CH574880A5 - High strength concrete prodn - from cement, siliceous fly ash and liquefying agent - Google Patents

High strength concrete prodn - from cement, siliceous fly ash and liquefying agent

Info

Publication number
CH574880A5
CH574880A5 CH1900171A CH1900171A CH574880A5 CH 574880 A5 CH574880 A5 CH 574880A5 CH 1900171 A CH1900171 A CH 1900171A CH 1900171 A CH1900171 A CH 1900171A CH 574880 A5 CH574880 A5 CH 574880A5
Authority
CH
Switzerland
Prior art keywords
cement
fly ash
additive
high strength
pref
Prior art date
Application number
CH1900171A
Other languages
German (de)
Original Assignee
Sika Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sika Ag filed Critical Sika Ag
Publication of CH574880A5 publication Critical patent/CH574880A5/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Concrete having a high strength is produced from a 90:10 to 50:50 mixt. of cement (pref. Portland cement; but slag cement, fly ash cement, white cement, trass or pozzuolana cement can also be used and, as a filler, an amorphous glassy material contg. >=80 wt.% of SiO2 and having a specific surface area of 15-30 m2/g. (pref. fly ash from silicon industry) the ash particles being spheroidal with a dia =0.2u. The material pref. contains 0.2-2 wt.% of a liquefying agent being a lignin deriv. or a polyhydroxycarboxylic acid, or a sulphite or sulphonate- modified aminos-triazine resin (contg. at least two amino gps). High early strength is attained. The concrete has high chemical resistivity.

Description

  

  
 



   Die Erfindung betrifft eine Zementmischung zur Herstellung von Erzeugnissen mit hoher Festigkeit, die als Zusatzmittel eine kieselsäurereiche, feinteilige Substanz enthält.



   Die Herstellung von Zementen hoher Frühfestigkeit hat in den letzten Jahren ständig an Bedeutung gewonnen. Diese Entwicklung ist vor allem auf die steigende Verwendung von Fertigteilen aus Stahl- und Spannbeton und von Betonwaren   zuruckzuführen.    Auf diese Weise lassen sich aufwendige Produktionsanlagen besser ausnutzen und die hergestellten Betonteile schneller ausschalen, stapeln, verladen und einbauen.



  Aber auch auf der Baustelle werden in steigendem Masse Betone mit hoher Frühfestigkeit bevorzugt, sei es um früher ausschalen zu können oder um im Winter rascher einen frostwiderstandsfähigen Beton zu erhalten.



   Die Frühfestigkeit wurde bis jetzt durch die Verwendung eines Zementes mit schneller Festigkeitsentwicklung, durch Herabsetzung des Wasser-Zement-Verhältnisses oder durch die Zugabe eines Beschleunigers erreicht.



   Alle diese Methoden sind jedoch mit verschiedenen   Nach-    teilen verbunden, wie - schlechte Verarbeitbarkeit - aufwendige Verdichtigungsarbeit, - verkürzte Abbindezeit und Verarbeitungszeit, - erhöhtes Schwinden,   - rückläuìger    Festigkeitsverlauf, - Korrosionsgefahr.



   Es wurde nun gefunden, dass es gelingt, Zemente herzustellen, die verbesserte Eigenschaften besitzen, und zwar sowohl in bezug auf Festigkeiten als auch in bezug auf die chemische Widerstandsfähigkeit der damit herzustellenden Er   zeugnisse,    wenn man dem Zement ein bestimmtes saures, feinteiliges Material, z. B. eine besondere Flugasche, sowie vorzugsweise einen an sich bekannten Verflüssiger, z. B. auf Basis von Lignin, Polyhydroxycarbonsäure oder stickstoffhaltigen Harzen zumischt.



   Es ist schon vorgeschlagen worden, aktive Kieselsäure, Silikate oder Flugaschen aus der Kohlenverbrennung oder der   Eiseniudustrie    als   Zementzusatzmittel    zu verwenden. Bisher konnten diese Materialien, denen einige oder alle der nachstehend   definierten    Eigenschaften fehlen, keine besonders verbesserten Resultate liefern.



   Die erfindungsgemässe Zementmischung zur Herstellung von Erzeugnissen mit hoher Festigkeit zeichnet sich dadurch aus, dass das Zusatzmittel ein amorph-glasiges Material mit einem Gehalt von mindestens 80 Gew. % freiem   SiO2    und einer spezifischen Oberfläche von 15 bis 30 m2/g ist, wobei die einzelnen Teilchen des Zusatzmittels kugelförmig sind und einen Durchmesser von höchstens   0,2,u    aufweisen.



   Als Zementanteil der Zementmischung handelt es sich in der Regel um einen Portlandzement. Es können aber auch andere Zemente, z. B. Schlackenzement, Flugaschenzement, Weisszement, Trasszement oder Puzzolanzement, verwendet werden.



   Das Zusatzmittel ist vorzugsweise eine besondere Flugasche, die nachstehend näher beschrieben wird. Zwar sind schon Flugaschenzemente bekannt; die bisher verwendeten Flugaschen sind jedoch viel gröber und enthalten viel weniger   SiO2,    welches nicht in freier Form, sondern gebunden als Aluminosilikatglas vorliegt.



   In der erfindungsgemässen Zementmischung liegen der Zement und das Zusatzmittel in Gewichtsverhältnissen von 90:10 bis 50:50 vor, je nach Basizität des Zementes, SiO2 Gehalt des Zusatzmittels und gewünschten Eigenschaften, insbesondere der Abbindegeschwindigkeit.



   Beim in der erfindungsgemässen Zementmischung vorliegenden Zusatzmittel handelt es sich vorzugsweise um eine Flugasche, die aus an Elektrofiltern abgeschiedenen Teilchen aus rasch gekühlten Rauchgasen besteht, wie sie beispielsweise bei der Herstellung von Silicium anfallen. Diese Flugasche unterscheidet sich sowohl in der chemischen Zusammensetzung wie auch in der Teilchengrösse von den bisher als Zementzusatzmitteln verwendeten Flugaschen aus thermischen Kraftwerken. So beträgt der Gehalt an   SiO2    in der Regel mehr als 80%, der verbrennbare Anteil liegt unter 1%. Das Material besteht aus amorphem   Kieselglas,    und unter dem Elektronenmikroskop ist die absolut kugelige Form der Partikeln sichtbar. Der Durchmesser der Teilchen liegt unter 0,2,u.

  Die spezifische Oberfläche, durch Absorption nach Brunauer, Emmet und Teller bestimmt, liegt zwischen 15 und 30 m2/g.



   Durch diese ausserordentliche Feinheit bedingt, ist diese saure Flugasche hochreaktiv und reagiert deshalb rasch mit dem Calciumhydroxyd, welches im Verlaufe der Hydratation des Zementes gebildet wird. Erhärtungsverzögerungen, wie sie mit normalen Flugaschen bekannt sind, treten mit diesem Material nicht auf.



   Aufgrund der hohen spezifischen Oberfläche können beträchtliche Mengen Wasser absorbiert werden, so dass mit diesem Material in Kombination mit Verflüssigern besonders hervorragende Resultate erreicht werden   können.    Als Verflüssiger eignen sich am besten Derivate des Lignins oder von Polyhydroxycarbonsäuren oder ein Zusatz eines sulfit- oder   sulfonsäuremodiftzierten    Harzes auf der Basis eines Amino-striazins mit mindestens zwei NH2-Gruppen.



   Beispiel 1
Mit einem Feinmörtel aus 50 Gewichtsteilen feinem Quarzsand und 50 Gewichtsteilen eines erfindungsgemässen Gemisches aus 80 % Zement und 20% Flugasche wurden Prismen 4 x 4 x 16 cm3 hergestellt. Zuvor wurden noch Verflüssiger zugegeben (siehe Tabelle), deren Menge sich auf die Mischung aus Zement und Flugasche bezieht. Nach 1, 5 und 7 Tagen Konditionierung bei 100% relativer Luftfeuchtigkeit und   20     C wurde die Biegezug- und Druckfestigkeit bestimmt.



   Festigkeiten in kg/cm2 Art des Verflüssigers 1 Tag 5 Tage 7 Tage
Biegezug Druck Biegezug Druck Biegezug Druck ohne 49 221 69 492 70 540 Ligninsulfonat   0,5%    60 327 89 650 103 684   Natriumglukonat0,2%    57 300 76 656 89 703 Amino-s-triazin-Harz 1,0% 75 600 153 963 178 1038  
Aus der vorstehenden Tabelle geht hervor, dass die aus dem erfindungsgemässen Zement hergestellten Prüfkörper ohne besondere Verdichtungs- und Erhärtungsbedingungen bisher unerreichte Festigkeiten aufweisen.

 

   Beispiel 2
Die Reaktivität beziehungsweise die Güte einer Flug asche kann am sogenannten Puzzolaneffekt festgestellt werden. Bei diesem Versuch wird ein Mörtel aus drei Teilen Sand 0 bis 5 mm Korngrösse und einem Teil gelöschtem Kalk hergestellt. Um die Wirksamkeit der Flugasche zu prüfen, wird in steigendem Masse der gelöschte Kalk durch Flugasche ersetzt. Je reaktiver die Flugasche ist, um so höher sind die 28 Tage-Festigkeiten. Bei einem solchen Versuch wurden folgende Resultate erreicht: Bindemittel konventionelle Flugasche erfindungsgemäss vorliegende gelöschter Flugasche (Kraffwerk) Flugasche (Si- Industrie) Kalk Biege-Zug- Druck- Biege-Zug- Druck    Festigkeit Festigkeit ' Festigkeit Festigkeit    kg/cm2 kg/cm2 kg/cm2 kg/cm2 100% 0% 7 14 7 14
80% 20% 4 12 9 20
60% 40% 3 8 12 39
40% 60% 4 8 13 35 



  
 



   The invention relates to a cement mixture for the production of products with high strength which contains a finely divided substance rich in silica as an additive.



   The production of cements with high early strength has steadily gained in importance in recent years. This development is mainly due to the increasing use of prefabricated parts made of reinforced and prestressed concrete and of concrete products. In this way, complex production facilities can be better utilized and the concrete parts produced can be stripped, stacked, loaded and installed more quickly.



  Concretes with high early strength are also increasingly preferred on the construction site, be it in order to be able to form the shuttering earlier or to obtain frost-resistant concrete more quickly in winter.



   Up to now, the early strength has been achieved by using a cement with rapid strength development, by reducing the water-cement ratio or by adding an accelerator.



   However, all of these methods are associated with various disadvantages, such as - poor workability - time-consuming compaction work, - shortened setting and processing time, - increased shrinkage, - reduced strength, - risk of corrosion.



   It has now been found that it is possible to produce cements that have improved properties, both in terms of strengths and in terms of the chemical resistance of the products to be produced with it, if you add a certain acidic, finely divided material to the cement, e.g. . B. a special fly ash, and preferably a known liquefier such. B. based on lignin, polyhydroxycarboxylic acid or nitrogen-containing resins.



   It has already been proposed to use active silicic acid, silicates or fly ashes from coal combustion or the iron industry as cement additives. Heretofore, these materials, lacking some or all of the properties defined below, have not been able to provide particularly improved results.



   The cement mixture according to the invention for the production of products with high strength is characterized in that the additive is an amorphous-glassy material with a content of at least 80% by weight of free SiO2 and a specific surface area of 15 to 30 m2 / g, the individual Particles of the additive are spherical and have a diameter of at most 0.2 µ.



   The cement component of the cement mixture is usually a Portland cement. But it can also be other cements such. B. slag cement, fly ash cement, white cement, trass cement or pozzolana cement can be used.



   The additive is preferably a special fly ash, which is described in more detail below. Fly ash cements are already known; However, the fly ashes used up to now are much coarser and contain much less SiO2, which is not present in free form, but bound as aluminosilicate glass.



   In the cement mixture according to the invention, the cement and the additive are present in weight ratios of 90:10 to 50:50, depending on the basicity of the cement, the SiO2 content of the additive and the desired properties, in particular the setting speed.



   The additive present in the cement mixture according to the invention is preferably a fly ash, which consists of particles deposited on electrostatic precipitators from rapidly cooled flue gases, such as those obtained, for example, in the production of silicon. This fly ash differs both in its chemical composition and in its particle size from the fly ash from thermal power plants that was previously used as cement additives. The SiO2 content is usually more than 80%, the combustible part is less than 1%. The material consists of amorphous silica glass, and the absolutely spherical shape of the particles is visible under the electron microscope. The diameter of the particles is less than 0.2, u.

  The specific surface, determined by absorption according to Brunauer, Emmet and Teller, is between 15 and 30 m2 / g.



   Due to this extraordinary fineness, this acidic fly ash is highly reactive and therefore reacts quickly with the calcium hydroxide, which is formed during the hydration of the cement. Hardening delays, as they are known with normal fly ash, do not occur with this material.



   Due to the high specific surface, considerable amounts of water can be absorbed, so that particularly excellent results can be achieved with this material in combination with liquefiers. The most suitable liquefiers are derivatives of lignin or of polyhydroxycarboxylic acids or an addition of a sulfite- or sulfonic acid-modified resin based on an aminostriazine with at least two NH2 groups.



   example 1
With a fine mortar made of 50 parts by weight of fine quartz sand and 50 parts by weight of a mixture according to the invention of 80% cement and 20% fly ash, prisms 4 × 4 × 16 cm 3 were produced. Before that, liquefiers were added (see table), the amount of which relates to the mixture of cement and fly ash. After 1, 5 and 7 days of conditioning at 100% relative humidity and 20 ° C., the flexural tensile strength and compressive strength were determined.



   Strengths in kg / cm2 Type of condenser 1 day 5 days 7 days
Bending tension compression Bending tension compression Bending tension compression without 49 221 69 492 70 540 Ligninsulfonate 0.5% 60 327 89 650 103 684 Sodium gluconate 0.2% 57 300 76 656 89 703 Amino-s-triazine resin 1.0% 75 600 153 963 178 1038
The table above shows that the test specimens produced from the cement according to the invention have previously unattainable strengths without any special compaction and hardening conditions.

 

   Example 2
The reactivity or the quality of fly ash can be determined by the so-called pozzolan effect. In this experiment, a mortar is made from three parts of sand with a grain size of 0 to 5 mm and one part of slaked lime. In order to test the effectiveness of the fly ash, the slaked lime is increasingly being replaced by fly ash. The more reactive the fly ash, the higher the 28-day strengths. The following results were achieved in such an experiment: Binder, conventional fly ash, slaked fly ash according to the invention (Kraffwerk) Fly ash (Si industry) Lime Bending-tensile-compressive-bending-tensile-compressive strength strength 'strength strength kg / cm2 kg / cm2 kg / cm2 kg / cm2 100% 0% 7 14 7 14
80% 20% 4 12 9 20
60% 40% 3 8 12 39
40% 60% 4 8 13 35

 

Claims (1)

PATENTANSPRUCH Zementmischung zur Herstellung von Erzeugnissen mit hoher Festigkeit, die als Zusatzmittel eine kieselsäurereiche, feinteilige Substanz enthält, dadurch gekennzeichnet, dass das Zusatzmittel ein amorph-glasiges Material mit einem Gehalt von mindestens 80 Gew. % freiem SiO2 und einer spezifischen Oberfläche von 15 bis 30 m2/g ist, wobei die einzelnen Teilchen des Zusatzmittels kugelförmig sind und einen Durchmesser von höchstens 0,2,u aufweisen. UNTERANSPRÜCHE 1. Zementmischung nach Patentanspruch, dadurch gekennzeichnet, dass das Gewichtsverhältnis von Zement zu Zusatzmittel 90:10 bis 50:50 beträgt. PATENT CLAIM Cement mixture for the production of products with high strength, which contains a silica-rich, finely divided substance as an additive, characterized in that the additive is an amorphous-glassy material with a content of at least 80% by weight of free SiO2 and a specific surface area of 15 to 30 m2 / g, the individual particles of the additive being spherical and having a diameter of at most 0.2 µ. SUBCLAIMS 1. Cement mixture according to claim, characterized in that the weight ratio of cement to additive is 90:10 to 50:50. 2. Zementmischung nach Patentanspruch oder Unteranspruch 1, dadurch gekennzeichnet, dass sie weiterhin 0,2 bis 2 Gew. %, bezogen auf die Mischung, eines Derivates des Lignins oder von Polyhydroxycarbonsäuren oder eines sulfit- oder sulfonsäuremodifizierten Harzes auf der Basis eines Amino-s-triazins mit mindestens zwei Aminogruppen als Verflüssiger enthält. 2. Cement mixture according to claim or dependent claim 1, characterized in that it further contains 0.2 to 2% by weight, based on the mixture, of a derivative of lignin or of polyhydroxycarboxylic acids or of a sulfite- or sulfonic acid-modified resin based on an amino-s -triazines with at least two amino groups as a liquefier. 3. Zementmischung nach Patentanspruch, dadurch gekennzeichnet, dass das Zusatzmittel eine Flugasche aus Rauchgasen der Siliciumindustrie ist. 3. Cement mixture according to claim, characterized in that the additive is a fly ash from flue gases from the silicon industry.
CH1900171A 1971-01-05 1971-12-27 High strength concrete prodn - from cement, siliceous fly ash and liquefying agent CH574880A5 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT3971A AT312490B (en) 1971-01-05 1971-01-05 High strength cement mix

Publications (1)

Publication Number Publication Date
CH574880A5 true CH574880A5 (en) 1976-04-30

Family

ID=3479906

Family Applications (1)

Application Number Title Priority Date Filing Date
CH1900171A CH574880A5 (en) 1971-01-05 1971-12-27 High strength concrete prodn - from cement, siliceous fly ash and liquefying agent

Country Status (2)

Country Link
AT (1) AT312490B (en)
CH (1) CH574880A5 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2608233A1 (en) * 1976-02-28 1977-09-08 Heinz Hoelter Refractory cement compsn. - contg. oxide by-prod. from electrothermal treatment of silicon (cpds.) (NO 18.4.77)
DE2730943A1 (en) * 1976-07-09 1978-01-12 Norcem As METHOD FOR PRODUCING CONCRETE WITH HIGH CORROSION RESISTANCE
FR2387194A1 (en) * 1977-04-12 1978-11-10 Chemie Linz Ag Quick-hardening concrete with delayed setting time - contains aliphatic poly:ol and modified amino-triazine resin
DE3343948A1 (en) * 1982-12-07 1984-06-07 Elkem A/S, Oslo CONCRETE ADDITIVES IN THE FORM OF A MULTI-COMPONENT MIXTURE CONTAINING MICROSILICIUM DIOXIDE, METHOD FOR THE PRODUCTION THEREOF AND CONCRETE PRODUCED WITH THIS ADDITIVE
DE3346948A1 (en) * 1983-01-03 1984-07-05 W.R. Grace & Co., Cambridge, Mass. CORROSION PREVENTING ADDITIVE FOR CEMENT COMPOSITION
DE3838029A1 (en) * 1987-11-09 1989-05-18 Norsk Hydro As cement slurry
US5234754A (en) * 1978-11-03 1993-08-10 Bache Hans H Shaped article and composite material and method for producing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK151378C (en) * 1978-11-03 1988-05-16 Aalborg Portland Cement SHAPED ARTICLES AND COMPOSITION MATERIALS AND PROCEDURES FOR PRODUCING SAME
NO163449C (en) * 1978-11-03 1996-11-25 Aalborg Portland Cement Method of making a shaped article

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2608233A1 (en) * 1976-02-28 1977-09-08 Heinz Hoelter Refractory cement compsn. - contg. oxide by-prod. from electrothermal treatment of silicon (cpds.) (NO 18.4.77)
DE2730943A1 (en) * 1976-07-09 1978-01-12 Norcem As METHOD FOR PRODUCING CONCRETE WITH HIGH CORROSION RESISTANCE
FR2387194A1 (en) * 1977-04-12 1978-11-10 Chemie Linz Ag Quick-hardening concrete with delayed setting time - contains aliphatic poly:ol and modified amino-triazine resin
US5234754A (en) * 1978-11-03 1993-08-10 Bache Hans H Shaped article and composite material and method for producing same
DE3343948A1 (en) * 1982-12-07 1984-06-07 Elkem A/S, Oslo CONCRETE ADDITIVES IN THE FORM OF A MULTI-COMPONENT MIXTURE CONTAINING MICROSILICIUM DIOXIDE, METHOD FOR THE PRODUCTION THEREOF AND CONCRETE PRODUCED WITH THIS ADDITIVE
DE3346948A1 (en) * 1983-01-03 1984-07-05 W.R. Grace & Co., Cambridge, Mass. CORROSION PREVENTING ADDITIVE FOR CEMENT COMPOSITION
DE3838029A1 (en) * 1987-11-09 1989-05-18 Norsk Hydro As cement slurry

Also Published As

Publication number Publication date
AT312490B (en) 1974-01-10

Similar Documents

Publication Publication Date Title
DE69632311T2 (en) FLAG BAG CONTAINING CEMENT MATERIAL
DE69117512T2 (en) VERY PERMANENT CEMENT PRODUCTS CONTAINING SILICALLY ASHES
DE3121814A1 (en) "ADDITIONAL MIX FOR CEMENT"
DE102007063620B4 (en) Mineral binder and a process for its preparation
DE3881035T2 (en) HYDRAULIC CEMENT AND A COMPOSITION CONTAINING IT.
Kejela Waste paper ash as partial replacement of cement in concrete
EP0579063B1 (en) Rapid-setting hydraulic binder
EP2746237A1 (en) Activator for cement
CH574880A5 (en) High strength concrete prodn - from cement, siliceous fly ash and liquefying agent
DE102005052817B3 (en) Concrete recipe for the production of sewage pipes, waste water pipes, and mains drainage pipes based on polycarboxylatether
DE69632832T2 (en) HYDRAULIC CEMENT
DE60115642T2 (en) BUILDING MATERIALS
AT517029B1 (en) Mixing cement composition
EP0727398B1 (en) Composite cement
DE3115979A1 (en) SELF-LEVELING MORTAR BLEND
CH684476A5 (en) Cement mixtures.
DE102010061456A1 (en) Producing building material composition, which is provided as part of binder or as part of building material mixture with binding agent, comprises coarse crushing, burning coarsely crushed raw clay materials and finely crushing
EP2695865A2 (en) Mineral adhesive agent and method for its manufacture
EP2159202A1 (en) Adhesive, compound comprising a slag and an additive and a method for creating a building material
DD297632A5 (en) USE OF SWIVEL COVERS IN ESTRICHMOERTEL
DE69115238T2 (en) Sand / cement mixture suitable for mortar.
DE69902038T3 (en) Process for producing an element
DE2900613C2 (en) Process for the production of a fiber-reinforced, hardened plaster molding
DE19912652A1 (en) Acid resistant mortar or concrete, especially for internal lining of cooling towers, is produced using a highly densifiable binder mixture of cement, fly ash and micro-silica
DE2953652C1 (en) Hydraulic inorganic mass

Legal Events

Date Code Title Description
PL Patent ceased