intermédiaire du joint 5, 5' se fait à une température de l'ordre de 380 °C en appliquant une pression d'environ 10'000 - 80'000 N pendant 30 - 250 secondes.
[0032] Pour un alliage de métaux amorphes principalement composé de platine, la fixation de la glace 3 à la carrure 2 par l'intermédiaire du joint 5, 5' se fait à une température de l'ordre de 280 °C en appliquant une pression d'environ 10'000 - 80'000 N pendant 30 - 250 secondes.
[0033] Comme décrit précédemment, des contraintes sont générées dans la glace 3 lors du refroidissement en raison des différences de coefficients de dilatation entre la carrure 2 et la glace 3. Ces forces dépendent de la géométrie de l'assemblage, des matériaux choisis (carrure, métal amorphe, glace) et de la température utilisée lors de l'assemblage. Bien que ces contraintes soient utiles pour assurer la tenue et l'étanchéité de l'assemblage, elles peuvent engendrer la rupture de la glace si elles sont trop importantes ou trop locales. C'est pourquoi il est important de choisir un métal amorphe adapté afin d'éviter ce problème. En effet l'utilisation par exemple d'un métal amorphe base Pt permet de diminuer ces forces car la température du procédé d'assemblage sera basse (env. 280°C) et donc la rétraction différentielle de la carrure 2 par rapport à la glace 3 sera faible.
[0034] Un autre moyen de diminuer les contraintes dans la glace 3 après le procédé d'assemblage, tel que décrit précédemment, est de cristalliser partiellement ou totalement le joint 5, 5' en métal amorphe. En effet, la cristallisation génère une diminution du volume du métal amorphe donc du joint 5, 5', ce qui décolle légèrement les surfaces de contact carrure-joint et joint-glace. Lors du refroidissement, la rétraction différentielle de la carrure 2 doit d'abord compenser le vide laissé par la cristallisation du métal amorphe avant de commencer à serrer sur la glace 3. Au final les contraintes résiduelles dans le saphir sont moindres par rapport à un joint 100% amorphe.
[0035] La cristallisation du joint 5, 5' peut se faire par un maintien en température prolongée de l'assemblage après la phase de formage. Par exemple, pour le cas d'un alliage base zirconium, un maintien de 5 min à 480°C peut générer une cristallisation du joint. Il est également possible d'augmenter la température de 20°C à 100°C après la phase de fluage afin d'accélérer la cristallisation ou d'en modifier la nature (phases cristallines différentes). Il est également possible de diminuer la température après la phase de fluage afin d'obtenir une cristallisation plus lente et plus fine.
[0036] La figure 2c montre le résultat de la fixation de la glace 3 sur la carrure 2 en ayant retiré les outils utilisés pour cela. Une lunette 7 recouvre le côté supérieur de la carrure 2. La première partie 5 du joint relie fixement la surface périphérique annulaire 13 de la glace 3 à la surface intérieure annulaire 12 de la carrure 2. La seconde partie 5' du joint relie fixement la paroi intérieure annulaire 22 de la carrure 2 et la paroi extérieure annulaire 23 de la glace 3. Normalement la première partie 5 du joint se prolonge au-dessous du niveau de la liaison entre le bas de la glace 3 et la carrure 2, qui ne comprend donc pas le bec intérieur présenté aux figures 2b et 2c.
[0037] La figure 3 représente une coupe partielle de détail d'une variante de la fixation de la glace 3 à la carrure 2. La glace 3 comprend une surface périphérique annulaire 13 pour être fixée par l'intermédiaire d'un joint métallique monobloc 5, 5' de fixation sur une surface intérieure annulaire 12 du côté supérieur de la carrure 2. Si la carrure 2 est de forme générale cylindrique, la surface intérieure périphérique 13 de la glace 3 est de forme conique, alors que la surface intérieure annulaire 12 de la carrure 2 est dans le plan de la boîte de montre 1 en forme de portion de disque. La première partie 5 du joint est entre la surface intérieure périphérique 13 et la surface intérieure annulaire 12, alors que la seconde partie 5' du joint est entre la paroi intérieure annulaire 22 de la carrure 2 et la paroi extérieure annulaire 23 de la glace 3.
[0038] La figure 4 montre schématiquement une vue de dessus d'une forme d'exécution d'une boîte de montre 1. La boîte de montre 1 comprend la carrure 2, la glace 3, une lunette 7 et un organe de contrôle 9 sous la forme d'une tige-couronne traversant la carrure 2. La tige-couronne comprend une surface conique non représentée en contact d'une surface intérieure conique de la carrure 2 en position de repos pour assurer l'étanchéité et la résistance à la pression de l'eau en plongée. Une inscription 103 d'un mot ou d'un nombre ou de dessins est réalisée à la connexion de la surface périphérique annulaire 13 de la glace 3 sur la première partie du joint de fixation.
[0039] Comme représenté sur les figures 5a et 5b pour réaliser l'inscription 103, il peut être encore prévu d'avoir une surface de contact de la glace 3 structurée et/ou avec une couche décorative déposée à sa surface. Cette structuration et/ou dépôt 63 peuvent être disposés sur la surface périphérique annulaire 13 de la glace 3. Il peut encore être prévu d'écrire un ou plusieurs mots, ou nombres ou dessins par gravure du dépôt 63 au moyen d'un faisceau laser L provenant d'un appareil laser 50. Le dépôt 63 peut être d'une couleur différente de la première partie du joint de fixation. De ce fait après la gravure de l'inscription 103 sur le dépôt 63, la surface périphérique annulaire 13 de la glace 3 peut être posée ou fixée sur la première partie du joint de fixation, qui est d'une autre couleur que le dépôt 63.
[0040] Il peut être également prévu de créer un motif sur la surface de contact de la glace 3 par une structuration sélective de sa surface. Il est possible de structurer la surface par exemple par un laser, par un procédé chimique ou encore par un procédé mécanique (par exemple meulage, fraisage). Ainsi une fois la glace 3 fixée à la carrure 2, il est possible de lire l'inscription réalisée à travers la glace 3, qui peut être aussi l'indication de la marque de montre.
[0041] Il est encore à relever qu'avec la fixation de la glace 3 sur la carrure 2 des variantes de réalisation décrites ci-dessus et avec le contact de surfaces coniques entre la glace 3 et la carrure 2, il est garanti une bonne étanchéité et une bonne répartition des contraintes entre la glace 3 et la carrure 2. Ceci est nécessaire étant donné que la montre est une montre de plongée qui doit supporter de fortes contraintes dues à la différence de pression entre l'intérieur de montre et la pression de l'eau en grande profondeur sous l'eau. Comme la surface de contact entre la carrure 2, le joint 5, 5' et la glace 3 est assez grande avec cette forme conique, il y a une meilleure transmission des contraintes sur une plus grande surface, ce qui est important pour diminuer les concentrations de contraintes dans la glace et ainsi éviter sa rupture lors d'une plongée profonde sous l'eau. Ceci permet également d'assurer l'étanchéité de la boîte de montre. Avec cet agencement, la pression de l'eau sur la boîte de montre tend à fermer tout interstice entre les surfaces de contact. De plus, cela évite l'extrusion du joint de fixation.
[0042] A partir de la description qui vient d'être faite, plusieurs variantes de réalisation de la boîte de montre peuvent être conçues par l'homme du métier sans sortir du cadre de l'invention définie par les revendications. La boîte de montre par sa carrure peut avoir une forme générale différente d'un cylindre.

Claims (16)

1. Boîte de montre (1) étanche à l'eau, notamment pour une montre de plongée, la boîte (1) comprenant au moins une glace (3) montée sur un côté supérieur d'une carrure (2), caractérisée en ce que la glace (3) comprend une surface périphérique annulaire (13) pour être fixée par l'intermédiaire d'un joint métallique (5, 5') de forme annulaire sur une surface intérieure annulaire (12) du côté supérieur de la carrure (2), et en ce que la surface périphérique annulaire (13) de la glace (3) est inclinée vers l'intérieur de la boîte de montre (1) d'un angle défini plus petit que 90° par rapport à un axe central perpendiculaire à un plan de boîte de montre de manière à répartir des contraintes entre la glace (3) et la carrure (2) dues à la pression de l'eau lors d'une plongée.
2. Boîte de montre (1) selon la revendication 1, caractérisée en ce que le joint métallique monobloc (5, 5') est en alliage métallique au moins partiellement amorphe dans une phase de fixation de la glace (3) à la carrure (2).
3. Boîte de montre (1) selon la revendication 1, caractérisée en ce que le joint métallique monobloc (5, 5') est en alliage métallique au moins partiellement amorphe.
4. Boîte de montre (1) selon la revendication 2, caractérisée en ce que la glace (3) est fixée à la carrure (2) par le joint métallique monobloc (5, 5') en alliage métallique au moins partiellement amorphe suite à un formage à chaud.
5. Boîte de montre (1) selon l'une des revendications 1 à 3, caractérisée en ce que la surface intérieure annulaire (12) du côté supérieur de la carrure (2) est de forme complémentaire à la surface périphérique annulaire (13) de la glace.
6. Boîte de montre (1) selon la revendication 5, caractérisée en ce que le joint métallique monobloc (5, 5') est composé d'une première partie (5) disposée entre la surface périphérique annulaire (13) de la glace (3) et la surface intérieure annulaire (12) de la carrure (2), et d'une seconde partie (5') en contact entre une paroi intérieure annulaire (22) de la carrure (2) au-dessus de la surface intérieure annulaire (12) et une paroi extérieure annulaire (23) de la glace (3) au-dessus de la surface périphérique annulaire (13).
7. Boîte de montre (1) selon la revendication 6, caractérisée en ce que les parois annulaires (22, 23) sont parallèles à l'axe central.
8. Boîte de montre (1) selon la revendication 3, caractérisée en ce que l'alliage métallique amorphe du joint (5, 5') est à base principalement de zirconium.
9. Boîte de montre (1) selon la revendication 3, caractérisée en ce que l'alliage métallique amorphe du joint (5, 5') est à base principalement de platine.
10. Boîte de montre (1) selon la revendication 3, caractérisée en ce que l'alliage métallique amorphe du joint (5, 5') est à base principalement de palladium.
11. Boîte de montre (1) selon la revendication 6, caractérisée en ce que la surface périphérique annulaire (13) de la glace (3) et la surface intérieure annulaire (12) de la carrure (2) sont des surfaces coniques, et en ce que la paroi intérieure annulaire (22) de la carrure (2) et la paroi extérieure annulaire (23) de la glace (3) sont des surfaces cylindriques.
12. Boîte de montre (1) selon la revendication 1, caractérisée en ce que l'angle défini d'inclinaison de la surface périphérique annulaire (13) de la glace (3) est de l'ordre de 43° ± 5° par rapport à l'axe central.
13. Boîte de montre (1) selon la revendication 6, caractérisée en ce que l'angle défini d'inclinaison de la surface périphérique annulaire (13) de la glace (3) et la surface intérieure annulaire (12) de la carrure (2) est de l'ordre de 43° ± 5° par rapport à l'axe central.
14. Boîte de montre (1) selon la revendication 1, caractérisée en ce que la surface périphérique annulaire (13) de la glace (3) comprend un dépôt (63) pour graver par faisceau laser une inscription (103).
15. Boîte de montre (1) selon la revendication 13, caractérisée en ce que la couleur du dépôt (63) est différente d'une première partie (5) du joint de fixation de manière à visionner l'inscription à travers la glace (3) de l'extérieur de la boîte de montre.
16. Boîte de montre (1) selon la revendication 1, caractérisée en ce que la surface périphérique annulaire (13) de la glace (3) comprend une structuration destinée à créer une décoration (103).
CH00611/19A 2019-05-08 2019-05-08 Boîte de montre étanche. CH716162A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CH00611/19A CH716162A2 (fr) 2019-05-08 2019-05-08 Boîte de montre étanche.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH00611/19A CH716162A2 (fr) 2019-05-08 2019-05-08 Boîte de montre étanche.

Publications (1)

Publication Number Publication Date
CH716162A2 true CH716162A2 (fr) 2020-11-13

Family

ID=73136046

Family Applications (1)

Application Number Title Priority Date Filing Date
CH00611/19A CH716162A2 (fr) 2019-05-08 2019-05-08 Boîte de montre étanche.

Country Status (1)

Country Link
CH (1) CH716162A2 (fr)

Similar Documents

Publication Publication Date Title
EP3736642B1 (fr) Boite de montre etanche
EP2934221B1 (fr) Piece decorative realisee par sertissage
EP3414108B1 (fr) Objet décoratif, en particulier glace de montre, à effet optique.
FR2887636A1 (fr) Montage de lentille a focale variable
EP3377247B1 (fr) Procede de fabrication d'une piece en metal amorphe
EP2400354A1 (fr) Pieds de cadran de pièce d'horlogerie
WO2017016950A1 (fr) Assemblage de piece en materiau fragile
EP3736644A1 (fr) Boite de montre etanche
EP3468733B1 (fr) Plateau de fabrication additive equipé d'un raidisseur prenant la forme d'une plaque évidée dans une partie de son épaisseur
CH716162A2 (fr) Boîte de montre étanche.
EP3736643A1 (fr) Boite de montre etanche
EP2585877B1 (fr) Procede de fabrication d'un composant horloger comprenant au moins deux pieces
CH716165A2 (fr) Boîte de montre étanche.
EP3622846A1 (fr) Procede d'assemblage d'au moins deux elements
CH715336A2 (fr) Procédé d'assemblage d'au moins deux éléments et composant d'habillage ainsi formé.
EP3736641A1 (fr) Tige-couronne d'une boîte de montre étanche, et boîte de montre la comprenant
EP0097393A1 (fr) Boîte de montre bracelet
CH707351A2 (fr) Pièce de décoration sertie invisible.
EP4071557B1 (fr) Élément de boite pour pièce d'horlogerie comportant un poussoir en verre métallique massif
CH716164A2 (fr) Boîte de montre étanche.
CH717569A2 (fr) Organe de conrôle, tel qu'une tige-couronne d'une boîte de montre étanche, et boîte de montre le comprenant.
EP3120954B1 (fr) Methode de revetement de piece
CH719260A2 (fr) Boîte de montre étanche.
EP4198647A1 (fr) Boite de montre etanche
CH716163A2 (fr) Organe de contrôle, en particculier tige-couronne, d'une boîte de montre étanche, et boîte de montre la comprenant.