CH601720A5 - Electrically weldable thermoplastic sleeve for pipework, etc. - Google Patents

Electrically weldable thermoplastic sleeve for pipework, etc.

Info

Publication number
CH601720A5
CH601720A5 CH48177A CH48177A CH601720A5 CH 601720 A5 CH601720 A5 CH 601720A5 CH 48177 A CH48177 A CH 48177A CH 48177 A CH48177 A CH 48177A CH 601720 A5 CH601720 A5 CH 601720A5
Authority
CH
Switzerland
Prior art keywords
heating wire
diameter
resistance heating
welding
sleeve
Prior art date
Application number
CH48177A
Other languages
German (de)
Inventor
Werner Sturm
Original Assignee
Von Roll Ag
Werner Sturm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Von Roll Ag, Werner Sturm filed Critical Von Roll Ag
Priority to CH48177A priority Critical patent/CH601720A5/en
Priority to DE2760064A priority patent/DE2760064C2/en
Priority to DE2710998A priority patent/DE2710998C2/en
Priority to US05/777,467 priority patent/US4117311A/en
Priority to NL7702933A priority patent/NL7702933A/en
Priority to FR7708201A priority patent/FR2345652A1/en
Priority to AT191477A priority patent/AT359791B/en
Priority to SE7703190A priority patent/SE7703190L/en
Priority to GB12076/77A priority patent/GB1573951A/en
Priority to IT2148777A priority patent/IT1075359B/en
Publication of CH601720A5 publication Critical patent/CH601720A5/en
Priority to FR8200966A priority patent/FR2497916B1/en
Priority to NLAANVRAGE8402684,A priority patent/NL185174C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/342Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising at least a single wire, e.g. in the form of a winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3472Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
    • B29C65/3476Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/66Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by liberation of internal stresses, e.g. shrinking of one of the parts to be joined
    • B29C65/68Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by liberation of internal stresses, e.g. shrinking of one of the parts to be joined using auxiliary shrinkable elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91651Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L47/00Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics
    • F16L47/02Welded joints; Adhesive joints
    • F16L47/03Welded joints with an electrical resistance incorporated in the joint
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3468Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the means for supplying heat to said heated elements which remain in the join, e.g. special electrical connectors of windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91211Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods
    • B29C66/91218Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods using colour change, e.g. using separate colour indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91221Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • B29C66/944Measuring or controlling the joining process by measuring or controlling the time by controlling or regulating the time

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

Electrically weldable thermoplastic sleeve for pipework, etc. has resistance heating wire close to inner wall

Description

       

  
 



   Die Erfindung betrifft einen Satz aus mindestens zwei elektrisch schweissbaren Muffen mit verschiedenem Durchmesser aus einem thermoplastischen Kunststoff, mit einem im Bereich der Innenwandung eines hülsenförmigen Muffenkörpers angeordneten elektrischen   Widetandsheizdraht    zur Herstellung von Schweissverbindungen an Rohrstutzen von Leitungen, Formstücken und Ventilen, wobei die Muffen die gleiche gegebene Schweisszeit aufweisen.



   Zur Erstellung von Leitungsnetzen unter Verwendung von Leitungen. Formstücken und Ventilen aus thermoplastischem Kunststoff müssen die einzelnen Teile miteinander verbunden werden. Für solche Verbindungen werden vor allem Schweissverbindungen verwendet. Eine besondere Art der Schweissverbindung besteht darin. dass auf die zu verbindenden Rohrstutzen eine hülsenförmige Schweissmuffe mit im Muffenkörper eingelegten Widerstandsheizdraht geschoben wird, worauf der Widerstandsheizdraht elektrisch aufgeheizt wird, so dass sich sowohl das Material der Rohrstutzen als auch der Muffe teilweise erweicht und zusammenfliesst. bis eine innige Verbindung und nach dem Erkalten eine gas- und flüssigkeitsdichte Schweisstelle entsteht.



   Zum Schweissen solcher Schweissmuffen werden Schweissgeräte. die entweder mit Kleinspannungen. d. h. bis etwa 50 Volt. oder mit Netzspannung arbeiten.   verwendet',    bei den zweitgenannten Schweissgeräten werden die Muffen mit Spannungen unter 185 Volt effektiv betrieben. Der Grund hierzu liegt darin, dass die Schweiss- und Dosiergeräte Schwankungen der Netzspannung ausregeln sollen. Der durch die verwendeten Schweiss- und Dosiergeräte verbundene Aufwand an elektrischen Bauteilen. insbesondere bei den Geräten zum Ausregeln von   Netzspannungsschwankungen.    ist erheblich, weshalb sie für den Einsatz an Baustellen nicht besonders geeignet sind: die Folge sind oftmals Störungen in den genannten Geräten, wodurch Fehlschweissungen vorkommen können.



  Zudem müssen bei den bekannten Schweiss- und Dosiergeräten die Schweisszeiten sehr genau eingehalten werden. Dies setzt andererseits wieder voraus, dass die bekannten Schweissmuffen, bei denen der Widerstandbereich der in den Muffenkörper eingelegten Netzdrähte je nach der Grösse des Durchmessers der Verbindung von etwa 0,1-30 Ohm variiert, eine nicht zu weit von der zugrundegelegten Normaltemperatur abweichende Temperatur aufweisen sollten. andernfalls mit Fehlschweissungen gerechnet werden muss. beispielsweise bei zu tiefer Muffentemperatur mit unvollständiger Verschweissung der Teile. Der Möglichkeit von Fehlschweissungen kann zwar dadurch etwas begegnet werden, dass dem Muffenkörper eine Schrumpfreserve, z. B. durch Aufweiten, erteilt wird.



  Damit wird erreicht, dass beispielsweise bei ungenügender Verschweissung wenigstens eine Schrumpfverbindung der Teile vorliegt, die zwar gegebenenfalls bei drucklosen Leitungsnetzen und bei Fehlen von zusätzlichen Beanspruchungen ausreichend sein kann. nicht jedoch bei druckbeaufschlagten und unter Spannung stehenden Leitungsnetzen.



   Der Erfindung liegt demnach die Aufgabe zugrunde, eine Muffe der eingangs beschriebenen Art so zu gestalten, dass für ihre Verwendung keine komplizierten Schweiss- und Dosiergeräte erforderlich sind, die Muffen jedoch so auslegbar sind, dass Fehlschweissungen praktisch vermieden werden.



   Diese Aufgabe wird gemäss der Erfindung dadurch gelöst, dass der Widerstandsheizdraht einen direkten und bezüglich Stromstärke und Spannung ungesteuerten Anschluss an ein elektrisches Netz aufweist, wobei der Widerstand des Widerstandsheizdrahts mit zunehmendem Muffendurchmesser abnimmt.



   Die Erfindung ist in der beiliegenden Zeichnung beispiclsweise   dargestcllt    und nachfolgend beschrieben. Es zeigt:
Fig. 1 einen Längsschnitt durch eine schematisch dargestellte Schweissmuffe,
Fig. 2 eine vergrösserte Darstellung eines Teils der Schweissmuffe nach Fig. 1,
Fig. 3 ein Blockdiagramm einer im Anschluss der Schweissmuffe angeordneten Schaltvorrichtung und
Fig. 4 ein Blockdiagramm einer weiteren Ausführungsform der im Anschluss der Schweissmuffe angeordneten Schaltvorrichtung.



   Die Erfindung geht von der Überlegung aus, dass der bei bekannten Schweissmuffen erforderliche verhältnismässig grosse apparative Aufwand durch die genaue Regelung der der Schweissmuffe zuzuführenden Schweissenergie bedingt ist. Es besteht bei weniger genauer Regelung die Gefahr, dass eine Überheizung, insbesondere bei kleinen Schweissmuffen, oder eine zu geringe Erwärmung, insbesondere bei grossen Schweissmuffen, stattfindet. Wird dagegen der Durchmesser des Widerstandheizdrahts wesentlich kleiner als bei bekannten Schweissmuffen und zudem in Abhängigkeit vom Durchmesser der Schweissmuffe gewählt, so kann unter Einhaltung einer annähernd konstanten spezifischen Heizleistung, d. h. der Heizleistung pro Volumen- oder Verbindungsflächeneinheit der Schweissmuffe, der Widerstand des Heizdrahts verhältnismässig hoch gewählt werden.

  Dadurch wirken sich Änderungen des Widerstands verhältnismässig geringfügiger auf den Wert der zugeführten Heizenergie aus, so dass es genügt, die der einzelnen Schweissmuffe zugeführte Heizenergie allein durch die Schweisszeit festzulegen. Hierbei ist es zweckmässig, für die Schweisszeit der Schweissmuffen verschiedener Durchmesser. jedoch der gleichen Nenndruck-Stufe den gleichen Zeitwert, z. B. 60 Sekunden, festzulegen.



   Bei ganz extremen Einsatzbedingungen für die Schweissmuffen kann es erforderlich sein, die Feststellung einer einwandfreien Schweissung noch mit anderen Mitteln vorzunehmen, z. B. durch einen Farbindikator, dessen Farbe bei Erreichen der richtigen Temperatur in eine andere Farbe umschlägt.



   Unter der Annahme einer gleichbleibenden Schweisszeit für die Schweissmuffen einer   Nenndruck-Stufc    und annähernd konstanter spezifischer Heizleistung sind die Kenndaten der Schweissmuffen einer Nenndruck-Stufe aus der nachstehenden Tabelle, die eine praktisch erprobte Muffenreihe   darstcllt,    zu entnehmen.



   Vorzugsweise wird als Widerstandheizdraht ein Kaltleiter verwendet, der bei niedrigeren Temperaturen eine grössere Leitfähigkeit als bei höheren Temperaturen aufweist. Werden Schweissmuffen mit solchen Drähten bei kalten Temperaturen verwendet, erfolgt eine   grösserc    Wärmeabgabe an den Muffenkörper, so dass auch bei diesen ungünstigen Voraussetzungen eine einwandfreie   Schweissverbindung    erreicht wird.

 

      Muffe Hcizdraht- Jeizleistung Hcizdntht-Dorchmcsser fiir      Nennweite      wi < lcnt;lnd    Watt    I > iazin        Nikroth;ll      2()     mm Ohm mm mm
40 264,1 183,2 0,05 0,09
50 216,3 223,7 0,06 0,11
63 171,2 282,7 0,07 0,14
75 145,8 332,() 0,09 0,16
90   .115,85    417,80 0,12 0,20
110 90,48 534,93 0,15 0,27
125 68,88 702,65 0,18 0,35
160 53,19 909,84 (),25 0,45
Bei den beiden erwähnten Heizdrahtmarken ist die Zusammensetzung:

  :   Isazin    77%      Cu, 21%    Ni,   2%    Mn   Nikrothal 20    2()%      Ni, 25%    Cr, Rest Fe  
Es   können auch andere    Werkstoffe für den Widerstandheizdraht Verwendung finden, von denen eine grosse Zahl im Handel erhältlich sind, deren spezifischer Widerstand in weiten Grenzen variiert, z. B. zwischen 0,3 Ohm mm2/m und etwa 1,3 Ohm mm2/m. Wesentlich ist jedoch, dass der Durchmesser des Heizdrahts kleiner gewählt wird, als dies bei den bekannten Schweissmuffen der Fall ist. Aus der vorstehenden Tabelle ist zu entnehmen, dass der Durchmesser des Widerstandheizdrahts mit zunehmendem Durchmesser der Schweissmuffe zunimmt, während der Gesamtwiderstand des Heizdrahts mit zunehmendem Durchmesser der Schweissmuffe abnimmt.

  Die Änderung des Gesamtwiderstands des Heizdrahts in Abhängigkeit vom Durchmesser der Schweissmuffe kann auch dadurch erreicht werden, dass der Durchmesser des Widerstand-Heizdrahts praktisch unverändert bleibt, jedoch unterschiedliche Materialien für die einzelnen Heizdrähte verwendet werden. So zeigt die vorstehende Tabelle, dass für die Schweissmuffe mit Nennweite 40 bzw. 75 ein Heizdraht aus  Nikrothal 20  bzw.    lsazin ,    beide mit 0,09 mm Drahtdurchmesser, verwendet werden kann, um die gewünschten Widerstände zu erreichen. In gleicher Weise kann für die anderen Nennweiten durch Wahl anderer Werkstoffe der gleiche Drahtdurchmesser erreicht werden.



   In Fig. 1 und 2 ist eine Schweissmuffe, wie sie vorstehend beschrieben wurde, dargestellt. Sie weist im wesentlichen einen Muffenkörper 1 auf, in welchem an der innenseitigen Umfangsfläche 2 oder in der Nähe derselben eine Wicklung 3 eines elektrischen Widerstandheizdrahts angeordnet ist. Ander Aussenumfangsfläche 4 des Muffenkörpers 1 sind zwei Vertiefungen 5 angeordnet, in denen sich je ein Ende der Heizdrahtwicklung 3 in Form eines Kontaktstiftes 6 befindet.



  Wie insbesondere aus Fig. 2 ersichtlich ist, sind die einzelnen Windungen der Heizdrahtwicklung   3-mit    einem dazwischenliegenden Abstand a angeordnet. Dieser Abstand wird zweckmässig unabhängig von der Grösse der Schweissmuffe etwa konstant gehalten, da der Wärmefluss im Muffenkörper 1 sich unabhängig von der Schweissmuffengrösse ausbildet. Wie bereits erwähnt, steht der Drahtdurchmesser d des Widerstandheizdrahts in einem bestimmten Verhältnis zum Muffendurchmesser D, welch letzterer Wert etwa der Nennweite plus der doppelten Wandstärke des Rohrstutzens der zu verschweissenden Rohrteile entspricht.

  Die Herstellung des Muffenkörpers 1 kann auf verschiedene Art und Weise erfolgen, wobei sowohl ein einteiliger oder ein mehrteiliger Muffenkörper verwendet werden kann. ln Fig. 3 ist der Anschluss einer Schweissmuffe 7   über    eine Anschlussleitung 8 beispielsweise mit dem öffentlichen Versorgungsnetz 9 hergestellt. Die Anschlussleitung 8 weist einen manuell   hetätigbaren    Schalter   1(1    auf. Der Schalter 10 kann auch als Impulsschalter ausgebildet sein. der beim Loslassen die Anschlussleitung 8 unterbricht. Die Anschlussleitung 8 ist über elektrische Verbindungen   11. die    beispielsweise aus dem in Fig. 2 dargestellten Kontaktstift 6 und einer in Fig. 3 schematisch dargestellten Buchse 12 bestehen können, mit der Heizdrahtwicklung 3 gemäss Fig. 1 und 2 verbunden.



   In Fig. 4 ist die Schweissmuffe 7 in gleicher Weise   wie-in    Fig. 3 mit der Anschlussleitung 8 verbunden. Der Unterschied gegenüber der einfachen Ausführung nach Fig. 3 besteht darin, dass die Schweisszeit nicht durch manuelle Betätigung des Schalters 10 erfolgt, sondern durch einen einstellbaren Zeitschalter 12, der über eine Leitung 13, die an der Anschlussleitung 8 liegt, gespeist wird und ein Relais 14 zur Betätigung des Schalters 10 entsprechend der eingestellten Schweisszeit einund ausschaltet.

 

   Weist das Versorgungsnetz grössere Spannungsschwankungen auf, so ist es möglich, dieselben zu kompensieren, indem eine Schaltung vorgesehen wird, die entsprechend den auftretenden Schwankungen die Schweisszeit ändert.



   Die beschriebene Schweissmuffe und deren Auslegung weist neben den bereits erwähnten Vorteilen wegen der wesentlich kleineren Drahtdurchmesser den Vorteil geringerer Kosten auf und kann durch eine einfache Anschlussleitung 8 mit einem Schalter 10, wie dies in Fig. 3 dargestellt ist, zum Schweissen von Leitungsverbindungen verwendet werden. Trotzdem sind praktisch keine Fehlschweissungen mehr zu befürchten. 



  
 



   The invention relates to a set of at least two electrically weldable sleeves with different diameters made of a thermoplastic material, with an electrical resistance heating wire arranged in the area of the inner wall of a sleeve-shaped sleeve body for producing welded connections on pipe sockets of lines, fittings and valves, the sleeves being the same given Have welding time.



   For the creation of pipe networks using cables. Moldings and valves made of thermoplastic material must be connected to the individual parts. Welded connections are mainly used for such connections. This is a special type of welded connection. that a sleeve-shaped welding socket with resistance heating wire inserted in the socket body is pushed onto the pipe socket to be connected, whereupon the resistance heating wire is electrically heated so that both the material of the pipe socket and the socket partially soften and flow together. until an intimate connection and, after cooling, a gas- and liquid-tight weld is created.



   Welding devices are used to weld such welding sleeves. either with extra-low voltages. d. H. up to about 50 volts. or work with mains voltage. used ', with the second-mentioned welding devices, the sleeves are operated with voltages below 185 volts effectively. The reason for this is that the welding and dispensing devices should regulate fluctuations in the mains voltage. The expenditure on electrical components associated with the welding and dosing devices used. especially with the devices for regulating mains voltage fluctuations. is significant, which is why they are not particularly suitable for use on construction sites: the result is often malfunctions in the devices mentioned, which can lead to faulty welds.



  In addition, with the known welding and dosing devices, the welding times must be adhered to very precisely. On the other hand, this presupposes that the known welding sockets, in which the resistance range of the network wires inserted in the socket body varies from about 0.1-30 ohms depending on the size of the diameter of the connection, have a temperature that does not deviate too far from the normal temperature used should. otherwise faulty welds must be expected. For example, if the socket temperature is too low with incomplete welding of the parts. The possibility of incorrect welds can be countered somewhat by providing the socket body with a shrinkage reserve, e.g. B. by expanding, is granted.



  This ensures that, for example, if the welding is inadequate, there is at least one shrink connection of the parts, which may be sufficient in the case of pressureless pipe networks and in the absence of additional stresses. but not in the case of pressurized and energized pipeline networks.



   The invention is therefore based on the object of designing a sleeve of the type described above so that no complicated welding and metering devices are required for its use, but the sleeves can be designed in such a way that incorrect welds are practically avoided.



   This object is achieved according to the invention in that the resistance heating wire has a direct connection to an electrical network that is uncontrolled with regard to current intensity and voltage, the resistance of the resistance heating wire decreasing with increasing sleeve diameter.



   The invention is illustrated by way of example in the accompanying drawings and described below. It shows:
Fig. 1 is a longitudinal section through a schematically shown welding socket,
FIG. 2 shows an enlarged representation of part of the welding socket according to FIG. 1,
3 shows a block diagram of a switching device arranged in connection with the welding sleeve, and FIG
4 shows a block diagram of a further embodiment of the switching device arranged in connection with the welding socket.



   The invention is based on the consideration that the relatively large outlay on equipment required in known welding sleeves is due to the precise regulation of the welding energy to be supplied to the welding sleeve. In the case of less precise regulation, there is the risk of overheating, in particular in the case of small welding sleeves, or insufficient heating, in particular in the case of large welding sleeves. If, on the other hand, the diameter of the resistance heating wire is much smaller than in known welding sleeves and is also selected as a function of the diameter of the welding sleeve, then, while maintaining an approximately constant specific heating power, i. H. the heating power per unit of volume or connection area of the welding socket, the resistance of the heating wire can be selected to be relatively high.

  As a result, changes in the resistance have a relatively minor effect on the value of the heating energy supplied, so that it is sufficient to determine the heating energy supplied to the individual welding socket solely by the welding time. It is useful here to use different diameters for the welding time of the welding sleeves. however, the same nominal pressure level has the same time value, e.g. B. 60 seconds to set.



   In the case of very extreme conditions of use for the welding sleeves, it may be necessary to determine that the weld has been properly welded by other means, e.g. B. by means of a color indicator, the color of which changes to another color when the correct temperature is reached.



   Assuming a constant welding time for the welding sockets of a nominal pressure level and an approximately constant specific heating power, the characteristics of the welding sockets of a nominal pressure level can be taken from the table below, which shows a practically tested socket series.



   A PTC thermistor is preferably used as the resistance heating wire, which has a higher conductivity at lower temperatures than at higher temperatures. If welding sleeves with such wires are used at cold temperatures, a greater amount of heat is transferred to the body of the sleeve, so that a perfect welded joint is achieved even under these unfavorable conditions.

 

      Sleeve Hcizdraht- Jeizkraft Hcizdntht-Dorchmeßer for nominal width wi <lcnt; lnd Watt I> iazin Nikroth; ll 2 () mm Ohm mm mm
40 264.1 183.2 0.05 0.09
50 216.3 223.7 0.06 0.11
63 171.2 282.7 0.07 0.14
75 145.8 332, () 0.09 0.16
90, 115.85 417.80 0.12 0.20
110 90.48 534.93 0.15 0.27
125 68.88 702.65 0.18 0.35
160 53.19 909.84 (), 25 0.45
The composition of the two brands of heating wire mentioned is:

  : Isazine 77% Cu, 21% Ni, 2% Mn Nikrothal 20 2 ()% Ni, 25% Cr, remainder Fe
Other materials can also be used for the resistance heating wire, a large number of which are commercially available, the specific resistance of which varies within wide limits, e.g. B. between 0.3 ohm mm2 / m and about 1.3 ohm mm2 / m. However, it is essential that the diameter of the heating wire is selected to be smaller than is the case with the known welding sleeves. From the table above it can be seen that the diameter of the resistance heating wire increases with the increasing diameter of the welding socket, while the total resistance of the heating wire decreases with increasing diameter of the welding socket.

  The change in the total resistance of the heating wire as a function of the diameter of the welding socket can also be achieved in that the diameter of the resistance heating wire remains practically unchanged, but different materials are used for the individual heating wires. The table above shows that a heating wire made of Nikrothal 20 or isazin, both with a wire diameter of 0.09 mm, can be used for the welding socket with nominal width 40 or 75 in order to achieve the desired resistance. In the same way, the same wire diameter can be achieved for the other nominal sizes by choosing other materials.



   In Fig. 1 and 2, a welding socket as described above is shown. It essentially has a sleeve body 1 in which a winding 3 of an electrical resistance heating wire is arranged on the inside circumferential surface 2 or in the vicinity thereof. On the outer circumferential surface 4 of the sleeve body 1, two depressions 5 are arranged, in each of which one end of the heating wire winding 3 is located in the form of a contact pin 6.



  As can be seen in particular from FIG. 2, the individual turns of the heating wire winding 3 are arranged with a spacing a between them. This distance is expediently kept approximately constant regardless of the size of the welding socket, since the heat flow in the socket body 1 is independent of the size of the welding socket. As already mentioned, the wire diameter d of the resistance heating wire is in a certain ratio to the socket diameter D, which latter value corresponds approximately to the nominal width plus twice the wall thickness of the pipe socket of the pipe parts to be welded.

  The sleeve body 1 can be produced in various ways, it being possible to use either a one-piece or a multi-part sleeve body. In FIG. 3, a welding socket 7 is connected via a connection line 8 to the public supply network 9, for example. The connection line 8 has a manually operable switch 1 (1. The switch 10 can also be designed as an impulse switch, which interrupts the connection line 8 when it is released. The connection line 8 is via electrical connections 11, for example from the contact pin shown in FIG 6 and a socket 12 shown schematically in FIG. 3, connected to the heating wire winding 3 according to FIGS. 1 and 2.



   In FIG. 4, the welding socket 7 is connected to the connecting line 8 in the same way as in FIG. 3. The difference compared to the simple embodiment according to FIG. 3 is that the welding time does not take place by manually actuating the switch 10, but by an adjustable time switch 12, which is fed via a line 13 connected to the connecting line 8, and a relay 14 switches on and off to operate the switch 10 according to the set welding time.

 

   If the supply network has larger voltage fluctuations, it is possible to compensate for them by providing a circuit which changes the welding time in accordance with the fluctuations that occur.



   In addition to the advantages already mentioned, the described welding sleeve and its design have the advantage of lower costs due to the much smaller wire diameter and can be used for welding line connections by means of a simple connection line 8 with a switch 10, as shown in FIG. 3. Nevertheless, there are practically no more faulty welds to fear.


    

Claims (1)

PATENTANSPRUCH PATENT CLAIM Satz aus mindestens zwei elektrisch schweissbaren Muffen mit verschiedenem Durchmesser aus einem thermoplastischen Kunststoff, mit einem im > Bereich der Innenwandung eines hülsenförmigen Muffenkörpers angeordneten elektrischen Widerstandsheizdraht zur Herstellung von Schweissverbindungen an Rohrstutzen von Leitungen, Formstücken und Ventilen, wobei die Muffen die gleiche gegebene Schweisszeit aufweisen, dadurch gekennzeichnet, dass der Widerstandsheizdraht (3) einen direkten und bezüglich Stromstärke und Spannung ungesteuerten Anschluss (8) an ein elektrisches Netz (9) aufweist, wobei der Widerstand des Widerstandsheizdrahts mit zunehmendem Muffendurchmesser abnimmt. Set of at least two electrically weldable sleeves with different diameters made of a thermoplastic material, with an electrical resistance heating wire arranged in the area of the inner wall of a sleeve-shaped sleeve body for producing welded connections on pipe sockets of lines, fittings and valves, whereby the sleeves have the same given welding time, characterized in that the resistance heating wire (3) has a direct connection (8) to an electrical network (9) which is uncontrolled in terms of current intensity and voltage, the resistance of the resistance heating wire decreasing as the sleeve diameter increases. UNTERANSPRÜCHE 1. Satz nach Patentanspruch. dadurch gekennzeichnet. dass der Drahtdurchmesser (d) des Widerstandsheizdrahts (3) einen vom Muffendurchmesser (D) abhängigen Wert aufweist und mit zunehmendem Durchmesser der Muffe zunimmt. SUBCLAIMS 1st sentence according to patent claim. characterized. that the wire diameter (d) of the resistance heating wire (3) has a value that depends on the socket diameter (D) and increases as the diameter of the socket increases. 2. Satz nach Patentanspruch. dadurch gekennzeichnet. dass der Durchmesser (d) des Widerstandsheizdrahts (3) kleiner als 0S mm. vorzugsweise kleiner als 0,35 mm, ist. 2nd sentence according to patent claim. characterized. that the diameter (d) of the resistance heating wire (3) is less than 0S mm. is preferably less than 0.35 mm. 3. Satz nach Patentanspruch. dadurch gekennzeichnet. dass der Durchmesser (d) des Widerstandsheizdrahts 0.1-0.35 mm beträgt. 3rd sentence according to patent claim. characterized. that the diameter (d) of the resistance heating wire is 0.1-0.35 mm. 4. Satz nach Patentanspruch, dadurch gekennzeichnet. dass der Durchmesser (d) des Widerstandsheizdrahts unabhängig von der Muffengrösse annähernd konstant ist. wobei der Draht einen mit zunehmendem Muffendurchmesser (D) abnehmenden spezifischen Widerstand aufweist. 4. Set according to claim, characterized. that the diameter (d) of the resistance heating wire is almost constant regardless of the sleeve size. wherein the wire has a specific resistance that decreases with increasing sleeve diameter (D). 5. Satz nach Patentanspruch. dadurch gekennzeichnet. dass der Widerstandsheizdraht einen derartigen Widerstandswert aufweist, dass er an das öffentliche Versorgungsnetz. z. B. von "0 Volt. anschliessbar ist. 5th sentence according to patent claim. characterized. that the resistance heating wire has such a resistance that it can be connected to the public supply network. z. B. of "0 volts. Can be connected. 6. Satz nach Patentanspruch. dadurch gekennzeichnet. dass der Widerstandsheizdraht (3) ein Kaltleiter ist. 6th sentence according to patent claim. characterized. that the resistance heating wire (3) is a PTC thermistor.
CH48177A 1976-03-22 1977-01-14 Electrically weldable thermoplastic sleeve for pipework, etc. CH601720A5 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
CH48177A CH601720A5 (en) 1977-01-14 1977-01-14 Electrically weldable thermoplastic sleeve for pipework, etc.
DE2760064A DE2760064C2 (en) 1976-03-22 1977-03-14 Welding socket made of thermoplastic material
DE2710998A DE2710998C2 (en) 1976-03-22 1977-03-14 Thermoplastic sleeve with an electrical resistance heating wire
US05/777,467 US4117311A (en) 1976-03-22 1977-03-14 Electric welding muff
NL7702933A NL7702933A (en) 1976-03-22 1977-03-17 ELECTRICALLY WELDABLE SLEEVE OF THERMOPLASTIC PLASTIC.
FR7708201A FR2345652A1 (en) 1976-03-22 1977-03-18 ELECTRICALLY WELDABLE SLEEVE IN THERMOPLASTIC MATERIAL
AT191477A AT359791B (en) 1976-03-22 1977-03-18 ELECTRICALLY WELDABLE SLEEVE MADE OF THERMOPLASTIC PLASTIC
SE7703190A SE7703190L (en) 1976-03-22 1977-03-21 ELECTRIC WELDABLE SLEEVE OF THERMOPLASTIC
GB12076/77A GB1573951A (en) 1976-03-22 1977-03-22 Set of electric welding muffs
IT2148777A IT1075359B (en) 1976-03-22 1977-03-22 ELECTRICALLY WELDABLE SLEEVE IN THERMOPLASTIC MATERIAL
FR8200966A FR2497916B1 (en) 1976-03-22 1982-01-22 WELDABLE SLEEVE IN THERMOPLASTIC MATERIAL
NLAANVRAGE8402684,A NL185174C (en) 1976-03-22 1984-09-03 WELDING SOCKET WITH INDICATOR FOR THE QUALITY OF THE WELD.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH48177A CH601720A5 (en) 1977-01-14 1977-01-14 Electrically weldable thermoplastic sleeve for pipework, etc.

Publications (1)

Publication Number Publication Date
CH601720A5 true CH601720A5 (en) 1978-07-14

Family

ID=4187984

Family Applications (1)

Application Number Title Priority Date Filing Date
CH48177A CH601720A5 (en) 1976-03-22 1977-01-14 Electrically weldable thermoplastic sleeve for pipework, etc.

Country Status (1)

Country Link
CH (1) CH601720A5 (en)

Similar Documents

Publication Publication Date Title
DE2710998C2 (en) Thermoplastic sleeve with an electrical resistance heating wire
EP0173174B1 (en) Weldable connecting element for joining or connecting thermoplastic pipes together
DE2165071A1 (en) Gun for dispensing a melted hot glue
DE1565888A1 (en) Self-regulating radiator and process for its manufacture
CH645449A5 (en) ELECTRICALLY WELDABLE SLEEVE FOR CONNECTING PIPE ELEMENTS.
DE2604847C2 (en) Method and device for producing a plastic part with a resistance element
DE3204875A1 (en) PIPE RADIATOR WITH OVERLOAD PROTECTION
DE2327246A1 (en) CIRCUIT FOR TEMPERATURE CONTROL, IN PARTICULAR FOR A DEVICE FOR DISPENSING MOLTEN MATERIAL
DE2408337A1 (en) HEATING OR SOLDERING ELEMENT FOR AN ELECTRIC SOLDERING PISTON
CH653611A5 (en) METHOD AND DEVICE FOR WELDING LINE ELEMENTS.
DE10041289B4 (en) glow plug
DE1055305B (en) Connection part made of thermoplastic material in the form of a sleeve, a T-piece or L-piece
CH601720A5 (en) Electrically weldable thermoplastic sleeve for pipework, etc.
DE2227118A1 (en) SHIELD GAS WELDING GUN
DE1265399B (en) Method for connecting a tubular thermoplastic body to a metallic base
DE3005078A1 (en) ELECTRICALLY WELDABLE PLUG IN PLASTIC
DE2945196C1 (en) Device for controlling the welding energy when connecting pipe elements made of weldable plastic
AT361749B (en) WELDING SLEEVE FROM A THERMOPLASTIC PLASTIC
DE2306840C3 (en) Burner for light and heavy fuel oil as well as free-flowing fats
DE2034133C3 (en) Method for attaching a connection piece to a wall and connection piece for carrying out the method
DE3035450A1 (en) VICTORY ANODE WITH CONSUMPTION INDICATOR
DE2109470C3 (en) Electric soldering iron
DE2128784C3 (en) Method and device for soldering a power connection element onto glass panes provided with a solderable metal layer
DE2846767C2 (en) Device for connecting pipe ends
DE2612584C2 (en) Process for equipping the flanges of pressure vessels with electric tubular heating elements

Legal Events

Date Code Title Description
PUE Assignment

Owner name: WAVIN AG

PL Patent ceased