CH695710A5 - Verfahren und Einrichtung zur optischen Konzentrationsmessung von Feinstaub in einem Medium. - Google Patents

Verfahren und Einrichtung zur optischen Konzentrationsmessung von Feinstaub in einem Medium. Download PDF

Info

Publication number
CH695710A5
CH695710A5 CH1796A CH1796A CH695710A5 CH 695710 A5 CH695710 A5 CH 695710A5 CH 1796 A CH1796 A CH 1796A CH 1796 A CH1796 A CH 1796A CH 695710 A5 CH695710 A5 CH 695710A5
Authority
CH
Switzerland
Prior art keywords
grain size
scattered light
measured
change
polarizer
Prior art date
Application number
CH1796A
Other languages
German (de)
English (en)
Inventor
Erich Huber
Original Assignee
Sigrist Ag Dr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigrist Ag Dr filed Critical Sigrist Ag Dr
Priority to CH1796A priority Critical patent/CH695710A5/it
Priority to EP96810881A priority patent/EP0783101A3/de
Publication of CH695710A5 publication Critical patent/CH695710A5/it

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description


  [0001] Die Erfindung betrifft ein Verfahren zur optischen Konzentrationsmessung von Feinstaub in einem Medium, mit einer Lichtquelle und Mitteln zum Messen von Streulicht. Die Erfindung betrifft ebenfalls eine Einrichtung zur optischen Konzentrationsmessung von Feinstaub gemäss den Oberbegriffen der Ansprüche 13 und 14.

[0002] Ein Verfahren und eine Einrichtung zur optischen Messung von in einem Gas suspendierten Teilchen sind aus der CH-A-536 490 des Anmelders bekannt geworden. Verfahren und Einrichtungen dieser Art sind insbesondere zur Konzentrationsmessung von Feinstäuben seit vielen Jahren in Betrieb und haben sich an sich bewährt. Bei solchen Messungen wird die Erkenntnis benutzt, dass bei Feinstäuben die Intensität des gestreuten Lichts proportional zur Staubkonzentration ist.

   Allerdings ist die Streulichtintensität nicht nur von der Konzentration der Teilchen, sondern insbesondere von der Grösse der Teilchen abhängig. Ist nun ein solches Messgerät auf eine bestimmte Teilchengrösse kalibriert und ändert sich bei einem zu überwachenden Prozess die Teilchengrösse, so ändert sich auch die Kalibration und damit die Geräteempfindlichkeit, was zur Anzeige eines falschen Konzentrationswertes führt.

   Bei vielen Messungen besteht nun die Gefahr, dass solche Grössenänderungen der Teilchen nicht rechtzeitig bemerkt und das Gerät nicht neu kalibriert wird.

[0003] Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren sowie eine Einrichtung der genannten Gattung bereitzustellen, welche die genannte Schwierigkeit vermeiden.

[0004] Die Aufgabe ist bei einem erfindungsgemässen Verfahren durch die im Kennzeichen des Anspruchs 1 genannten Verfahrensschritte gelöst.

[0005] Das erfindungsgemässe Verfahren beruht auf dem Prinzip, dass der Polarisationszustand des Lichtes, das auf Feinstaub trifft, durch den Streuprozess verändert wird und diese Veränderung eng mit der Korngrösse des Feinstaubes verknüpft ist.

   Ändert sich somit die Korngrösse eines zu messenden Feinstaubes im Verlaufe der Zeit infolge sich ändernder Prozessbedingungen, so kann dies dem Betreiber sofort signalisiert werden und er kann die Gerätekalibration durch eine gravimetrische Messung neu erstellen. Eine direkte Korrektur der Staubkonzentration ist ebenfalls möglich. Ist bei der Inbetriebnahme der erfindungsgemässen Einrichtung die Korngrössenverteilung des Feinstaubes bekannt, so kann diese in die spätere Auswertung als Startwert miteinbezogen werden, was die Zuverlässigkeit des Verfahrens erhöht. Die Kenntnis die Korngrössenverteilung ist jedoch nicht Bedingung des erfindungsgemässen Verfahrens.

[0006] Das erfindungsgemässe Verfahren eignet sich insbesondere für Feinstäube, bei denen der Brechungsindex und die Form der Teilchen bekannt und zeitlich konstant sind.

   Das Verfahren ist besonders einfach realisierbar für kompakte, kugelförmige oder annähernd kugelförmige Teilchen, jedoch ist ein Verfahren auch für andere Teilchenformen, beispielsweise Stäbchen, Quader oder Flocken möglich.

[0007] Das erfindungsgemässe Verfahren ist mit den Einrichtungen gemäss den Ansprüchen 13 und 14 in vorteilhafter Weise und insbesondere in kontinuierlich arbeitender Weise durchführbar. Bei der bevorzugten Ausführung wird dem Feinstaub mit einem im Primärlichtstrahl angeordneten Polarisator polarisiertes Licht zugeführt. Die Mittel zum Messen des Streulichtes können einen an sich bekannten Photomultiplier oder einen anderen geeigneten Detektor aufweisen. Im Streulicht ist ein zweiter Polarisator angeordnet, der drehbar ist und vorzugsweise in unterschiedlichen Winkeln arretierbar ist.

[0008] Denkbar ist aber auch ein rotierender Polarisator.

   In den vorbestimmten Drehstellungen werden unterschiedliche Streulichtintensitäten gemessen, die proportional zur Staubkonzentration sind und die Informationen über die Korngrösse des Feinstaubes enthalten. Zur Auswertung dieser Informationen eignet sich insbesondere ein Konturlinienverfahren. Denkbar sind auch andere Verfahren, beispielsweise ein Äquivalent-Durchmesser-Verfahren.

[0009] Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnungen näher erläutert. Es zeigen:
<tb>Fig. 1<sep>schematisch eine erfindungsgemässe Einrichtung,


  <tb>Fig. 2<sep>schematisch das Messprinzip, und


  <tb>Fig. 3<sep>ein Konturdiagramm.

[0010] Die Fig. 1 zeigt eine Messzelle 7 mit einem Medium 8, in dem Teilchen 9 eines Feinstaubes suspendiert sind. Das Medium ist vorzugsweise ein Gasstrom, denkbar sind jedoch auch andere Medien, beispielsweise eine Flüssigkeit oder ein Feststoff. Die Teilchen 9 können auch Tröpfchen eines Ölnebels sein.

[0011] In Richtung des Pfeils 6 ist auf die Messzelle 7 ein Primärlichtstrahl 4 gerichtet, der durch eine Lichtquelle 1, eine Optik 2, einen optischen Filter 3 sowie durch einen ersten Polarisator 5 gebildet wird. Die Lichtquelle 1 ist beispielsweise eine Halogenlampe und gibt ein unpolarisiertes Licht ab.

   Die an sich bekannte Optik 2 bündelt das Licht, das in Richtung des Pfeils 6 nach dem Durchgang durch den optischen Filter 3 und den ersten Polarisator 5 auf die Messzelle 7 trifft.

[0012] An den Teilchen 9 wird das polarisierte Licht gestreut und in Richtung des Pfeils 11 unter einem Messwinkel 10 von vorzugsweise 90 deg. ausgekoppelt. Das Streulicht 18 wird mit einer Optik 12 auf einen Detektor 14 fokussiert. Zwischen der Optik 12 und dem Detektor 14 ist ein zweiter Polarisator 13 angeordnet. Im Detektor 14 kann die Streulichtintensität gemessen und durch eine Leitung 19 entsprechende Signale einem Rechner 15 zugeführt werden.

   Der Rechner 15 ist über eine weitere Leitung 16 beispielsweise mit einer Anzeige 17 verbunden.

[0013] Wie die Fig. 2 zeigt, ist der erste Polarisator 5 ist vorzugsweise um 45 deg. gegen die X-Achse geneigt, wobei hier die Z-Achse durch den Lichtstrahl definiert ist. Mit dem ersten Polarisator 5 wird der Messzelle 7 definiert polarisiertes Licht zugeführt, wobei die waagrechte und senkrechte Polarisation gleich sind. Der zweite Polarisator 13 befindet sich direkt vor dem Detektor 14, der beispielsweise ein Photomultiplier ist. Dieser zweite Polarisator 13 ist drehbar und gegen die X-Achse in den Winkeln 90  , 0  , 45 deg. und 135 deg. arretierbar. In diesen Stellungen des zweiten Polarisators 13 sind entsprechend vier Streulichtintensitäten 11, 12, 13 und 14 messbar. Diese Messwerte werden über die Leitung 19 dem Rechner zugeführt.

   Ein internes Programm des Rechners 15 vergleicht die gemessenen Intensitäten mit streutheoretisch berechneten Daten und ermittelt aus diesem Vergleich Aussagen beispielsweise über die Korngrösse.

[0014] Nachfolgend wird das erfindungsgemässe Verfahren näher erläutert.

[0015] Ändern sich während einer Messung die Prozessbedingungen nicht und verbleibt entsprechend die Korngrösse konstant, so wird in an sich bekannter Weise die Konzentration der Teilchen 9 im Medium 8 aufgrund der Gerätekalibration ermittelt. Ändert sich jedoch die Korngrösse im Verlaufe der Zeit infolge sich ändernder Prozessbedingungen, so wird eine solche Änderung im Rechner 15 ermittelt und über die Leitung 16 beispielsweise auf einer Anzeige 17 dem Betreiber signalisiert.

   Aufgrund der angezeigten Änderung kann der Betreiber die Gerätekalibration durch eine graviermetrische Messung neu erstellen. Eine direkte Korrektur der Staubkonzentration ist aber ebenfalls möglich. Ist die Korngrössenverteilung bei Inbetriebnahme der Einrichtung bekannt, so kann sie in die spätere Auswertung als Startwert miteinbezogen werden, was die Zuverlässigkeit des Verfahrens erhöht. Die Kenntnis der Korngrössenverteilung ist jedoch nicht Bedingung.

[0016] Nachfolgend wird davon ausgegangen, dass die Art der Teilchen 9 und insbesondere deren Brechungsindex und Form während der Messung bekannt ist und für diese Artikelart eine Streutheorie existiert. Für kompakte, kugelförmige oder annähernd kugelförmige Teilchen 9 ist die Streutheorie von G. Mie bekannt.

   Vorzugsweise ist die Verteilung der Korngrössen annähernd eine logarithmische Normalverteilung, charakterisiert durch eine mittlere Korngrösse d0 und eine Breite sigma . sigma  ist definiert als der natürliche Logarithmus aus dem Verhältnis dmax/d0, wobei dmax die Korngrösse ist, bei der die Verteilung auf 1/   e = 60.65% abgenommen hat.

[0017] Wie bereits erwähnt, sind die vier Intensitäten I proportional zur Staubkonzentration. Zur Auswertung dieser Intensitäten I werden diese zum Polarisationsverhältnis p und zum linearen Polarisationsgrad Plin, die konzentrationsunabhängige Parameter sind, umgerechnet.

   Diese beiden Grössen p und Plin stehen nun gemäss der genannten Streutheorie in direktem Zusammenhang mit der mittleren Korngrösse und der Breite der Verteilung.

[0018] Zur Auswertung der beiden genannten Parameter p und Plin eignet sich je nach Einsatzbedingungen das nachfolgend beschriebene Konturlinienverfahren sowie das Äquivalentdurchmesserverfahren.

[0019] Das Konturlinienverfahren eignet sich vor allem dann, wenn die Teilchen 9 bekannt und der Brechungsindex sowie die Form konstant sind. Dies kann beispielsweise bei einem Ölnebel zutreffen.

   Dieses Verfahren ermöglicht eine Korrektur einer Konzentrationsanzeige bei variabler Korngrösse und zudem eine explizite Bestimmung einer mittleren Korngrösse d0 und einer Breite sigma  der Verteilung.

[0020] Als Basis für eine Auswertung dienen Konturliniendiagramme der beiden Parameter p und Plin, wie dies beispielsweise die Fig. 3 zeigt. In einem solchen Diagramm sind Linien 20 gleicher Parameterwerte als Höhenlinien in einer Fläche dargestellt, die aus der mittleren Korngrösse d0 und der Breite der Korngrössenverteilung sigma  gebildet wird. Jeder Punkt im Konturdiagramm entspricht einer Korngrössenverteilung, charakterisiert durch das Wertepaar d0/sigma .

   Die Fig. 3 zeigt ein kombiniertes Konturdiagramm der beiden Parameter p und Plin für das Gemisch Parafinöl/Maschinenöl (1=1.48).

[0021] Für jede Teilchenart hat dieses Diagramm eine andere Form und wird beispielsweise für kugelförmige Teilchen mit der Mie-Theorie berechnet. Die benötigten Diagramme sind im Rechner 15 gespeichert und stehen der Auswertungssoftware zur Verfügung. Die aus den Intensitäten I in an sich bekannter Weise errechneten Werte von p und Plin werden von der Auswertungssoftware auf die entsprechenden Konturlinien übertragen. Jeder der beiden Messwerte entspricht einer Konturlinie. Der Schnittpunkt der Konturlinien ergibt die gesuchte Korngrössenverteilung d0/sigma .

   Zu jeder Station sind in Fig. 3 die Messwerte für Ölnebel aus der vollständigen Mischreihe Paraffinöl-Maschinenöl (Tellus 32) eingetragen.

[0022] Die Zunahme der Korngrösse widerspiegelt die Zunahme der Viskosität des Gemisches.

[0023] Wird nun die Korngrössenverteilung auf diese Weise kontinuierlich gemessen, so lässt sich anhand des Zusammenhangs zwischen den gemessenen Streuintensitäten I und der Korngrösse der zeitliche Verlauf der Geräteempfindlichkeit ermitteln und der Kalibrierwert korrigieren.

[0024] Bestehen grössere Abweichungen von den obengenannten Voraussetzungen, so eignet sich zur Auswertung der Intensitäten I das Äquivalentdurchmesserverfahren.

   Dieses führt zur näherungsweisen Bestimmung der mittleren Korngrösse sowie zu einer näherungsweisen Korrektur der Konzentrationsanzeige.

[0025] Beim Äquivalentdurchmesserverfahren wird aus jeder einzelnen Messung von p und Plin eine äquivalente Korngrösse bestimmt. Die äquivalente Korngrösse dient als Schätzwert für die echte Korngrösse und unterscheidet sich von dieser möglichst wenig. Wesentlich ist, dass sie in der gleichen Form sowohl für p und Plin als auch für die Streulichtintensität verwendet werden kann. Das heisst, sie ersetzt innerhalb gewisser Grenzen die echte Korngrösse, die nicht bekannt sein muss. Einen besseren Schätzwert für die echte Korngrösse erhält man, wenn zusätzlich die Breite sigma  der Verteilung bekannt ist.

   Ist der Äquivalentdurchmesser bestimmt, so kann anhand des Zusammenhangs zwischen Streulichtintensität und Äquivalentdurchmesser der zeitliche Verlauf der Gerätempfindlichkeit ermittelt und auf den Kalibrierwert korrigiert werden. Auch dieses Messverfahren beruht somit auf dem Prinzip, dass der Polarisationszustand des Lichtes, das auf die Teilchen 9 trifft, durch den Streuprozess verändert wird und diese Veränderung mit der Korngrösse verknüpft ist. Änderungen der Korngrösse können somit sofort festgestellt und signalisiert oder für eine direkte Korrektur verwendet werden. Messfehler aufgrund von nicht festgestellten Prozessänderungen können damit vermieden werden.

Claims (15)

1. Verfahren zur optischen Konzentrationsmessung von Feinstaub (9) in einem Medium (8), mit einer Lichtquelle (1) und Mitteln (14) zum Messen von Streulicht (18), gekennzeichnet durch folgende Verfahrensschritte: a) dem Staub (9) wird definiert polarisiertes Licht (4) zugeführt, b) im ausgekoppelten Streulicht (18) werden bei unterschiedlichen Polarisationswinkeln (theta ) mehrere, insbesondere vier Streulichtintensitäten (I) gemessen, und c) mit Hilfe dieser Streulichtintensitäten (I) wird die Breite der Korngrössenverteilung und/oder die mittlere Korngrösse berechnet, und d) aufgrund der berechneten Breite der Korngrössenverteilung und/oder mittleren Korngrösse wird die Konzentrationsmessung korrigiert oder eine Änderung angezeigt,
insbesondere ein Kalibrierwert einer Kalibration eines Gerätes korrigiert oder eine Änderung eines Kalibrierwertes dieser Gerätekalibration angezeigt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Basis für die Auswertung streutheoretisch berechnete und gespeicherte Daten verwendet werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die konzentrationsunabhängigen Parameter: Polarisationsverhältnis (p) und Polarisationsgrad (Plin) ermittelt werden.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die gemessenen Werte mit den gespeicherten Daten verglichen werden und dass aus diesem Vergleich Aussagen über die Korngrösse ermittelt werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass bei einer Änderung der Korngrösse diese Änderung angezeigt und die Gerätekalibration neu erstellt wird, beispielsweise mit einer gravimetrischen Messung.
6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass bei einer Änderung der Korngrösse der ermittelte Staubkonzentrationswert direkt korrigiert wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass eine bei Inbetriebnahme des Gerätes bekannte Korngrössenverteilung in eine spätere Auswertung als Startwert miteinbezogen wird.
8. Verfahren nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass aus der Auswertung der gemessenen Streulichtintensitäten (I) Konturlinien-Diagramme die beiden Parameter Polarisationsverhältnis (p) und Polarisationsgrad (Plin) verwendet werden, wobei in diesen Diagrammen Linien gleicher Parameterwerte als Höhenlinien (20) in einer Fläche dargestellt werden.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Höhenlinien (20) aus der mittleren Korngrösse (d0) und der Breite der Korngrössenverteilung (sigma ) gebildet werden.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass zwei charakteristische Grössen der Korngrössenverteilung kontinuierlich gemessen werden und anhand des Zusammenhangs zwischen Streulichtintensität und Korngrösse der zeitliche Verlauf der korngrössenabhängigen Gerätempfindlichkeit ermittelt und der Kalibrierwert korrigiert wird.
11. Verfahren nach einem der Ansprüche 3 bis 10, dadurch gekennzeichnet, dass ein linearer Polarisationsgrad (Plin) ermittelt wird.
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die gemessenen Intensitäten (I) zu konzentrationsunabhängigen Parametern (p, Plin) umgerechnet werden.
13. Einrichtung zur optischen Konzentrationsmessung von Feinstaub in einem Medium (8), insbesondere Gas, mit einer Lichtquelle (1) und einer Optik (2) zum Bilden eines Primärstrahls (4), mit Mitteln (14) zum Messen von am Feinstaub (9) gestreutes Licht (18) und mit Mitteln (15) zum Auswerten der gemessenen Streulichtintensitäten, dadurch gekennzeichnet, dass das Primärlicht (4) polarisiert ist, dass im Streulicht (18) Mittel (13, 14) vorgesehen sind, mit denen die Veränderung des Polarisationszustandes durch den Streuprozess am Feinstaub (9) messbar ist und dass Mittel (17) zur Korrektur der Konzentrationsmessung aufgrund der gemessenen Veränderung des Polarisationszustandes vorgesehen sind.
14. Einrichtung zur optischen Konzentrationsmessung von Teilchen (9) in einem Medium (8), mit einer Lichtquelle (1), einer Messzelle (7) und einem Detektor (14) zur Aufnahme von Streulicht (18) und einem Rechner (15) zur Auswertung einer gemessenen Streulichtintensität, dadurch gekennzeichnet, dass im Primärstrahl (4) ein erster und im Streulicht ein zweiter Polarisator (5, 13) angeordnet sind, dass mit dem ersten Polarisator (5) dem zu messenden Medium definiert polarisiertes Licht zuführbar ist, dass der zweite Polarisator (13) drehbar ist, dass der zweite Polarisator (13) in mehreren Winkeln (8) arretierbar ist, vorzugsweise in den Winkeln 90 , 0 , 45 deg. und 135 deg. und in diesen Winkelstellungen Streulichtintensitäten (I) messbar sind, und mit Mitteln zur Korrektur eines Kalibrierwertes und/oder Anzeige der Änderung eines Kalibrierwertes.
15. Einrichtung nach Anspruch 14, dadurch gekennzeichnet, dass der erste Polarisator (5) direkt vor einer Messzelle (7) angeordnet und um 45 deg. gegen die X-Achse geneigt ist, wobei der Lichtstrahl (4) die Z-Achse definiert.
CH1796A 1996-01-04 1996-01-04 Verfahren und Einrichtung zur optischen Konzentrationsmessung von Feinstaub in einem Medium. CH695710A5 (it)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CH1796A CH695710A5 (it) 1996-01-04 1996-01-04 Verfahren und Einrichtung zur optischen Konzentrationsmessung von Feinstaub in einem Medium.
EP96810881A EP0783101A3 (de) 1996-01-04 1996-12-19 Verfahren und Einrichtung zur optischen Konzentrationsmessung von Feinstaub in einem Medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH1796A CH695710A5 (it) 1996-01-04 1996-01-04 Verfahren und Einrichtung zur optischen Konzentrationsmessung von Feinstaub in einem Medium.

Publications (1)

Publication Number Publication Date
CH695710A5 true CH695710A5 (it) 2006-07-31

Family

ID=4177513

Family Applications (1)

Application Number Title Priority Date Filing Date
CH1796A CH695710A5 (it) 1996-01-04 1996-01-04 Verfahren und Einrichtung zur optischen Konzentrationsmessung von Feinstaub in einem Medium.

Country Status (2)

Country Link
EP (1) EP0783101A3 (it)
CH (1) CH695710A5 (it)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2848913A1 (de) 2013-09-12 2015-03-18 Siemens Schweiz AG Detektionsgerät zur Feinstaubbestimmung

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005004273A1 (de) * 2005-01-28 2006-08-03 Anatec As Meßvorrichtung zur Bestimmung des Staubungsverhaltens von dispersen Systemen
DE102006043013A1 (de) 2006-09-13 2008-03-27 Robert Bosch Gmbh Vorrichtung und Verfahren zur Messung wenigstens eines Parameters von Partikeln in einem Fluid
CN104833620B (zh) * 2015-04-20 2018-03-13 江苏苏净集团有限公司 一种大气颗粒物浓度的监测装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3499159A (en) * 1967-01-23 1970-03-03 Xerox Corp Polychromatic laser aerosol sizing and ranging (plasar) technique
US3653767A (en) * 1967-04-10 1972-04-04 American Standard Inc Particle size distribution measurement using polarized light of a plurality of wavelengths
CH536490A (de) 1971-03-29 1973-04-30 Willy Dr Sigrist Verfahren und Einrichtung zur optischen Messung von in einem Gas suspendierten Teilchen
US4134679A (en) * 1976-11-05 1979-01-16 Leeds & Northrup Company Determining the volume and the volume distribution of suspended small particles
FR2617971B1 (fr) * 1987-07-10 1989-11-10 Onera (Off Nat Aerospatiale) Procede et dispositifs de granulometrie optique pour de larges gammes de mesure
US4854705A (en) * 1988-04-05 1989-08-08 Aerometrics, Inc. Method and apparatus to determine the size and velocity of particles using light scatter detection from confocal beams
US4953978A (en) * 1989-03-03 1990-09-04 Coulter Electronics Of New England, Inc. Particle size analysis utilizing polarization intensity differential scattering

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2848913A1 (de) 2013-09-12 2015-03-18 Siemens Schweiz AG Detektionsgerät zur Feinstaubbestimmung
WO2015036204A1 (de) 2013-09-12 2015-03-19 Siemens Schweiz Ag Detektionsgerät zur feinstaubbestimmung
DE112014003149B4 (de) 2013-09-12 2024-07-18 Siemens Schweiz Ag Kombinierter Rauch-/Feinstaubmelder

Also Published As

Publication number Publication date
EP0783101A3 (de) 1998-10-07
EP0783101A2 (de) 1997-07-09

Similar Documents

Publication Publication Date Title
DE3146423C2 (it)
DE69422883T4 (de) Teilchenanalysator
DE2747181C2 (de) Verfahren zur Bestimmung des Gesamtvolumens der in einer Probe suspendierten Teilchen eines bestimmten Größenbereichs
DE3007125A1 (de) Vorrichtung und verfahren zur bestimmung der brechungseigenschaften einer testlinse
DE2508611A1 (de) Verfahren zur bestimmung der charakteristischen brechkraefte einer linse und vorrichtung zur durchfuehrung desselben
DE4428363C2 (de) Röntgen-Mikrodiffraktometer
DE2447328A1 (de) Verfahren zur bestimmung einer speziellen eigenschaft von in einem fluid suspendierten teilchen und vorrichtung zur durchfuehrung des verfahrens
DE3603235A1 (de) Vorrichtung und verfahren zum analysieren von parametern eines faserigen substrats
DE112005000828B4 (de) Vorrichtung und Verfahren zur Prüfung von Halbleiter-Wafern
DE102012217419B4 (de) Analyseverfahren für Röntgenstrahlbeugungsmessdaten
EP0893520A1 (de) Verfahren zur Darstellung von Eigenschaften von langgestreckten textilen Prüfkörpern
EP3814744B1 (de) Verfahren zum bestimmen der partikelgrössenverteilung eines aerosols und aerosol-messgerät
DE69312617T2 (de) Vorrichtung und Verfahren zur Messung der Verteilung von Partikelgrössen
DE68920347T2 (de) Bogenförmige Fotosensorenanordnung.
DE3402855C2 (it)
EP1187786B1 (de) Verfahren und vorrichtung zum reinigen von garn
EP0345562B1 (de) Verfahren und Vorrichtung zur Messwertverarbeitung
DE19951146A1 (de) Verfahren zum Reduzieren des Rauschens in einem durch Abbildung erhaltenen Signal
WO2011050932A1 (de) Messgerät zur abgasmessung einer partikelmassekonzentrationen in einem messgas, insbesondere in einem verbrennungsabgas
DE10326152A1 (de) Verfahren und Vorrichtung zur quantitativen Analyse von Lösungen und Dispersionen mittels Nahinfrarot-Spektroskopie
DE69618801T2 (de) Vorrichtung und verfahren zur bestimmung der partikelgrösse bei geringer konzentration
CH695710A5 (it) Verfahren und Einrichtung zur optischen Konzentrationsmessung von Feinstaub in einem Medium.
DE102018125205B4 (de) Verfahren und Vorrichtung zur Ermittlung des Verschleißgrades einer Spritzdüse
AT397159B (de) Verfahren zum prüfen einer in einer küvette befindlichen suspension
DE2315511C2 (de) Verfahren und Gerät zum kontinuierlichen Bestimmen der Feinheit eines pulverförmigen Materials

Legal Events

Date Code Title Description
PCAR Change of the address of the representative

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

PL Patent ceased